Update MPC Part.
This commit is contained in:
parent
c639bd61ad
commit
66e8136ab7
10
README.md
10
README.md
|
@ -214,20 +214,20 @@
|
|||
|
||||
* 经典工作:
|
||||
|
||||
* 理论基础:
|
||||
**理论基础**:
|
||||
- [Model predictive control: Theory and practice—A survey](https://www.sciencedirect.com/science/article/abs/pii/0005109889900022) : 这篇全面的综述论文讨论了 MPC 的理论基础及其实践应用,为未来的研究奠定了基础。
|
||||
|
||||
* 非线性 MPC:
|
||||
**非线性 MPC**:
|
||||
- [An Introduction to Nonlinear Model Predictive Control](https://pure.tue.nl/ws/files/3079152/555518.pdf#page=120) : 提供了对非线性 MPC 的简明介绍,扩展了 MPC 在具有显著非线性系统中的应用。
|
||||
|
||||
* 显式 MPC:
|
||||
**显式 MPC**:
|
||||
- [The explicit linear quadratic regulator for constrained systems](https://www.sciencedirect.com/science/article/abs/pii/S0005109801001741) : 讨论了显式 MPC 解的公式化,对于需要快速实时控制的系统至关重要。
|
||||
|
||||
* 鲁棒 MPC:
|
||||
**鲁棒 MPC**:
|
||||
- [Predictive End-Effector Control of Manipulators on Moving Platforms Under Disturbance](https://ieeexplore.ieee.org/document/9425004) : 使用时间序列分析预测基座运动并相应地转换期望轨迹,使得机械臂可以达到主动在扰动下的基座运动。是使用二次规划(QP)公式化模型预测控制(MPC)问题的经典之作。
|
||||
- [Min-max feedback model predictive control for constrained linear systems](https://ieeexplore.ieee.org/abstract/document/704989) : 解决了 MPC 中的鲁棒性,提出了处理模型不确定性并确保在扰动下性能的方法。
|
||||
|
||||
* 基于学习的MPC:
|
||||
**基于学习的MPC**:
|
||||
- [Learning-Based Model Predictive Control for Safe Exploration](https://ieeexplore.ieee.org/abstract/document/8619572) : 将机器学习与 MPC 相结合,代表了将数据驱动的模型和学习纳入控制的现代趋势。
|
||||
- [Confidence-Aware Object Capture for a Manipulator Subject to Floating-Base Disturbances](https://ieeexplore.ieee.org/document/10684104) : 利用小波神经网络进行实时运动预测,并且引入置信度评价,实现短周期内最优轨迹规划,使得机械臂在扰动平面上抓取无人机(UAV)表现优异,具备良好的鲁棒性。
|
||||
|
||||
|
|
Loading…
Reference in New Issue