Embodied-AI-Guide/README.md

168 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<h1 align="center">具身智能入门指南</h1>
<p align="center"><a href="https://github.com/tianxingchen/Embodied-AI-Guide">Github Repo</a>, Latest Update: Dec 17, 2024 】 <img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2Ftianxingchen%2FEmbodied-AI-Guide&count_bg=%232B8DD9&title_bg=%237834C6&icon=github.svg&icon_color=%23E7E7E7&title=Page+Viewers&edge_flat=false"/></a></p>
<p><b>🦉Contributors</b>: <a href="https://tianxingchen.github.io">陈天行 (25' 港大PhD)</a>, <a href="https://yudezou.github.io/">邹誉德 (25' 上交-浦江实验室联培PhD)</a>, <a href="">陈思翔 (25' 北大PhD)</a>, <a href="https://github.com/27yw">叶雯 (25' 中科院自动化所PhD)</a>, <a href="https://github.com/zanxinchen">陈攒鑫 (深大本科生)</a>, <a href="https://github.com/ShijiaPeng03">彭时佳 (深大本科生)</a>, <a href="https://github.com/gkw0010">王冠锟 (港中文-华为联培PhD)</a>, <a href="https://ngchikit.github.io">吴志杰 (港中文PhD)</a>.</p>
> Embodied AI (具身智能)入门的路径以及useful信息的总结期望是按照路线走完后新手可以快速建立关于这个领域的认知希望能帮助到各位入门具身智能的朋友欢迎点Star、分享与提PR🌟~<br><a href="https://hits.seeyoufarm.com">
## Contents - 目录
<nav>
<ul>
<li><a href="#start">Start Up - 从这里开始</a></li>
<li><a href="#info">Useful Info - 有利于搭建认知的资料</a></li>
<li><a href="#paper_list">Paper Lists - 论文列表</a></li>
<li><a href="#rl">Reinforcement Learning - 强化学习</a></li>
<li><a href="#il">Imitation Learning - 模仿学习</a></li>
<li><a href="#llm_robot">LLM for Robotics - 大模型在机器人学中的应用</a></li>
<li><a href="#3dv">3D Vision - 三维视觉</a></li>
<li><a href="#control">Control - 控制学</a></li>
<li><a href="#benchmarks">Benchmarks & Simulators - 基准 & 仿真器</a></li>
<li><a href="#communities">Communities - 社区</a></li>
<li><a href="#companies">Companies - 公司</a></li>
<li><a href="#acknowledgement">🙏 Acknowledgement - 致谢</a></li>
</ul>
</nav>
<section id="start"></section>
## Start Up - 从这里开始
**什么是具身智能?**<br>
具身智能是指一种基于物理身体进行感知和行动的智能系统,其通过智能体与环境的交互获取信息、理解问题、做出决策并实现行动,从而产生智能行为和适应性。
<section id="info"></section>
## Useful Info - 有利于搭建认知的资料
* 具身智能基础技术路线-YunlongDong [2]: [PDF](./files/具身智能基础技术路线-YunlongDong.pdf), [bilibili](https://www.bilibili.com/video/BV1d5ukedEsi/?buvid=XXCD799C01878A6CFDECF3FB4427E2F070877&from_spmid=default-value&is_story_h5=false&mid=iWFclAyh36UYMh2G6ZcsDw%3D%3D&p=1&plat_id=114&share_from=ugc&share_medium=android&share_plat=android&share_session_id=9c0dccf5-ec0b-4369-8b89-ff1d848467ee&share_source=WEIXIN&share_tag=s_i&spmid=united.player-video-detail.0.0&timestamp=1716466406&unique_k=Q0CaIUj&up_id=249218043)
* AI领域值得关注的博主列表 [3]: [zhihu](https://zhuanlan.zhihu.com/p/682110383)
* Robotics实验室总结 [4]: [zhihu_1](https://zhuanlan.zhihu.com/p/682671294?utm_psn=1782122763157188608), [zhihu_2](https://zhuanlan.zhihu.com/p/682692024?utm_psn=1782122945184796672)
<section id="paper_list"></section>
## Paper Lists - 论文列表
* Paper List For EmbodiedAI - Tianxing Chen: [repo](https://github.com/TianxingChen/Paper-List-For-EmbodiedAI)
* Awesome Humanoid Robot Learning - Yanjie Ze: [repo](https://github.com/YanjieZe/awesome-humanoid-robot-learning)
* Paper List - Yanjie Ze: [repo](https://github.com/YanjieZe/Paper-List)
* Paper Reading List - DeepTimber Community: [repo](https://github.com/DeepTimber-Robot-Lab/Paper-Reading-List)
* SOTA Paper Rating - Weiyang Jin: [website](https://waynejin0918.github.io/SOTA-paper-rating.io/)
* Awesome-LLM-Robotics: A repo contains a curative list of papers using Large Language/Multi-Modal Models for Robotics/RL: [website](https://github.com/GT-RIPL/Awesome-LLM-Robotics)
<section id="rl"></section>
## Reinforcement Learning - 强化学习
* UCB CS285 深度强化学习: [website](https://rail.eecs.berkeley.edu/deeprlcourse/) | [youtube](https://www.youtube.com/playlist?list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps)<br>
* 台湾大学李宏毅公开课: [bilibili](https://www.bilibili.com/video/BV1XP4y1d7Bk/?spm_id_from=333.337.search-card.all.click&vd_source=ab9cf5374617c2867aaea34af29b53c9)<br>
* EasyRL - 蘑菇书: [website](https://datawhalechina.github.io/easy-rl/#/)<br>
* 强化学习的数学原理 - 西湖大学赵世钰: [bilibili](https://space.bilibili.com/2044042934/channel/collectiondetail?sid=748665)<br>
* 实践[gymnasium](https://gymnasium.farama.org/),可以尝试一下把玩一下登月着陆等经典强化学习场景,思考+动手观察阶段agent的表现并分析有助于深入理解强化学习
<section id="il"></section>
## Imitation Learning - 模仿学习
* 模仿学习简洁教程 - 南京大学LAMDA: [PDF](https://www.lamda.nju.edu.cn/xut/Imitation_Learning.pdf)<br>
* Supervised Policy Learning for Real Robots, RSS 2024 Workshop 教程:真实机器人的监督策略学习, [bilibili](https://www.bilibili.com/video/BV1Fx4y1s7if/?buvid=XY415384A771A6C681C9BEB3817566ED57724&is_story_h5=false&mid=ORgXkVzTHaOKTsml0RX5Gw%3D%3D&plat_id=240&share_from=ugc&share_medium=android&share_plat=android&share_source=WEIXIN&share_tag=s_i&spmid=dt.space-dt.0.0&timestamp=1721464513&unique_k=Cqj5d9J&up_id=2185804&vd_source=ab9cf5374617c2867aaea34af29b53c9)
<section id="llm_robot"></section>
## LLM for Robotics - 大模型在机器人学中的应用
* Robotics+LLM系列通过大语言模型控制机器人 [2]: [zhihu](https://zhuanlan.zhihu.com/p/668053911)<br>
* PDDL-wiki: [website](https://planning.wiki/)<br>
* An Introduction to PDDL: [PDF](https://www.cs.toronto.edu/~sheila/2542/s14/A1/introtopddl2.pdf)<br>
* Embodied Agent wiki: [website](https://en.wikipedia.org/wiki/Embodied_agent)<br>
* Lilian Weng 个人博客 - AI Agent 系统综述 [5]: 中文: [website](https://mp.weixin.qq.com/s/Jb8HBbaKYXXxTSQOBsP5Wg) 英文: [website](https://lilianweng.github.io/posts/2023-06-23-agent/)<br>
<section id="3dv"></section>
## 3D Vision - 三维视觉
三维视觉导论 - Andreas Geiger: [website](https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/)<br>
GAMES203 - 三维重建和理解: [bilibili](https://www.bilibili.com/video/BV1pw411d7aS/?share_source=copy_web&vd_source=0b7603f37af6d369a97df34525b149be)<br>
Advances in 3D pre-training and downstream tasks: a survey. [PDF](https://link.springer.com/content/pdf/10.1007/s44336-024-00007-4.pdf)<br>
### 3DGS
3D Gaussian Splatting原理速通: [bilibili](https://www.bilibili.com/video/BV11e411n79b/?spm_id_from=333.788&vd_source=ab9cf5374617c2867aaea34af29b53c9)
<section id="control"></section>
## Control - 控制学
> 关于控制部分的学习,最好从实践出发!
* PID控制[CSDN](https://blog.csdn.net/name_longming/article/details/115093338)
* 彻底搞懂阻抗控制、导纳控制、力位混合控制: [CSDN](https://blog.csdn.net/a735148617/article/details/108564836)<br>
* 具身智能ROS1基础: [website](http://www.autolabor.com.cn/book/ROSTutorials/)<br>
* 具身智能ROS2基础: [website](https://zhangzhiwei-zzw.github.io/ROS2%E5%AD%A6%E4%B9%A0/ROS2/)<br>
* 机器人系统教材: [website](https://motion.cs.illinois.edu/RoboticSystems/)<br>
* 动手实践Lerobot SO-100[website](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md)<br>
* 斯坦福机器人学导论:[website](https://www.bilibili.com/video/BV17T421k78T/?spm_id_from=333.337.search-card.all.click)<br>
* 台大机器人学导论:[website](https://www.bilibili.com/video/BV1Z34y1q7sZ/?spm_id_from=333.337.search-card.all.click)<br>
* 共建全网最全具身智能知识库:[website](https://yv6uc1awtjc.feishu.cn/wiki/WPTzw9ON0ivIVrkLjVocNZh8nLf)<br>
* ROS多传感器时间戳同步[website](https://blog.csdn.net/qq_43495930/article/details/125649446)
<section id="benchmarks"></section>
## Benchmarks & Simulators - 基准 & 仿真器
具身智能常用benchmark总结 [1]: [zhihu](https://zhuanlan.zhihu.com/p/695342864)<br>
常见仿真器wiki: [wiki](https://simulately.wiki/)
| 仿真器 | 基准 |
|-------|------|
| [IsaacSim](https://developer.nvidia.com/isaac/sim) | [BEHAVIOR-1K(可跨平台)](https://behavior.stanford.edu/behavior-1k)+[omniGibson(工具链)](https://behavior.stanford.edu/omnigibson/)<br>[ARNOID](https://arnold-benchmark.github.io/) |
| [MuJoCo](https://mujoco.org/) | [robosuite](https://robosuite.ai/docs/overview.html)+[robomimic(工具链)](https://robomimic.github.io/)<br>[LIBERO](https://libero-project.github.io/main.html)<br>[MetaWorld](https://meta-world.github.io/)<br>[Gymnasium-Robotics(Fetch; Shadow Dexterous Hand; Maze; Adroit Hand; Franka Kitchen; MaMuJoCo)](https://robotics.farama.org/)<br>[RoboCasa](Docs.qq.com/sheet/DYmppSU55cFNpaVJo?tab=BB08J2)<br>[RoboHive](https://github.com/vikashplus/robohive) |
| [Sapien](https://sapien.ucsd.edu/) | [ManiSkill](https://maniskill.readthedocs.io/en/latest/index.html)<br>[RoboTwin](https://github.com/TianxingChen/RoboTwin) |
| [CoppeliaSim](https://www.coppeliarobotics.com/) | [RLBench](https://github.com/stepjam/RLBench)<br>[PerAct2](https://bimanual.github.io/)<br>[COLOSSEUM](https://robot-colosseum.github.io/) |
| [PyBullet](https://pybullet.org/wordpress/) | [Calvin](https://github.com/mees/calvin?tab=readme-ov-file)<br>[Ravens](https://github.com/google-research/ravens)<br>[VimaBench](https://github.com/vimalabs/VimaBench) |
<section id="communities"></section>
## Communities - 社区
> 以下部分资料引用自[7]
* DeepTimber Robotics Innovations Community, 深木科研交流社区: [website](https://gamma.app/public/DeepTimber-Robotics-Innovations-Community-A-Community-for-Multi-m-og0uv8mswl1a3q7?mode=doc)
* 宇树具身智能社群: [website](https://www.unifolm.com/#/)
* Simulately: Handy information and resources for physics simulators for robot learning research: [website](https://simulately.wiki/)
* DeepTimber-地瓜机器人社区: [website](https://cn.developer.d-robotics.cc/forumList?id=156&title=Deeptimber)
* HuggingFace LeRobot (Europe, check the Discord): [website](https://github.com/huggingface/lerobot)
* K-scale labs (US, check the Discord): [website](https://kscale.dev/)
<section id="companies"></section>
## Companies - 公司
| 公司 | 主营产品 | Others |
|-------|------|------|
| [松灵AgileX](https://www.agilex.ai/) | [pipper机械臂](https://www.agilex.ai/chassis/16)<br>移动底盘 | 面向教育科研
| [宇树Unitree](https://www.unitree.com/cn) | [Go2机器狗](https://www.unitree.com/cn/go2)<br>[通用人形H1](https://www.unitree.com/cn/h1)<br>[通用人形G1](https://www.unitree.com/cn/g1)<br> | 许多产出使用宇树的机器人作为硬件基础
| [方舟无限ARX](https://www.arx-x.com/?product/) | [X5机械臂](https://www.arx-x.com/?product/21.html)<br>[X7双臂平台](https://www.arx-x.com/?product/23.html)<br>[R5机械臂](https://www.arx-x.com/?product/22.html) | 适合复现很多经典的工作eg. [aloha](https://mobile-aloha.github.io/cn.html)<br>[RoboTwin松灵底盘+方舟臂](https://github.com/TianxingChen/RoboTwi)
| [波士顿动力](https://bostondynamics.com/) | [spot机器狗](https://bostondynamics.com/products/spot/)<br>[Atlas通用人形](https://bostondynamics.com/atlas/) | 具身智能本体制造商,从液压驱动转向电机驱动 |
| [灵心巧手]| | |
| [灵巧智能DexRobot](https://www.dex-robot.com/)| [Dexhand 021灵巧手](https://www.dex-robot.com/productionDexhand) | 19自由度量产灵巧手 |
| [银河通用](https://www.galbot.com/about) | | 已完成多轮融资 |
| [星海图Galaxea](http://galaxea.tech/) | [A1机械臂](http://galaxea.tech/Introducing_Galaxea_Robot/product_info/A1/#discover-more) | |
| [World Labs](https://www.worldlabs.ai/) | | 专注于空间智能致力于打造大型世界模型LWM以感知、生成并与 3D 世界进行交互。 [相关介绍](https://mp.weixin.qq.com/mp/wappoc_appmsgcaptcha?poc_token=HEH5X2ejkAoWy1ZXj8DlZO_Y2Q7PsYX-3ID-rfr5&target_url=https%3A%2F%2Fmp.weixin.qq.com%2Fs%2Fi58_yTFtt904haKezJgr1Q) |
| [星动纪元](https://www.robotera.com) | [Star1人形](https://www.robotera.com/goods/1.html)<br> [XHAND1灵巧手](https://www.robotera.com/goods/2.html) | 由清华叉院陈建宇教授创建 |
| [加速进化](https://boosterobotics.com/zh/) | [Booster T1人形](https://boosterobotics.com/zh/store/)| |
<section id="acknowledgement"></section>
<a name="acknowledgement"></a>
## 🙏 Acknowledgement - 致谢
本文转载/引用了一些博主的文章,我们对他们的知识分享表示感谢,引用列表如下:
[1] 知乎 [穆尧](https://www.zhihu.com/people/mu-yao-12-34), [2] 知乎 [东林钟声](https://www.zhihu.com/people/dong-lin-zhong-sheng-76), Github [Yunlong Dong](https://github.com/yunlongdong), [3] 知乎 [强化学徒](https://www.zhihu.com/people/heda-he-28), [4] 知乎 [Biang哥](https://www.zhihu.com/people/qi-da-guang), [5] OpenAI [Lilian Weng](https://lilianweng.github.io/), [6] B站 [木木具身](https://space.bilibili.com/350563565), [7] Github [Zhuoheng Li](https://github.com/StarCycle/EmbodiedAI-Reading-List-For-Lists?tab=readme-ov-file)
## 🏷️ License - 许可证
This repository is released under the MIT license. See LICENSE for additional details.