Embodied-AI-Guide/README.md

119 lines
8.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<h1 align="center">具身智能中文指南</h1>
<p align="center"><a href="https://github.com/tianxingchen/Embodied-AI-Guide">Github Repo</a>, Latest Update: Sep 1, 2024 】 <img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2Ftianxingchen%2FEmbodied-AI-Guide&count_bg=%232B8DD9&title_bg=%237834C6&icon=github.svg&icon_color=%23E7E7E7&title=Page+Viewers&edge_flat=false"/></a></p>
<p><b>🦉Contributors</b>: <a href="https://tianxingchen.github.io">陈天行 (深大本科生)</a>, <a href="https://yudezou.github.io/">邹誉德 (25' 上交-浦江实验室联培PhD)</a>, <a href="">陈思翔 (25' 北大PhD)</a>, <a href="https://github.com/27yw">叶雯 (25' 中科院自动化所PhD)</a>, <a href="https://github.com/zanxinchen">陈攒鑫 (深大本科生)</a>, <a href="https://github.com/ShijiaPeng03">彭时佳 (深大本科生)</a></p>
> Embodied AI (具身智能)入门的路径以及useful信息的总结期望是按照路线走完后新手可以快速建立关于这个领域的认知希望能帮助到各位入门具身智能的朋友,欢迎star与PR🌟~<br>文章中引用文章的原作者,我们在[🙏 Acknowledgement - 致谢](#acknowledgement)部分进行了致谢,感谢他们的分享🌹<br><a href="https://hits.seeyoufarm.com">
# Contents - 目录
<nav>
<ul>
<li><a href="#start">Start Up - 从这里开始</a></li>
<li><a href="#rl">Reinforcement Learning - 强化学习</a></li>
<li><a href="#il">Imitation Learning - 模仿学习</a></li>
<li><a href="#llm_robot">Large Language Model for Robotics - 大模型在机器人学中的应用</a></li>
<li><a href="#3dv">3D Vision - 三维视觉</a></li>
<li><a href="#control">Control - 控制学</a></li>
<li><a href="#benchmarks">Benchmarks - 基准</a></li>
<li><a href="#info">Useful Info - 有利于搭建认知的资料</a></li>
<li><a href="#communities">Communities - 社区</a></li>
<li><a href="#companies">Companies - 公司</a></li>
<li><a href="#acknowledgement">🙏 Acknowledgement - 致谢</a></li>
</ul>
</nav>
<section id="start"></section>
# Start Up - 从这里开始
**什么是具身智能?**<br>
具身智能是指一种基于物理身体进行感知和行动的智能系统,其通过智能体与环境的交互获取信息、理解问题、做出决策并实现行动,从而产生智能行为和适应性。
<section id="rl"></section>
# Reinforcement Learning - 强化学习
台湾大学李宏毅公开课: [bilibili](https://www.bilibili.com/video/BV1XP4y1d7Bk/?spm_id_from=333.337.search-card.all.click&vd_source=ab9cf5374617c2867aaea34af29b53c9)<br>
EasyRL - 蘑菇书: [website](https://datawhalechina.github.io/easy-rl/#/)<br>
强化学习的数学原理 - 西湖大学赵世钰: [bilibili](https://space.bilibili.com/2044042934/channel/collectiondetail?sid=748665)<br>
实践[gymnasium](https://gymnasium.farama.org/),可以尝试一下把玩一下登月着陆等经典强化学习场景,思考+动手观察阶段agent的表现并分析有助于深入理解强化学习
<section id="il"></section>
# Imitation Learning - 模仿学习
模仿学习简洁教程 - 南京大学LAMDA: [PDF](https://www.lamda.nju.edu.cn/xut/Imitation_Learning.pdf)<br>
Supervised Policy Learning for Real Robots, RSS 2024 Workshop 教程:真实机器人的监督策略学习, [bilibili](https://www.bilibili.com/video/BV1Fx4y1s7if/?buvid=XY415384A771A6C681C9BEB3817566ED57724&is_story_h5=false&mid=ORgXkVzTHaOKTsml0RX5Gw%3D%3D&plat_id=240&share_from=ugc&share_medium=android&share_plat=android&share_source=WEIXIN&share_tag=s_i&spmid=dt.space-dt.0.0&timestamp=1721464513&unique_k=Cqj5d9J&up_id=2185804&vd_source=ab9cf5374617c2867aaea34af29b53c9)
<section id="llm_robot"></section>
# Large Language Model for Robotics - 大模型在机器人学中的应用
Robotics+LLM系列通过大语言模型控制机器人 [2]: [zhihu](https://zhuanlan.zhihu.com/p/668053911)<br>
PDDL-wiki: [website](https://planning.wiki/)<br>
An Introduction to PDDL: [PDF](https://www.cs.toronto.edu/~sheila/2542/s14/A1/introtopddl2.pdf)<br>
AI Agent from IBM: An artificial intelligence (AI) agent refers to a system or program that is capable of autonomously performing tasks on behalf of a user or another system by designing its workflow and utilizing available tools.<br>
Embodied Agent wiki: [website](https://en.wikipedia.org/wiki/Embodied_agent)<br>
Awesome-LLM-Robotics: A repo contains a curative list of papers using Large Language/Multi-Modal Models for Robotics/RL. [website](https://github.com/GT-RIPL/Awesome-LLM-Robotics)<br>
Lilian Weng 个人博客 - AI Agent 系统综述 [5]: 中文: [website](https://mp.weixin.qq.com/s/Jb8HBbaKYXXxTSQOBsP5Wg) 英文: [website](https://lilianweng.github.io/posts/2023-06-23-agent/)<br>
<section id="3dv"></section>
# 3D Vision - 三维视觉
三维视觉导论 - Andreas Geiger: [website](https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/)
GAMES203 - 三维重建和理解: [bilibili](https://www.bilibili.com/video/BV1pw411d7aS/?share_source=copy_web&vd_source=0b7603f37af6d369a97df34525b149be)
Advances in 3D pre-training and downstream tasks: a survey: [PDF](https://link.springer.com/content/pdf/10.1007/s44336-024-00007-4.pdf)
## 3DGS
3D Gaussian Splatting原理速通: [bilibili](https://www.bilibili.com/video/BV11e411n79b/?spm_id_from=333.788&vd_source=ab9cf5374617c2867aaea34af29b53c9)
<section id="control"></section>
# Control - 控制学
彻底搞懂阻抗控制、导纳控制、力位混合控制: [CSDN](https://blog.csdn.net/a735148617/article/details/108564836)<br>
具身智能ROS1基础: [website](http://www.autolabor.com.cn/book/ROSTutorials/)<br>
具身智能ROS2基础: [website](https://zhangzhiwei-zzw.github.io/ROS2%E5%AD%A6%E4%B9%A0/ROS2/)<br>
<section id="benchmarks"></section>
# Benchmarks & Simulators - 基准 & 仿真器
具身智能常用benchmark总结 [1]: [zhihu](https://zhuanlan.zhihu.com/p/695342864)
常见仿真器wiki: [wiki](https://simulately.wiki/)
<section id="info"></section>
# Useful Info - 有利于搭建认知的资料
具身智能基础技术路线-YunlongDong [2]: [PDF](./files/具身智能基础技术路线-YunlongDong.pdf), [bilibili](https://www.bilibili.com/video/BV1d5ukedEsi/?buvid=XXCD799C01878A6CFDECF3FB4427E2F070877&from_spmid=default-value&is_story_h5=false&mid=iWFclAyh36UYMh2G6ZcsDw%3D%3D&p=1&plat_id=114&share_from=ugc&share_medium=android&share_plat=android&share_session_id=9c0dccf5-ec0b-4369-8b89-ff1d848467ee&share_source=WEIXIN&share_tag=s_i&spmid=united.player-video-detail.0.0&timestamp=1716466406&unique_k=Q0CaIUj&up_id=249218043)
AI领域值得关注的博主列表 [3]: [zhihu](https://zhuanlan.zhihu.com/p/682110383)
Robotics实验室总结 [4]: [zhihu_1](https://zhuanlan.zhihu.com/p/682671294?utm_psn=1782122763157188608), [zhihu_2](https://zhuanlan.zhihu.com/p/682692024?utm_psn=1782122945184796672)
<section id="communities"></section>
# Communities - 社区
DeepTimber Robotics Innovations Community, 深木科研交流社区: [website](https://gamma.app/public/DeepTimber-Robotics-Innovations-Community-A-Community-for-Multi-m-og0uv8mswl1a3q7?mode=doc)
<section id="acknowledgement"></section>
<a name="acknowledgement"></a>
<section id="companies"></section>
# Companies - 公司
松灵AgileX: [website](https://www.agilex.ai/)<br>
宇树Unitree: [website](https://www.unitree.com/cn)<br>
# 🙏 Acknowledgement - 致谢
本文转载/引用了大量博主的文章,我们对他们的知识分享表示感谢,引用列表如下:
| Since 2024 🌹 | | | |
|------|------|------|------|
| [1] 知乎[穆尧](https://www.zhihu.com/people/mu-yao-12-34) | [2] 知乎[东林钟声](https://www.zhihu.com/people/dong-lin-zhong-sheng-76), Github[Yunlong Dong](https://github.com/yunlongdong) | [3] 知乎[强化学徒](https://www.zhihu.com/people/heda-he-28) | [4] 知乎[Biang哥](https://www.zhihu.com/people/qi-da-guang) | [5] OpenAI [Lilian Weng](https://lilianweng.github.io/) |
# 🏷️ License - 许可证
This repository is released under the MIT license. See LICENSE for additional details.