Update README.md
This commit is contained in:
parent
ee40c85194
commit
1d6b1c3800
10
README.md
10
README.md
|
@ -310,13 +310,13 @@ CS231n (斯坦福计算机视觉课程): [website](https://cs231n.stanford.edu/s
|
|||
* 连续体机器人在医疗领域的应用 (Nabil Simaan; Howie Choset等): [Continuum Robots for Medical Interventions](https://ieeexplore.ieee.org/abstract/document/9707607)<br>
|
||||
* 软体手术机器人在微创介入手术中的应用 (Ka-wai Kwok; Kaspar Althoefer等): [Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook](https://ieeexplore.ieee.org/abstract/document/9765966/authors#authors)<br>
|
||||
> 连续体和软体机器人因其超冗余自由度和高度非线性的结构特性, 采用传统的控制与传感方法构建正逆运动学方程时面临显著的计算复杂性和建模局限性。传统方法难以精确描述其多自由度耦合运动及环境交互中的动态响应。为此, 基于数据驱动的智能控制方法(如深度学习、强化学习及自适应控制算法)成为解决这一问题的前沿方向。这些方法能够通过大量数据训练, 高效学习系统的非线性映射关系, 显著提升运动控制的精度、自适应性和鲁棒性, 为复杂医疗场景下的机器人操作提供了更为可靠的技术支撑。
|
||||
* 什么是软体机器人?软体机器人的具身智能定义: [知乎, by Ke WU from MBUZAI](https://www.zhihu.com/question/61637360/answer/92834447300?utm_psn=1870238291607040000)<br>
|
||||
* IROS 2024大会Program Chair新加坡国立大学Cecilia Laschi教授的论著: [Learning-Based Control Strategies for Soft Robots: Theory, Achievements, and Future Challenges](https://ieeexplore.ieee.org/abstract/document/10136428)<br>
|
||||
* 软体机器人中具身智能物理建模简明指南(也是出自NUS Cecilia教授团队): [A concise guide to modelling the physics of embodied intelligence in soft robotics](https://inria.hal.science/hal-03921606/document)<br>
|
||||
* 数据驱动方法在软体机器人建模与控制中的应用: [Data-driven methods applied to soft robot modeling and control: A review](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10477253)<br>
|
||||
* 什么是软体机器人?软体机器人的具身智能定义: [知乎, by Ke WU from MBUZAI](https://www.zhihu.com/question/61637360/answer/92834447300?utm_psn=1870238291607040000)<br>
|
||||
* IROS 2024大会Program Chair新加坡国立大学Cecilia Laschi教授的论著: [Learning-Based Control Strategies for Soft Robots: Theory, Achievements, and Future Challenges](https://ieeexplore.ieee.org/abstract/document/10136428)<br>
|
||||
* 软体机器人中具身智能物理建模简明指南(也是出自NUS Cecilia教授团队): [A concise guide to modelling the physics of embodied intelligence in soft robotics](https://inria.hal.science/hal-03921606/document)<br>
|
||||
* 数据驱动方法在软体机器人建模与控制中的应用: [Data-driven methods applied to soft robot modeling and control: A review](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10477253)<br>
|
||||
|
||||
* 微纳机器人技术是一类集成了微纳米制造、生物工程和智能控制等多学科前沿技术的微型机器人系统。凭借其微纳米级的独特尺寸、优异的生物相容性和精准的操控性能,这一前沿技术为现代医学诊疗范式带来了突破性创新。在精准诊断方面,微纳机器人能够深入人体微观环境,实现细胞乃至分子水平的实时监测;在靶向治疗领域,其可作为智能药物载体,实现病灶部位的精准定位与可控释放;在微创手术应用中,微纳机器人系统为复杂外科手术提供了前所未有的精确操作平台。这些创新性应用不仅显著提升了诊疗效率,更为攻克重大疾病提供了全新的技术途径,推动着现代医学向更精准、更微创、更智能的方向发展。
|
||||
* 微纳机器人的机器学习(CUHK 张立教授团队在Nature Machine Intelligence上的论著): [Machine learning for micro- and nanorobots](https://www.nature.com/articles/s42256-024-00859-x)<br>
|
||||
* 微纳机器人的机器学习(CUHK 张立教授团队在Nature Machine Intelligence上的论著): [Machine learning for micro- and nanorobots](https://www.nature.com/articles/s42256-024-00859-x)<br>
|
||||
|
||||
<section id="uav"></section>
|
||||
|
||||
|
|
Loading…
Reference in New Issue