autopep8 is applied
This commit is contained in:
parent
4269a7217f
commit
23ee23fd65
|
@ -5,6 +5,7 @@ import time
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def loadParameters(path):
|
||||
with open(path + "/parameters.pkl", "rb") as file:
|
||||
pkl_cfg = pkl.load(file)
|
||||
|
@ -130,7 +131,8 @@ class CommandInterface:
|
|||
self.stance_width_cmd = 0.25
|
||||
|
||||
def setGaitType(self, gait_type):
|
||||
assert gait_type in [key for key in self.gaits.keys()], f'The gain type should be in {[key for key in self.gaits.keys()]}'
|
||||
assert gait_type in [key for key in self.gaits.keys()], f'The gain type should be in {
|
||||
[key for key in self.gaits.keys()]}'
|
||||
self.gait = torch.tensor(self.gaits[gait_type])
|
||||
|
||||
def get_command(self):
|
||||
|
@ -403,9 +405,9 @@ class WalkTheseWaysAgent:
|
|||
self.joint_vel_target - self.dof_vel
|
||||
) * self.d_gains
|
||||
# self.lcm_bridge.sendCommands(command_for_robot)
|
||||
self.robot.setCommands(self.joint_pos_target[self.policy_to_unitree_map[:,1]],\
|
||||
self.joint_vel_target[self.policy_to_unitree_map[:,1]],\
|
||||
self.p_gains[self.policy_to_unitree_map[:,1]],\
|
||||
self.robot.setCommands(self.joint_pos_target[self.policy_to_unitree_map[:, 1]],
|
||||
self.joint_vel_target[self.policy_to_unitree_map[:, 1]],
|
||||
self.p_gains[self.policy_to_unitree_map[:, 1]],
|
||||
self.d_gains[self.policy_to_unitree_map[:, 1]],
|
||||
np.zeros(12))
|
||||
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class HysteresisContactDetector:
|
||||
def __init__(self, upper_limit, lower_limit):
|
||||
self.upper_limit = upper_limit
|
||||
|
|
|
@ -15,6 +15,7 @@ from pygame.locals import (
|
|||
K_q,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class xKeySwitch:
|
||||
R1: int
|
||||
|
@ -45,12 +46,14 @@ class xRockerBtn:
|
|||
L2: float
|
||||
ly: float
|
||||
|
||||
|
||||
class PyGameJoyManager:
|
||||
def __init__(self, user_callback=None):
|
||||
self.dt = 0.01 # Sampling frequence of the joystick
|
||||
self.running = False
|
||||
self.joy_thread_handle = threading.Thread(target=self.joy_thread)
|
||||
# an optional callback that can be used to send the reading values to a user provided function
|
||||
# an optional callback that can be used to send the reading values to a
|
||||
# user provided function
|
||||
self.user_callback = user_callback
|
||||
pygame.init()
|
||||
self.offset = None
|
||||
|
|
|
@ -17,9 +17,13 @@ class FSM:
|
|||
self.tracking_kv = np.array(12 * [3.])
|
||||
self.damping_kv = np.array(12 * [2.])
|
||||
|
||||
|
||||
self.tracking_complete = True
|
||||
self.robot.setCommands(np.zeros(12), np.zeros(12), np.zeros(12), self.damping_kv, np.zeros(12))
|
||||
self.robot.setCommands(
|
||||
np.zeros(12),
|
||||
np.zeros(12),
|
||||
np.zeros(12),
|
||||
self.damping_kv,
|
||||
np.zeros(12))
|
||||
self.fsm_dT = 1. / 50.
|
||||
self.control_dT = 1. / 50.
|
||||
self.dT = self.fsm_dT
|
||||
|
@ -49,19 +53,33 @@ class FSM:
|
|||
self.q_target = target
|
||||
self.time = 0.0
|
||||
self.move_duration = duration
|
||||
self.q_des = lambda t: [self.q_start + np.clip((t)/self.move_duration,0, 1)*(self.q_target - self.q_start), \
|
||||
True if np.clip((t)/self.move_duration,0, 1)==1 else False] # q_des(t), Movement finished
|
||||
self.q_des = lambda t: [self.q_start +
|
||||
np.clip((t) /
|
||||
self.move_duration, 0, 1) *
|
||||
(self.q_target -
|
||||
self.q_start), True if np.clip((t) /
|
||||
self.move_duration, 0, 1) == 1 else False] # q_des(t), Movement finished
|
||||
self.tracking_complete = False
|
||||
self.setMode("tracking")
|
||||
|
||||
def trackingControlUpdate(self):
|
||||
self.time += self.dT
|
||||
q_des, done = self.q_des(self.time)
|
||||
self.robot.setCommands(q_des, np.zeros(12), self.tracking_kp, self.tracking_kv, np.zeros(12))
|
||||
self.robot.setCommands(
|
||||
q_des,
|
||||
np.zeros(12),
|
||||
self.tracking_kp,
|
||||
self.tracking_kv,
|
||||
np.zeros(12))
|
||||
self.tracking_complete = done
|
||||
|
||||
def dampingControlUpdate(self):
|
||||
self.robot.setCommands(np.zeros(12), np.zeros(12), np.zeros(12), self.damping_kv, np.zeros(12))
|
||||
self.robot.setCommands(
|
||||
np.zeros(12),
|
||||
np.zeros(12),
|
||||
np.zeros(12),
|
||||
self.damping_kv,
|
||||
np.zeros(12))
|
||||
|
||||
def userControlUpdate(self):
|
||||
if self.user_controller_callback is not None:
|
||||
|
@ -113,7 +131,12 @@ class FSM:
|
|||
self.setMode("user")
|
||||
self.dT = self.control_dT
|
||||
self.state = "user_loop"
|
||||
self.robot.setCommands(np.zeros(12), np.zeros(12), np.zeros(12), np.zeros(12), np.zeros(12))
|
||||
self.robot.setCommands(
|
||||
np.zeros(12),
|
||||
np.zeros(12),
|
||||
np.zeros(12),
|
||||
np.zeros(12),
|
||||
np.zeros(12))
|
||||
elif self.remote.standUpDownSeq() or self.robot.overheat():
|
||||
self.moveTo(self.robot.sitting_q, duration=1.5)
|
||||
self.state = "sitting"
|
||||
|
|
|
@ -21,7 +21,6 @@ from scipy.spatial.transform import Rotation
|
|||
from Go2Py.joy import xKeySwitch, xRockerBtn
|
||||
|
||||
|
||||
|
||||
class GO2Real():
|
||||
def __init__(
|
||||
self,
|
||||
|
|
|
@ -18,15 +18,17 @@ class Go2Model:
|
|||
q_reordering_idx (np.ndarray): Index array for reordering the joint position vector.
|
||||
ef_J_ (dict): A dictionary storing the Jacobians for the end-effector frames.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initializes the Go2Model class by loading the URDF, setting up the robot model, and calculating initial dimensions.
|
||||
"""
|
||||
self.robot = pin.RobotWrapper.BuildFromURDF(urdf_path, urdf_root_path, pin.JointModelFreeFlyer())
|
||||
self.robot = pin.RobotWrapper.BuildFromURDF(
|
||||
urdf_path, urdf_root_path, pin.JointModelFreeFlyer())
|
||||
self.data = self.robot.data
|
||||
# Standing joint configuration in Unitree Joint order
|
||||
self.ef_frames = ['FR_foot', 'FL_foot', 'RR_foot', 'RL_foot']
|
||||
self.dq_reordering_idx = np.array([0, 1, 2, 3, 4, 5,\
|
||||
self.dq_reordering_idx = np.array([0, 1, 2, 3, 4, 5,
|
||||
9, 10, 11, 6, 7, 8, 15, 16, 17, 12, 13, 14])
|
||||
self.q_reordering_idx = np.array([9, 10, 11, 6, 7, 8, 15, 16, 17, 12, 13, 14]) - 6
|
||||
self.ef_Jb_ = {}
|
||||
|
@ -49,11 +51,21 @@ class Go2Model:
|
|||
q_neutral = np.asarray([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
|
||||
self.robot.framesForwardKinematics(q_neutral)
|
||||
|
||||
self.h = np.linalg.norm(self.robot.data.oMf[ID_FR_HAA].translation - self.robot.data.oMf[ID_RR_HAA].translation)
|
||||
self.b = np.linalg.norm(self.robot.data.oMf[ID_FR_HAA].translation - self.robot.data.oMf[ID_FL_HAA].translation)
|
||||
self.l1 = np.linalg.norm(self.robot.data.oMf[ID_FR_HAA].translation - self.robot.data.oMf[ID_FR_HFE].translation)
|
||||
self.l2 = np.linalg.norm(self.robot.data.oMf[ID_FR_HFE].translation - self.robot.data.oMf[ID_FR_KFE].translation)
|
||||
self.l3 = np.linalg.norm(self.robot.data.oMf[ID_FR_KFE].translation - self.robot.data.oMf[ID_FR_FOOT].translation)
|
||||
self.h = np.linalg.norm(
|
||||
self.robot.data.oMf[ID_FR_HAA].translation -
|
||||
self.robot.data.oMf[ID_RR_HAA].translation)
|
||||
self.b = np.linalg.norm(
|
||||
self.robot.data.oMf[ID_FR_HAA].translation -
|
||||
self.robot.data.oMf[ID_FL_HAA].translation)
|
||||
self.l1 = np.linalg.norm(
|
||||
self.robot.data.oMf[ID_FR_HAA].translation -
|
||||
self.robot.data.oMf[ID_FR_HFE].translation)
|
||||
self.l2 = np.linalg.norm(
|
||||
self.robot.data.oMf[ID_FR_HFE].translation -
|
||||
self.robot.data.oMf[ID_FR_KFE].translation)
|
||||
self.l3 = np.linalg.norm(
|
||||
self.robot.data.oMf[ID_FR_KFE].translation -
|
||||
self.robot.data.oMf[ID_FR_FOOT].translation)
|
||||
self.M_ = None
|
||||
self.Minv_ = None
|
||||
self.nle_ = None
|
||||
|
@ -133,7 +145,7 @@ class Go2Model:
|
|||
self.robot.framesForwardKinematics(q_)
|
||||
ef_frames = ['base_link', 'FR_foot', 'FL_foot', 'RR_foot', 'RL_foot']
|
||||
data = {}
|
||||
return {frame:self.robot.data.oMf[self.robot.model.getFrameId(frame)].homogeneous \
|
||||
return {frame: self.robot.data.oMf[self.robot.model.getFrameId(frame)].homogeneous
|
||||
for frame in ef_frames}
|
||||
|
||||
def updateKinematics(self, q):
|
||||
|
@ -147,8 +159,12 @@ class Go2Model:
|
|||
self.robot.framesForwardKinematics(q)\
|
||||
|
||||
for ef_frame in self.ef_frames:
|
||||
Jw = self.robot.getFrameJacobian(self.robot.model.getFrameId(ef_frame), pin.ReferenceFrame.LOCAL_WORLD_ALIGNED)
|
||||
Jb = self.robot.getFrameJacobian(self.robot.model.getFrameId(ef_frame), pin.ReferenceFrame.LOCAL)
|
||||
Jw = self.robot.getFrameJacobian(
|
||||
self.robot.model.getFrameId(ef_frame),
|
||||
pin.ReferenceFrame.LOCAL_WORLD_ALIGNED)
|
||||
Jb = self.robot.getFrameJacobian(
|
||||
self.robot.model.getFrameId(ef_frame),
|
||||
pin.ReferenceFrame.LOCAL)
|
||||
self.ef_Jw_[ef_frame] = Jw[:, self.dq_reordering_idx]
|
||||
self.ef_Jb_[ef_frame] = Jb[:, self.dq_reordering_idx]
|
||||
|
||||
|
@ -165,8 +181,12 @@ class Go2Model:
|
|||
self.robot.framesForwardKinematics(q_)\
|
||||
|
||||
for ef_frame in self.ef_frames:
|
||||
Jw = self.robot.getFrameJacobian(self.robot.model.getFrameId(ef_frame), pin.ReferenceFrame.LOCAL_WORLD_ALIGNED)
|
||||
Jb = self.robot.getFrameJacobian(self.robot.model.getFrameId(ef_frame), pin.ReferenceFrame.LOCAL)
|
||||
Jw = self.robot.getFrameJacobian(
|
||||
self.robot.model.getFrameId(ef_frame),
|
||||
pin.ReferenceFrame.LOCAL_WORLD_ALIGNED)
|
||||
Jb = self.robot.getFrameJacobian(
|
||||
self.robot.model.getFrameId(ef_frame),
|
||||
pin.ReferenceFrame.LOCAL)
|
||||
self.ef_Jw_[ef_frame] = Jw[:, self.dq_reordering_idx]
|
||||
self.ef_Jb_[ef_frame] = Jb[:, self.dq_reordering_idx]
|
||||
|
||||
|
@ -183,10 +203,11 @@ class Go2Model:
|
|||
self.g_ = self.robot.gravity(q)[self.dq_reordering_idx]
|
||||
self.M_ = self.robot.mass(q)[self.dq_reordering_idx, :]
|
||||
self.M_ = self.M_[:, self.dq_reordering_idx]
|
||||
self.Minv_ = pin.computeMinverse(self.robot.model, self.robot.data, q)[self.dq_reordering_idx,:]
|
||||
self.Minv_ = pin.computeMinverse(
|
||||
self.robot.model, self.robot.data, q)[
|
||||
self.dq_reordering_idx, :]
|
||||
self.Minv_ = self.Minv_[:, self.dq_reordering_idx]
|
||||
|
||||
|
||||
def updateAll(q, dq):
|
||||
"""
|
||||
Updates the dynamic and kinematic parameters based on the given joint configurations and velocities.
|
||||
|
@ -231,7 +252,9 @@ class Go2Model:
|
|||
|
||||
def getGroundReactionForce(self, tau_est, body_acceleration=None):
|
||||
if body_acceleration is None:
|
||||
grf = {key:np.linalg.pinv(self.ef_Jw_[key][:3,6:].T)@(tau_est.squeeze() - self.nle_[6:]) for key in self.ef_Jw_.keys()}
|
||||
grf = {key: np.linalg.pinv(
|
||||
self.ef_Jw_[key][:3, 6:].T) @ (tau_est.squeeze() - self.nle_[6:]) for key in self.ef_Jw_.keys()}
|
||||
else:
|
||||
raise NotImplementedError("Ground reaction force with body dynamics is not implemented")
|
||||
raise NotImplementedError(
|
||||
"Ground reaction force with body dynamics is not implemented")
|
||||
return grf
|
|
@ -1,19 +1,24 @@
|
|||
import threading
|
||||
from pynput import keyboard
|
||||
|
||||
|
||||
class BaseRemote:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def startSeq(self):
|
||||
return False
|
||||
|
||||
def standUpDownSeq(self):
|
||||
return False
|
||||
|
||||
def flushStates(self):
|
||||
pass
|
||||
|
||||
|
||||
remote = BaseRemote()
|
||||
|
||||
|
||||
class KeyboardRemote(BaseRemote):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -32,7 +37,6 @@ class KeyboardRemote(BaseRemote):
|
|||
except AttributeError:
|
||||
pass # Special keys (like space) will be handled here
|
||||
|
||||
|
||||
def _on_release(self, key):
|
||||
try:
|
||||
if key.char == 's': # Start sequence
|
||||
|
@ -62,6 +66,7 @@ class KeyboardRemote(BaseRemote):
|
|||
self.stand_up_down_seq_flag = False
|
||||
self.start_seq_flag = False
|
||||
|
||||
|
||||
class UnitreeRemote(BaseRemote):
|
||||
def __init__(self, robot):
|
||||
self.robot = robot
|
||||
|
@ -86,4 +91,3 @@ class UnitreeRemote(BaseRemote):
|
|||
return True
|
||||
else:
|
||||
return False
|
||||
|
|
@ -1,4 +1,6 @@
|
|||
import time
|
||||
|
||||
|
||||
class SafetyHypervisor():
|
||||
def __init__(self, robot):
|
||||
self.robot = robot
|
||||
|
|
|
@ -2,6 +2,10 @@
|
|||
|
||||
import os
|
||||
|
||||
MINI_GYM_ROOT_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), '..')
|
||||
MINI_GYM_ROOT_DIR = os.path.join(
|
||||
os.path.dirname(
|
||||
os.path.dirname(
|
||||
os.path.realpath(__file__))),
|
||||
'..')
|
||||
print(MINI_GYM_ROOT_DIR)
|
||||
MINI_GYM_ENVS_DIR = os.path.join(MINI_GYM_ROOT_DIR, 'go_gym', 'envs')
|
||||
|
|
|
@ -25,7 +25,8 @@ class BaseTask(gym.Env):
|
|||
sim_device_type, self.sim_device_id = gymutil.parse_device_str(self.sim_device)
|
||||
self.headless = headless
|
||||
|
||||
# env device is GPU only if sim is on GPU and use_gpu_pipeline=True, otherwise returned tensors are copied to CPU by physX.
|
||||
# env device is GPU only if sim is on GPU and use_gpu_pipeline=True,
|
||||
# otherwise returned tensors are copied to CPU by physX.
|
||||
if sim_device_type == 'cuda' and sim_params.use_gpu_pipeline:
|
||||
self.device = self.sim_device
|
||||
else:
|
||||
|
@ -33,7 +34,7 @@ class BaseTask(gym.Env):
|
|||
|
||||
# graphics device for rendering, -1 for no rendering
|
||||
self.graphics_device_id = self.sim_device_id
|
||||
if self.headless == True:
|
||||
if self.headless:
|
||||
self.graphics_device_id = self.sim_device_id
|
||||
|
||||
self.num_obs = cfg.env.num_observations
|
||||
|
@ -54,14 +55,21 @@ class BaseTask(gym.Env):
|
|||
torch._C._jit_set_profiling_executor(False)
|
||||
|
||||
# allocate buffers
|
||||
self.obs_buf = torch.zeros(self.num_envs, self.num_obs, device=self.device, dtype=torch.float)
|
||||
self.obs_buf = torch.zeros(
|
||||
self.num_envs,
|
||||
self.num_obs,
|
||||
device=self.device,
|
||||
dtype=torch.float)
|
||||
self.rew_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.float)
|
||||
self.rew_buf_pos = torch.zeros(self.num_envs, device=self.device, dtype=torch.float)
|
||||
self.rew_buf_neg = torch.zeros(self.num_envs, device=self.device, dtype=torch.float)
|
||||
self.reset_buf = torch.ones(self.num_envs, device=self.device, dtype=torch.long)
|
||||
self.episode_length_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long)
|
||||
self.time_out_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.bool)
|
||||
self.privileged_obs_buf = torch.zeros(self.num_envs, self.num_privileged_obs, device=self.device,
|
||||
self.privileged_obs_buf = torch.zeros(
|
||||
self.num_envs,
|
||||
self.num_privileged_obs,
|
||||
device=self.device,
|
||||
dtype=torch.float)
|
||||
# self.num_privileged_obs = self.num_obs
|
||||
|
||||
|
@ -76,7 +84,7 @@ class BaseTask(gym.Env):
|
|||
self.viewer = None
|
||||
|
||||
# if running with a viewer, set up keyboard shortcuts and camera
|
||||
if self.headless == False:
|
||||
if not self.headless:
|
||||
# subscribe to keyboard shortcuts
|
||||
self.viewer = self.gym.create_viewer(
|
||||
self.sim, gymapi.CameraProperties())
|
||||
|
@ -132,6 +140,6 @@ class BaseTask(gym.Env):
|
|||
self.gym.poll_viewer_events(self.viewer)
|
||||
|
||||
def close(self):
|
||||
if self.headless == False:
|
||||
if not self.headless:
|
||||
self.gym.destroy_viewer(self.viewer)
|
||||
self.gym.destroy_sim(self.sim)
|
||||
|
|
|
@ -32,14 +32,18 @@ class Curriculum:
|
|||
self.indices = indices = {}
|
||||
for key, v_range in key_ranges.items():
|
||||
bin_size = (v_range[1] - v_range[0]) / v_range[2]
|
||||
cfg[key] = np.linspace(v_range[0] + bin_size / 2, v_range[1] - bin_size / 2, v_range[2])
|
||||
cfg[key] = np.linspace(
|
||||
v_range[0] + bin_size / 2,
|
||||
v_range[1] - bin_size / 2,
|
||||
v_range[2])
|
||||
indices[key] = np.linspace(0, v_range[2] - 1, v_range[2])
|
||||
|
||||
self.lows = np.array([range[0] for range in key_ranges.values()])
|
||||
self.highs = np.array([range[1] for range in key_ranges.values()])
|
||||
|
||||
# self.bin_sizes = {key: arr[1] - arr[0] for key, arr in cfg.items()}
|
||||
self.bin_sizes = {key: (v_range[1] - v_range[0]) / v_range[2] for key, v_range in key_ranges.items()}
|
||||
self.bin_sizes = {key: (v_range[1] - v_range[0]) / v_range[2]
|
||||
for key, v_range in key_ranges.items()}
|
||||
|
||||
self._raw_grid = np.stack(np.meshgrid(*cfg.values(), indexing='ij'))
|
||||
self._idx_grid = np.stack(np.meshgrid(*indices.values(), indexing='ij'))
|
||||
|
@ -145,7 +149,8 @@ class RewardThresholdCurriculum(Curriculum):
|
|||
# if len(is_success) > 0 and is_success.any():
|
||||
# print("successes")
|
||||
|
||||
self.weights[bin_inds[is_success]] = np.clip(self.weights[bin_inds[is_success]] + 0.2, 0, 1)
|
||||
self.weights[bin_inds[is_success]] = np.clip(
|
||||
self.weights[bin_inds[is_success]] + 0.2, 0, 1)
|
||||
adjacents = self.get_local_bins(bin_inds[is_success], ranges=local_range)
|
||||
for adjacent in adjacents:
|
||||
# print(adjacent)
|
||||
|
@ -158,6 +163,7 @@ class RewardThresholdCurriculum(Curriculum):
|
|||
self.episode_ang_vel_raw[bin_inds] = ang_vel_raw.cpu().numpy()
|
||||
self.episode_duration[bin_inds] = episode_duration.cpu().numpy()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
r = RewardThresholdCurriculum(100, x=(-1, 1, 5), y=(-1, 1, 2), z=(-1, 1, 11))
|
||||
|
||||
|
@ -171,8 +177,12 @@ if __name__ == '__main__':
|
|||
for adjacent in adjacents:
|
||||
adjacent_inds = np.array(adjacent.nonzero()[0])
|
||||
print(adjacent_inds)
|
||||
r.update(bin_inds=adjacent_inds, lin_vel_rewards=np.ones_like(adjacent_inds),
|
||||
ang_vel_rewards=np.ones_like(adjacent_inds), lin_vel_threshold=0.0, ang_vel_threshold=0.0,
|
||||
r.update(
|
||||
bin_inds=adjacent_inds,
|
||||
lin_vel_rewards=np.ones_like(adjacent_inds),
|
||||
ang_vel_rewards=np.ones_like(adjacent_inds),
|
||||
lin_vel_threshold=0.0,
|
||||
ang_vel_threshold=0.0,
|
||||
local_range=0.5)
|
||||
|
||||
samples, bins = r.sample(10_000)
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -8,7 +8,8 @@ class Cfg(PrefixProto, cli=False):
|
|||
num_envs = 4096
|
||||
num_observations = 235
|
||||
num_scalar_observations = 42
|
||||
# if not None a privilige_obs_buf will be returned by step() (critic obs for assymetric training). None is returned otherwise
|
||||
# if not None a privilige_obs_buf will be returned by step() (critic obs
|
||||
# for assymetric training). None is returned otherwise
|
||||
num_privileged_obs = 18
|
||||
privileged_future_horizon = 1
|
||||
num_actions = 12
|
||||
|
@ -75,7 +76,8 @@ class Cfg(PrefixProto, cli=False):
|
|||
terrain_smoothness = 0.005
|
||||
measure_heights = True
|
||||
# 1mx1.6m rectangle (without center line)
|
||||
measured_points_x = [-0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
|
||||
measured_points_x = [-0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -
|
||||
0.2, -0.1, 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
|
||||
measured_points_y = [-0.5, -0.4, -0.3, -0.2, -0.1, 0., 0.1, 0.2, 0.3, 0.4, 0.5]
|
||||
selected = False # select a unique terrain type and pass all arguments
|
||||
terrain_kwargs = None # Dict of arguments for selected terrain
|
||||
|
@ -223,10 +225,12 @@ class Cfg(PrefixProto, cli=False):
|
|||
penalize_contacts_on = []
|
||||
terminate_after_contacts_on = []
|
||||
disable_gravity = False
|
||||
# merge bodies connected by fixed joints. Specific fixed joints can be kept by adding " <... dont_collapse="true">
|
||||
# merge bodies connected by fixed joints. Specific fixed joints can be
|
||||
# kept by adding " <... dont_collapse="true">
|
||||
collapse_fixed_joints = True
|
||||
fix_base_link = False # fixe the base of the robot
|
||||
default_dof_drive_mode = 3 # see GymDofDriveModeFlags (0 is none, 1 is pos tgt, 2 is vel tgt, 3 effort)
|
||||
# see GymDofDriveModeFlags (0 is none, 1 is pos tgt, 2 is vel tgt, 3 effort)
|
||||
default_dof_drive_mode = 3
|
||||
self_collisions = 0 # 1 to disable, 0 to enable...bitwise filter
|
||||
# replace collision cylinders with capsules, leads to faster/more stable simulation
|
||||
replace_cylinder_with_capsule = True
|
||||
|
@ -270,7 +274,8 @@ class Cfg(PrefixProto, cli=False):
|
|||
lag_timesteps = 6
|
||||
|
||||
class rewards(PrefixProto, cli=False):
|
||||
only_positive_rewards = True # if true negative total rewards are clipped at zero (avoids early termination problems)
|
||||
# if true negative total rewards are clipped at zero (avoids early termination problems)
|
||||
only_positive_rewards = True
|
||||
only_positive_rewards_ji22_style = False
|
||||
sigma_rew_neg = 5
|
||||
reward_container_name = "CoRLRewards"
|
||||
|
|
|
@ -8,22 +8,37 @@ from Go2Py.sim.gym.envs.base.legged_robot_config import Cfg
|
|||
|
||||
|
||||
class VelocityTrackingEasyEnv(LeggedRobot):
|
||||
def __init__(self, sim_device, headless, num_envs=None, prone=False, deploy=False,
|
||||
cfg: Cfg = None, eval_cfg: Cfg = None, initial_dynamics_dict=None, physics_engine="SIM_PHYSX"):
|
||||
def __init__(
|
||||
self,
|
||||
sim_device,
|
||||
headless,
|
||||
num_envs=None,
|
||||
prone=False,
|
||||
deploy=False,
|
||||
cfg: Cfg = None,
|
||||
eval_cfg: Cfg = None,
|
||||
initial_dynamics_dict=None,
|
||||
physics_engine="SIM_PHYSX"):
|
||||
|
||||
if num_envs is not None:
|
||||
cfg.env.num_envs = num_envs
|
||||
|
||||
sim_params = gymapi.SimParams()
|
||||
gymutil.parse_sim_config(vars(cfg.sim), sim_params)
|
||||
super().__init__(cfg, sim_params, physics_engine, sim_device, headless, eval_cfg, initial_dynamics_dict)
|
||||
|
||||
super().__init__(
|
||||
cfg,
|
||||
sim_params,
|
||||
physics_engine,
|
||||
sim_device,
|
||||
headless,
|
||||
eval_cfg,
|
||||
initial_dynamics_dict)
|
||||
|
||||
def step(self, actions):
|
||||
self.obs_buf, self.privileged_obs_buf, self.rew_buf, self.reset_buf, self.extras = super().step(actions)
|
||||
|
||||
self.foot_positions = self.rigid_body_state.view(self.num_envs, self.num_bodies, 13)[:, self.feet_indices,
|
||||
0:3]
|
||||
self.foot_positions = self.rigid_body_state.view(self.num_envs, self.num_bodies, 13)[
|
||||
:, self.feet_indices, 0:3]
|
||||
|
||||
self.extras.update({
|
||||
"privileged_obs": self.privileged_obs_buf,
|
||||
|
@ -45,6 +60,6 @@ class VelocityTrackingEasyEnv(LeggedRobot):
|
|||
|
||||
def reset(self):
|
||||
self.reset_idx(torch.arange(self.num_envs, device=self.device))
|
||||
obs, _, _, _ = self.step(torch.zeros(self.num_envs, self.num_actions, device=self.device, requires_grad=False))
|
||||
obs, _, _, _ = self.step(torch.zeros(self.num_envs, self.num_actions,
|
||||
device=self.device, requires_grad=False))
|
||||
return obs
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@ from Go2Py.sim.gym.utils.math_utils import quat_apply_yaw, wrap_to_pi, get_scale
|
|||
from isaacgym.torch_utils import *
|
||||
from isaacgym import gymapi
|
||||
|
||||
|
||||
class CoRLRewards:
|
||||
def __init__(self, env):
|
||||
self.env = env
|
||||
|
@ -14,7 +15,8 @@ class CoRLRewards:
|
|||
# ------------ reward functions----------------
|
||||
def _reward_tracking_lin_vel(self):
|
||||
# Tracking of linear velocity commands (xy axes)
|
||||
lin_vel_error = torch.sum(torch.square(self.env.commands[:, :2] - self.env.base_lin_vel[:, :2]), dim=1)
|
||||
lin_vel_error = torch.sum(torch.square(
|
||||
self.env.commands[:, :2] - self.env.base_lin_vel[:, :2]), dim=1)
|
||||
return torch.exp(-lin_vel_error / self.env.cfg.rewards.tracking_sigma)
|
||||
|
||||
def _reward_tracking_ang_vel(self):
|
||||
|
@ -40,7 +42,12 @@ class CoRLRewards:
|
|||
|
||||
def _reward_dof_acc(self):
|
||||
# Penalize dof accelerations
|
||||
return torch.sum(torch.square((self.env.last_dof_vel - self.env.dof_vel) / self.env.dt), dim=1)
|
||||
return torch.sum(
|
||||
torch.square(
|
||||
(self.env.last_dof_vel -
|
||||
self.env.dof_vel) /
|
||||
self.env.dt),
|
||||
dim=1)
|
||||
|
||||
def _reward_action_rate(self):
|
||||
# Penalize changes in actions
|
||||
|
@ -48,12 +55,13 @@ class CoRLRewards:
|
|||
|
||||
def _reward_collision(self):
|
||||
# Penalize collisions on selected bodies
|
||||
return torch.sum(1. * (torch.norm(self.env.contact_forces[:, self.env.penalised_contact_indices, :], dim=-1) > 0.1),
|
||||
dim=1)
|
||||
return torch.sum(
|
||||
1. * (torch.norm(self.env.contact_forces[:, self.env.penalised_contact_indices, :], dim=-1) > 0.1), dim=1)
|
||||
|
||||
def _reward_dof_pos_limits(self):
|
||||
# Penalize dof positions too close to the limit
|
||||
out_of_limits = -(self.env.dof_pos - self.env.dof_pos_limits[:, 0]).clip(max=0.) # lower limit
|
||||
out_of_limits = -(self.env.dof_pos -
|
||||
self.env.dof_pos_limits[:, 0]).clip(max=0.) # lower limit
|
||||
out_of_limits += (self.env.dof_pos - self.env.dof_pos_limits[:, 1]).clip(min=0.)
|
||||
return torch.sum(out_of_limits, dim=1)
|
||||
|
||||
|
@ -79,8 +87,9 @@ class CoRLRewards:
|
|||
desired_contact = self.env.desired_contact_states
|
||||
reward = 0
|
||||
for i in range(4):
|
||||
reward += - (desired_contact[:, i] * (
|
||||
1 - torch.exp(-1 * foot_velocities[:, i] ** 2 / self.env.cfg.rewards.gait_vel_sigma)))
|
||||
reward += - (desired_contact[:,
|
||||
i] * (1 - torch.exp(-1 * foot_velocities[:,
|
||||
i] ** 2 / self.env.cfg.rewards.gait_vel_sigma)))
|
||||
return reward / 4
|
||||
|
||||
def _reward_dof_pos(self):
|
||||
|
@ -93,13 +102,18 @@ class CoRLRewards:
|
|||
|
||||
def _reward_action_smoothness_1(self):
|
||||
# Penalize changes in actions
|
||||
diff = torch.square(self.env.joint_pos_target[:, :self.env.num_actuated_dof] - self.env.last_joint_pos_target[:, :self.env.num_actuated_dof])
|
||||
diff = torch.square(self.env.joint_pos_target[:,
|
||||
:self.env.num_actuated_dof] - self.env.last_joint_pos_target[:,
|
||||
:self.env.num_actuated_dof])
|
||||
diff = diff * (self.env.last_actions[:, :self.env.num_dof] != 0) # ignore first step
|
||||
return torch.sum(diff, dim=1)
|
||||
|
||||
def _reward_action_smoothness_2(self):
|
||||
# Penalize changes in actions
|
||||
diff = torch.square(self.env.joint_pos_target[:, :self.env.num_actuated_dof] - 2 * self.env.last_joint_pos_target[:, :self.env.num_actuated_dof] + self.env.last_last_joint_pos_target[:, :self.env.num_actuated_dof])
|
||||
diff = torch.square(self.env.joint_pos_target[:,
|
||||
:self.env.num_actuated_dof] - 2 * self.env.last_joint_pos_target[:,
|
||||
:self.env.num_actuated_dof] + self.env.last_last_joint_pos_target[:,
|
||||
:self.env.num_actuated_dof])
|
||||
diff = diff * (self.env.last_actions[:, :self.env.num_dof] != 0) # ignore first step
|
||||
diff = diff * (self.env.last_last_actions[:, :self.env.num_dof] != 0) # ignore second step
|
||||
return torch.sum(diff, dim=1)
|
||||
|
@ -108,55 +122,66 @@ class CoRLRewards:
|
|||
contact = self.env.contact_forces[:, self.env.feet_indices, 2] > 1.
|
||||
contact_filt = torch.logical_or(contact, self.env.last_contacts)
|
||||
self.env.last_contacts = contact
|
||||
foot_velocities = torch.square(torch.norm(self.env.foot_velocities[:, :, 0:2], dim=2).view(self.env.num_envs, -1))
|
||||
foot_velocities = torch.square(torch.norm(
|
||||
self.env.foot_velocities[:, :, 0:2], dim=2).view(self.env.num_envs, -1))
|
||||
rew_slip = torch.sum(contact_filt * foot_velocities, dim=1)
|
||||
return rew_slip
|
||||
|
||||
def _reward_feet_contact_vel(self):
|
||||
reference_heights = 0
|
||||
near_ground = self.env.foot_positions[:, :, 2] - reference_heights < 0.03
|
||||
foot_velocities = torch.square(torch.norm(self.env.foot_velocities[:, :, 0:3], dim=2).view(self.env.num_envs, -1))
|
||||
foot_velocities = torch.square(torch.norm(
|
||||
self.env.foot_velocities[:, :, 0:3], dim=2).view(self.env.num_envs, -1))
|
||||
rew_contact_vel = torch.sum(near_ground * foot_velocities, dim=1)
|
||||
return rew_contact_vel
|
||||
|
||||
def _reward_feet_contact_forces(self):
|
||||
# penalize high contact forces
|
||||
return torch.sum((torch.norm(self.env.contact_forces[:, self.env.feet_indices, :],
|
||||
dim=-1) - self.env.cfg.rewards.max_contact_force).clip(min=0.), dim=1)
|
||||
return torch.sum((torch.norm(self.env.contact_forces[:,
|
||||
self.env.feet_indices,
|
||||
:],
|
||||
dim=-1) - self.env.cfg.rewards.max_contact_force).clip(min=0.),
|
||||
dim=1)
|
||||
|
||||
def _reward_feet_clearance_cmd_linear(self):
|
||||
phases = 1 - torch.abs(1.0 - torch.clip((self.env.foot_indices * 2.0) - 1.0, 0.0, 1.0) * 2.0)
|
||||
foot_height = (self.env.foot_positions[:, :, 2]).view(self.env.num_envs, -1)# - reference_heights
|
||||
target_height = self.env.commands[:, 9].unsqueeze(1) * phases + 0.02 # offset for foot radius 2cm
|
||||
rew_foot_clearance = torch.square(target_height - foot_height) * (1 - self.env.desired_contact_states)
|
||||
phases = 1 - \
|
||||
torch.abs(1.0 - torch.clip((self.env.foot_indices * 2.0) - 1.0, 0.0, 1.0) * 2.0)
|
||||
foot_height = (self.env.foot_positions[:, :, 2]).view(
|
||||
self.env.num_envs, -1) # - reference_heights
|
||||
target_height = self.env.commands[:, 9].unsqueeze(
|
||||
1) * phases + 0.02 # offset for foot radius 2cm
|
||||
rew_foot_clearance = torch.square(
|
||||
target_height - foot_height) * (1 - self.env.desired_contact_states)
|
||||
return torch.sum(rew_foot_clearance, dim=1)
|
||||
|
||||
def _reward_feet_impact_vel(self):
|
||||
prev_foot_velocities = self.env.prev_foot_velocities[:, :, 2].view(self.env.num_envs, -1)
|
||||
contact_states = torch.norm(self.env.contact_forces[:, self.env.feet_indices, :], dim=-1) > 1.0
|
||||
contact_states = torch.norm(
|
||||
self.env.contact_forces[:, self.env.feet_indices, :], dim=-1) > 1.0
|
||||
|
||||
rew_foot_impact_vel = contact_states * torch.square(torch.clip(prev_foot_velocities, -100, 0))
|
||||
rew_foot_impact_vel = contact_states * \
|
||||
torch.square(torch.clip(prev_foot_velocities, -100, 0))
|
||||
|
||||
return torch.sum(rew_foot_impact_vel, dim=1)
|
||||
|
||||
|
||||
def _reward_collision(self):
|
||||
# Penalize collisions on selected bodies
|
||||
return torch.sum(1. * (torch.norm(self.env.contact_forces[:, self.env.penalised_contact_indices, :], dim=-1) > 0.1),
|
||||
dim=1)
|
||||
return torch.sum(
|
||||
1. * (torch.norm(self.env.contact_forces[:, self.env.penalised_contact_indices, :], dim=-1) > 0.1), dim=1)
|
||||
|
||||
def _reward_orientation_control(self):
|
||||
# Penalize non flat base orientation
|
||||
roll_pitch_commands = self.env.commands[:, 10:12]
|
||||
quat_roll = quat_from_angle_axis(-roll_pitch_commands[:, 1],
|
||||
torch.tensor([1, 0, 0], device=self.env.device, dtype=torch.float))
|
||||
quat_pitch = quat_from_angle_axis(-roll_pitch_commands[:, 0],
|
||||
torch.tensor([0, 1, 0], device=self.env.device, dtype=torch.float))
|
||||
quat_roll = quat_from_angle_axis(-roll_pitch_commands[:, 1], torch.tensor(
|
||||
[1, 0, 0], device=self.env.device, dtype=torch.float))
|
||||
quat_pitch = quat_from_angle_axis(-roll_pitch_commands[:, 0], torch.tensor(
|
||||
[0, 1, 0], device=self.env.device, dtype=torch.float))
|
||||
|
||||
desired_base_quat = quat_mul(quat_roll, quat_pitch)
|
||||
desired_projected_gravity = quat_rotate_inverse(desired_base_quat, self.env.gravity_vec)
|
||||
|
||||
return torch.sum(torch.square(self.env.projected_gravity[:, :2] - desired_projected_gravity[:, :2]), dim=1)
|
||||
return torch.sum(torch.square(
|
||||
self.env.projected_gravity[:, :2] - desired_projected_gravity[:, :2]), dim=1)
|
||||
|
||||
def _reward_raibert_heuristic(self):
|
||||
cur_footsteps_translated = self.env.foot_positions - self.env.base_pos.unsqueeze(1)
|
||||
|
@ -168,17 +193,41 @@ class CoRLRewards:
|
|||
# nominal positions: [FR, FL, RR, RL]
|
||||
if self.env.cfg.commands.num_commands >= 13:
|
||||
desired_stance_width = self.env.commands[:, 12:13]
|
||||
desired_ys_nom = torch.cat([desired_stance_width / 2, -desired_stance_width / 2, desired_stance_width / 2, -desired_stance_width / 2], dim=1)
|
||||
desired_ys_nom = torch.cat([desired_stance_width /
|
||||
2, -
|
||||
desired_stance_width /
|
||||
2, desired_stance_width /
|
||||
2, -
|
||||
desired_stance_width /
|
||||
2], dim=1)
|
||||
else:
|
||||
desired_stance_width = 0.3
|
||||
desired_ys_nom = torch.tensor([desired_stance_width / 2, -desired_stance_width / 2, desired_stance_width / 2, -desired_stance_width / 2], device=self.env.device).unsqueeze(0)
|
||||
desired_ys_nom = torch.tensor([desired_stance_width /
|
||||
2, -
|
||||
desired_stance_width /
|
||||
2, desired_stance_width /
|
||||
2, -
|
||||
desired_stance_width /
|
||||
2], device=self.env.device).unsqueeze(0)
|
||||
|
||||
if self.env.cfg.commands.num_commands >= 14:
|
||||
desired_stance_length = self.env.commands[:, 13:14]
|
||||
desired_xs_nom = torch.cat([desired_stance_length / 2, desired_stance_length / 2, -desired_stance_length / 2, -desired_stance_length / 2], dim=1)
|
||||
desired_xs_nom = torch.cat([desired_stance_length /
|
||||
2, desired_stance_length /
|
||||
2, -
|
||||
desired_stance_length /
|
||||
2, -
|
||||
desired_stance_length /
|
||||
2], dim=1)
|
||||
else:
|
||||
desired_stance_length = 0.45
|
||||
desired_xs_nom = torch.tensor([desired_stance_length / 2, desired_stance_length / 2, -desired_stance_length / 2, -desired_stance_length / 2], device=self.env.device).unsqueeze(0)
|
||||
desired_xs_nom = torch.tensor([desired_stance_length /
|
||||
2, desired_stance_length /
|
||||
2, -
|
||||
desired_stance_length /
|
||||
2, -
|
||||
desired_stance_length /
|
||||
2], device=self.env.device).unsqueeze(0)
|
||||
|
||||
# raibert offsets
|
||||
phases = torch.abs(1.0 - (self.env.foot_indices * 2.0)) * 1.0 - 0.5
|
||||
|
@ -193,9 +242,11 @@ class CoRLRewards:
|
|||
desired_ys_nom = desired_ys_nom + desired_ys_offset
|
||||
desired_xs_nom = desired_xs_nom + desired_xs_offset
|
||||
|
||||
desired_footsteps_body_frame = torch.cat((desired_xs_nom.unsqueeze(2), desired_ys_nom.unsqueeze(2)), dim=2)
|
||||
desired_footsteps_body_frame = torch.cat(
|
||||
(desired_xs_nom.unsqueeze(2), desired_ys_nom.unsqueeze(2)), dim=2)
|
||||
|
||||
err_raibert_heuristic = torch.abs(desired_footsteps_body_frame - footsteps_in_body_frame[:, :, 0:2])
|
||||
err_raibert_heuristic = torch.abs(
|
||||
desired_footsteps_body_frame - footsteps_in_body_frame[:, :, 0:2])
|
||||
|
||||
reward = torch.sum(torch.square(err_raibert_heuristic), dim=(1, 2))
|
||||
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
import gym
|
||||
import torch
|
||||
import isaacgym
|
||||
assert isaacgym
|
||||
import torch
|
||||
import gym
|
||||
|
||||
|
||||
class HistoryWrapper(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
|
@ -21,7 +22,8 @@ class HistoryWrapper(gym.Wrapper):
|
|||
privileged_obs = info["privileged_obs"]
|
||||
|
||||
self.obs_history = torch.cat((self.obs_history[:, self.env.num_obs:], obs), dim=-1)
|
||||
return {'obs': obs, 'privileged_obs': privileged_obs, 'obs_history': self.obs_history}, rew, done, info
|
||||
return {'obs': obs, 'privileged_obs': privileged_obs,
|
||||
'obs_history': self.obs_history}, rew, done, info
|
||||
|
||||
def get_observations(self):
|
||||
obs = self.env.get_observations()
|
||||
|
|
|
@ -30,10 +30,8 @@ class Terrain:
|
|||
|
||||
self.heightsamples = self.height_field_raw
|
||||
if self.type == "trimesh":
|
||||
self.vertices, self.triangles = terrain_utils.convert_heightfield_to_trimesh(self.height_field_raw,
|
||||
self.cfg.horizontal_scale,
|
||||
self.cfg.vertical_scale,
|
||||
self.cfg.slope_treshold)
|
||||
self.vertices, self.triangles = terrain_utils.convert_heightfield_to_trimesh(
|
||||
self.height_field_raw, self.cfg.horizontal_scale, self.cfg.vertical_scale, self.cfg.slope_treshold)
|
||||
|
||||
def load_cfgs(self):
|
||||
self._load_cfg(self.cfg)
|
||||
|
@ -45,14 +43,16 @@ class Terrain:
|
|||
return self.cfg.row_indices, self.cfg.col_indices, [], []
|
||||
else:
|
||||
self._load_cfg(self.eval_cfg)
|
||||
self.eval_cfg.row_indices = np.arange(self.cfg.tot_rows, self.cfg.tot_rows + self.eval_cfg.tot_rows)
|
||||
self.eval_cfg.row_indices = np.arange(
|
||||
self.cfg.tot_rows, self.cfg.tot_rows + self.eval_cfg.tot_rows)
|
||||
self.eval_cfg.col_indices = np.arange(0, self.eval_cfg.tot_cols)
|
||||
self.eval_cfg.x_offset = self.cfg.tot_rows
|
||||
self.eval_cfg.rows_offset = self.cfg.num_rows
|
||||
return self.cfg.row_indices, self.cfg.col_indices, self.eval_cfg.row_indices, self.eval_cfg.col_indices
|
||||
|
||||
def _load_cfg(self, cfg):
|
||||
cfg.proportions = [np.sum(cfg.terrain_proportions[:i + 1]) for i in range(len(cfg.terrain_proportions))]
|
||||
cfg.proportions = [np.sum(cfg.terrain_proportions[:i + 1])
|
||||
for i in range(len(cfg.terrain_proportions))]
|
||||
|
||||
cfg.num_sub_terrains = cfg.num_rows * cfg.num_cols
|
||||
cfg.env_origins = np.zeros((cfg.num_rows, cfg.num_cols, 3))
|
||||
|
@ -128,32 +128,54 @@ class Terrain:
|
|||
terrain_utils.pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.)
|
||||
elif choice < proportions[1]:
|
||||
terrain_utils.pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.)
|
||||
terrain_utils.random_uniform_terrain(terrain, min_height=-0.05, max_height=0.05,
|
||||
step=self.cfg.terrain_smoothness, downsampled_scale=0.2)
|
||||
terrain_utils.random_uniform_terrain(
|
||||
terrain,
|
||||
min_height=-0.05,
|
||||
max_height=0.05,
|
||||
step=self.cfg.terrain_smoothness,
|
||||
downsampled_scale=0.2)
|
||||
elif choice < proportions[3]:
|
||||
if choice < proportions[2]:
|
||||
step_height *= -1
|
||||
terrain_utils.pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.)
|
||||
terrain_utils.pyramid_stairs_terrain(
|
||||
terrain, step_width=0.31, step_height=step_height, platform_size=3.)
|
||||
elif choice < proportions[4]:
|
||||
num_rectangles = 20
|
||||
rectangle_min_size = 1.
|
||||
rectangle_max_size = 2.
|
||||
terrain_utils.discrete_obstacles_terrain(terrain, discrete_obstacles_height, rectangle_min_size,
|
||||
rectangle_max_size, num_rectangles, platform_size=3.)
|
||||
terrain_utils.discrete_obstacles_terrain(
|
||||
terrain,
|
||||
discrete_obstacles_height,
|
||||
rectangle_min_size,
|
||||
rectangle_max_size,
|
||||
num_rectangles,
|
||||
platform_size=3.)
|
||||
elif choice < proportions[5]:
|
||||
terrain_utils.stepping_stones_terrain(terrain, stone_size=stepping_stones_size,
|
||||
stone_distance=stone_distance, max_height=0., platform_size=4.)
|
||||
terrain_utils.stepping_stones_terrain(
|
||||
terrain,
|
||||
stone_size=stepping_stones_size,
|
||||
stone_distance=stone_distance,
|
||||
max_height=0.,
|
||||
platform_size=4.)
|
||||
elif choice < proportions[6]:
|
||||
pass
|
||||
elif choice < proportions[7]:
|
||||
pass
|
||||
elif choice < proportions[8]:
|
||||
terrain_utils.random_uniform_terrain(terrain, min_height=-cfg.terrain_noise_magnitude,
|
||||
max_height=cfg.terrain_noise_magnitude, step=0.005,
|
||||
terrain_utils.random_uniform_terrain(
|
||||
terrain,
|
||||
min_height=-
|
||||
cfg.terrain_noise_magnitude,
|
||||
max_height=cfg.terrain_noise_magnitude,
|
||||
step=0.005,
|
||||
downsampled_scale=0.2)
|
||||
elif choice < proportions[9]:
|
||||
terrain_utils.random_uniform_terrain(terrain, min_height=-0.05, max_height=0.05,
|
||||
step=self.cfg.terrain_smoothness, downsampled_scale=0.2)
|
||||
terrain_utils.random_uniform_terrain(
|
||||
terrain,
|
||||
min_height=-0.05,
|
||||
max_height=0.05,
|
||||
step=self.cfg.terrain_smoothness,
|
||||
downsampled_scale=0.2)
|
||||
terrain.height_field_raw[0:terrain.length // 2, :] = 0
|
||||
|
||||
return terrain
|
||||
|
@ -174,7 +196,7 @@ class Terrain:
|
|||
x2 = int((cfg.terrain_length / 2. + 1) / terrain.horizontal_scale) + cfg.x_offset
|
||||
y1 = int((cfg.terrain_width / 2. - 1) / terrain.horizontal_scale)
|
||||
y2 = int((cfg.terrain_width / 2. + 1) / terrain.horizontal_scale)
|
||||
env_origin_z = np.max(self.height_field_raw[start_x: end_x, start_y:end_y]) * terrain.vertical_scale
|
||||
env_origin_z = np.max(
|
||||
self.height_field_raw[start_x: end_x, start_y:end_y]) * terrain.vertical_scale
|
||||
|
||||
cfg.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
|
||||
|
||||
|
|
|
@ -1,5 +1,18 @@
|
|||
# launch Isaac Sim before any other imports
|
||||
# default first two lines in any standalone application
|
||||
from Go2Py.sim.utils import (
|
||||
NumpyMemMapDataPipe,
|
||||
load_config,
|
||||
simulationManager,
|
||||
)
|
||||
from Go2Py.sim.isaacsim.utils import AnnotatorManager
|
||||
from Go2Py.sim.isaacsim.go2 import UnitreeGo2
|
||||
from Go2Py.sim.isaacsim.lcm_types.unitree_lowlevel import UnitreeLowCommand
|
||||
import Go2Py
|
||||
from omni.isaac.sensor import RotatingLidarPhysX
|
||||
from omni.isaac.core.utils.prims import define_prim, get_prim_at_path
|
||||
from omni.isaac.core.utils.nucleus import get_assets_root_path
|
||||
from omni.isaac.core import World
|
||||
import pickle
|
||||
import sys
|
||||
import time
|
||||
|
@ -9,20 +22,7 @@ from omni.isaac.kit import SimulationApp
|
|||
simulation_app = SimulationApp({"headless": False}) # we can also run as headless.
|
||||
|
||||
# import cv2
|
||||
from omni.isaac.core import World
|
||||
from omni.isaac.core.utils.nucleus import get_assets_root_path
|
||||
from omni.isaac.core.utils.prims import define_prim, get_prim_at_path
|
||||
from omni.isaac.sensor import RotatingLidarPhysX
|
||||
|
||||
import Go2Py
|
||||
from Go2Py.sim.isaacsim.lcm_types.unitree_lowlevel import UnitreeLowCommand
|
||||
from Go2Py.sim.isaacsim.go2 import UnitreeGo2
|
||||
from Go2Py.sim.isaacsim.utils import AnnotatorManager
|
||||
from Go2Py.sim.utils import (
|
||||
NumpyMemMapDataPipe,
|
||||
load_config,
|
||||
simulationManager,
|
||||
)
|
||||
|
||||
cfg = load_config(Go2Py.GO2_ISAACSIM_CFG_PATH)
|
||||
robots = cfg["robots"]
|
||||
|
|
|
@ -9,6 +9,8 @@ from pinocchio.robot_wrapper import RobotWrapper
|
|||
from Go2Py import ASSETS_PATH
|
||||
import os
|
||||
from scipy.spatial.transform import Rotation
|
||||
|
||||
|
||||
class Go2Sim:
|
||||
def __init__(self, render=True, dt=0.002):
|
||||
|
||||
|
@ -104,7 +106,7 @@ class Go2Sim:
|
|||
|
||||
def getIMU(self):
|
||||
return {
|
||||
'accel':np.array(self.data.sensordata[0:3]),\
|
||||
'accel': np.array(self.data.sensordata[0:3]),
|
||||
'gyro': np.array(self.data.sensordata[3:6])
|
||||
}
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ def load_config(file_path):
|
|||
config = yaml.safe_load(file)
|
||||
return config
|
||||
|
||||
|
||||
class NumpyMemMapDataPipe:
|
||||
def __init__(self, channel_name, force=False, dtype="uint8", shape=(640, 480, 3)):
|
||||
self.channel_name = channel_name
|
||||
|
|
|
@ -7,6 +7,7 @@ from launch.substitutions import Command, FindExecutable, LaunchConfiguration
|
|||
from ament_index_python.packages import get_package_share_directory
|
||||
import os
|
||||
|
||||
|
||||
def generate_launch_description():
|
||||
# go2_xacro_file = os.path.join(
|
||||
# get_package_share_directory("go2_description"), "xacro", "robot_virtual_arm.xacro"
|
||||
|
|
|
@ -7,6 +7,7 @@ from launch.substitutions import Command, FindExecutable, LaunchConfiguration
|
|||
from ament_index_python.packages import get_package_share_directory
|
||||
import os
|
||||
|
||||
|
||||
def generate_launch_description():
|
||||
go2_xacro_file = os.path.join(
|
||||
get_package_share_directory("go2_description"), "xacro", "robot.xacro"
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
from launch import LaunchDescription
|
||||
from launch_ros.actions import Node
|
||||
from ament_index_python.packages import get_package_share_directory
|
||||
|
||||
|
||||
def generate_launch_description():
|
||||
rviz_config = get_package_share_directory('hesai_ros_driver') + '/rviz/rviz2.rviz'
|
||||
return LaunchDescription([
|
||||
|
|
|
@ -2,11 +2,22 @@ from launch import LaunchDescription
|
|||
from launch_ros.actions import Node
|
||||
from ament_index_python.packages import get_package_share_directory
|
||||
|
||||
|
||||
def generate_launch_description():
|
||||
|
||||
rviz_config = get_package_share_directory('hesai_ros_driver') + '/rviz/rviz2.rviz'
|
||||
|
||||
return LaunchDescription([
|
||||
Node(namespace='hesai_ros_driver', package='hesai_ros_driver', executable='hesai_ros_driver_node', output='screen'),
|
||||
Node(namespace='rviz2', package='rviz2', executable='rviz2', arguments=['-d',rviz_config])
|
||||
])
|
||||
return LaunchDescription(
|
||||
[
|
||||
Node(
|
||||
namespace='hesai_ros_driver',
|
||||
package='hesai_ros_driver',
|
||||
executable='hesai_ros_driver_node',
|
||||
output='screen'),
|
||||
Node(
|
||||
namespace='rviz2',
|
||||
package='rviz2',
|
||||
executable='rviz2',
|
||||
arguments=[
|
||||
'-d',
|
||||
rviz_config])])
|
||||
|
|
|
@ -23,6 +23,7 @@ import pathlib
|
|||
import launch.actions
|
||||
from launch.actions import DeclareLaunchArgument
|
||||
|
||||
|
||||
def generate_launch_description():
|
||||
return LaunchDescription([
|
||||
launch_ros.actions.Node(
|
||||
|
|
|
@ -51,5 +51,6 @@ def main():
|
|||
robot.close()
|
||||
exit()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -25,5 +25,3 @@ class Go2pyHighCmd_(idl.IdlStruct, typename="go2py_messages.msg.dds_.Go2pyHighCm
|
|||
vx: types.float32
|
||||
vy: types.float32
|
||||
vz: types.float32
|
||||
|
||||
|
||||
|
|
|
@ -27,5 +27,3 @@ class Go2pyLowCmd_(idl.IdlStruct, typename="go2py_messages.msg.dds_.Go2pyLowCmd_
|
|||
kp: types.array[types.float32, 12]
|
||||
kd: types.array[types.float32, 12]
|
||||
tau: types.array[types.float32, 12]
|
||||
|
||||
|
||||
|
|
|
@ -35,5 +35,3 @@ class Go2pyState_(idl.IdlStruct, typename="go2py_messages.msg.dds_.Go2pyState_")
|
|||
motor_temp: types.array[types.float32, 12]
|
||||
wireless_remote: types.array[types.uint8, 40]
|
||||
soc: types.uint8
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue