diff --git a/README.md b/README.md index 331fd00..cf54777 100644 --- a/README.md +++ b/README.md @@ -619,21 +619,21 @@ CS231n (斯坦福计算机视觉课程): [website](https://cs231n.stanford.edu/s 1. 3D/4D 场景重建 * 经典工作:NSG, MARS, StreetGaussians, OmniRe - * NSG: CVPR 2021, [github](https://github.com/princeton-computational-imaging/neural-scene-graphs), [arxiv](https://arxiv.org/abs/2011.10379), [paper](https://openaccess.thecvf.com/content/CVPR2021/html/Ost_Neural_Scene_Graphs_for_Dynamic_Scenes_CVPR_2021_paper.html) - * MARS: [github](https://open-air-sun.github.io/mars/), [arxiv](https://arxiv.org/abs/2307.15058) - * StreetGaussians: [github](https://github.com/zju3dv/street_gaussians), [arxiv](https://arxiv.org/abs/2401.01339) - * OmniRe: ICLR 2025 Spotlight, [demo page](https://ziyc.github.io/omnire), [github](https://github.com/ziyc/drivestudio), [arxiv](https://arxiv.org/abs/2408.16760) + * **NSG**: CVPR 2021, [github](https://github.com/princeton-computational-imaging/neural-scene-graphs), [arxiv](https://arxiv.org/abs/2011.10379), [paper](https://openaccess.thecvf.com/content/CVPR2021/html/Ost_Neural_Scene_Graphs_for_Dynamic_Scenes_CVPR_2021_paper.html) + * **MARS**: [github](https://open-air-sun.github.io/mars/), [arxiv](https://arxiv.org/abs/2307.15058) + * **StreetGaussians**: [github](https://github.com/zju3dv/street_gaussians), [arxiv](https://arxiv.org/abs/2401.01339) + * **OmniRe**: ICLR 2025 Spotlight, [demo page](https://ziyc.github.io/omnire), [github](https://github.com/ziyc/drivestudio), [arxiv](https://arxiv.org/abs/2408.16760) 2. 场景可控生成(世界模型) * 经典工作:GAIA-1, GenAD(OpenDV数据集), Vista, SCP-Diff, MagicDrive -> MagicDriveDiT, UniScene, VaVAM - * GAIA-1: [demo page](https://wayve.ai/thinking/introducing-gaia1/), [arxiv](https://arxiv.org/abs/2309.17080) - * GenAD: CVPR 2024 Highlight, OpenDV数据集, [github](https://github.com/OpenDriveLab/DriveAGI?tab=readme-ov-file#opendv), [arxiv](https://arxiv.org/abs/2403.09630) - * Vista: NeurIPS 2025, [demo page](https://opendrivelab.com/Vista), [github](https://github.com/OpenDriveLab/Vista), [arxiv](https://arxiv.org/abs/2405.17398) - * SCP-Diff: [demo page](https://air-discover.github.io/SCP-Diff/), [github](https://github.com/AIR-DISCOVER/SCP-Diff-Toolkit), [arxiv](https://arxiv.org/abs/2403.09638) - * MagicDrive -> MagicDriveDiT: [demo page](https://gaoruiyuan.com/magicdrive-v2/), [arxiv](https://arxiv.org/abs/2411.13807) - * UniScene: CVPR 2025, [demo page](https://arlo0o.github.io/uniscene/), [arxiv](https://arxiv.org/abs/2412.05435) - * VaVAM: [github](https://github.com/valeoai/VideoActionModel) + * **GAIA-1**: [demo page](https://wayve.ai/thinking/introducing-gaia1/), [arxiv](https://arxiv.org/abs/2309.17080) + * **GenAD**: CVPR 2024 Highlight, OpenDV数据集, [github](https://github.com/OpenDriveLab/DriveAGI?tab=readme-ov-file#opendv), [arxiv](https://arxiv.org/abs/2403.09630) + * **Vista**: NeurIPS 2025, [demo page](https://opendrivelab.com/Vista), [github](https://github.com/OpenDriveLab/Vista), [arxiv](https://arxiv.org/abs/2405.17398) + * **SCP-Diff**: [demo page](https://air-discover.github.io/SCP-Diff/), [github](https://github.com/AIR-DISCOVER/SCP-Diff-Toolkit), [arxiv](https://arxiv.org/abs/2403.09638) + * **MagicDrive** -> MagicDriveDiT: [demo page](https://gaoruiyuan.com/magicdrive-v2/), [arxiv](https://arxiv.org/abs/2411.13807) + * **UniScene**: CVPR 2025, [demo page](https://arlo0o.github.io/uniscene/), [arxiv](https://arxiv.org/abs/2412.05435) + * **VaVAM**: [github](https://github.com/valeoai/VideoActionModel) #### Policy:自动驾驶策略 @@ -649,14 +649,14 @@ CS231n (斯坦福计算机视觉课程): [website](https://cs231n.stanford.edu/s [理想端到端-VLM双系统](https://www.sohu.com/a/801987742_258768) * 快系统经典论文:UniAD (CVPR 2023 Best Paper), VAD, SparseDrive, DiffusionDrive - * UniAD: CVPR 2023 Best Paper, [github](https://github.com/OpenDriveLab/UniAD), [arxiv](https://arxiv.org/abs/2212.10156) - * VAD: ICCV 2023, [github](https://github.com/hustvl/VAD), [arxiv](https://arxiv.org/abs/2303.12077) - * SparseDrive: [github](https://github.com/swc-17/SparseDrive), [arxiv](https://arxiv.org/abs/2405.19620) - * DiffusionDrive: CVPR 2025, [github](https://github.com/hustvl/DiffusionDrive), [arxiv](https://arxiv.org/abs/2411.15139) + * **UniAD**: CVPR 2023 Best Paper, [github](https://github.com/OpenDriveLab/UniAD), [arxiv](https://arxiv.org/abs/2212.10156) + * **VAD**: ICCV 2023, [github](https://github.com/hustvl/VAD), [arxiv](https://arxiv.org/abs/2303.12077) + * **SparseDrive**: [github](https://github.com/swc-17/SparseDrive), [arxiv](https://arxiv.org/abs/2405.19620) + * **DiffusionDrive**: CVPR 2025, [github](https://github.com/hustvl/DiffusionDrive), [arxiv](https://arxiv.org/abs/2411.15139) * 快系统的 Scale up 特性探究:https://arxiv.org/pdf/2412.02689 * 慢系统经典论文:DriveVLM, EMMA - * DriveVLM: CoRL 2024, [arxiv](https://arxiv.org/abs/2402.12289) - * EMMA: [arxiv](https://arxiv.org/abs/2410.23262) + * **DriveVLM**: CoRL 2024, [arxiv](https://arxiv.org/abs/2402.12289) + * **EMMA**: [arxiv](https://arxiv.org/abs/2410.23262) - **[Open-EMMA](https://github.com/taco-group/OpenEMMA)** 是EMMA的一个开源实现,提供了一个用于自动驾驶车辆运动规划的端到端框架。