This is a Pythonic interface and driver for low-level and high-level control of Unitree Go2 quadruped robots. The motivation of this project is to ease the burden of initial interface development, safety systems of Go2 quadruped by providing a modular pipeline for real-time communication with the robot in both simulated and real world with a unified interface.
This project is comprised of the following components:
- **C++ Bridge:** A dockerized ROS2 bridge built upon the [unitree_ros2](https://github.com/unitreerobotics/unitree_ros2) that implements an remote controlled emergency stop and publishes the robot states as standard ROS2 topics usable by upstream systems such as NAV2.
- **Robot Interface:** A simple Python class that represents the robot and communicates with the C++ bridge through either DDS (ROS independent) or ROS2 interfaces.
- **Robot Management FSM:** A finite state machine for controlling the behavior of the robot up to the point of handover to the user low-level controller (sitting down, standing up) with safety monitors (motor temperatures, emergency stops).
- **Robot Model:** A simple to use [Pinocchio](https://github.com/stack-of-tasks/pinocchio) wrapper for computing the kinematics and dynamics parameters of the robot.
- **Simulation Interface:** Simulation environments based on Mujoco and Nvidia Orbit (To be added) with a Python interface identical to the read robot.