import os import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import onnxruntime class RunningMeanStd(nn.Module): def __init__(self, shape = (), epsilon=1e-08): super(RunningMeanStd, self).__init__() self.register_buffer("running_mean", torch.zeros(shape)) self.register_buffer("running_var", torch.ones(shape)) self.register_buffer("count", torch.ones(())) self.epsilon = epsilon def forward(self, obs, update = True): if update: self.update(obs) return (obs - self.running_mean) / torch.sqrt(self.running_var + self.epsilon) def update(self, x): """Updates the mean, var and count from a batch of samples.""" batch_mean = torch.mean(x, dim=0) batch_var = torch.var(x, correction=0, dim=0) batch_count = x.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean, batch_var, batch_count): """Updates from batch mean, variance and count moments.""" self.running_mean, self.running_var, self.count = update_mean_var_count_from_moments( self.running_mean, self.running_var, self.count, batch_mean, batch_var, batch_count ) def update_mean_var_count_from_moments( mean, var, count, batch_mean, batch_var, batch_count ): """Updates the mean, var and count using the previous mean, var, count and batch values.""" delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + torch.square(delta) * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count def layer_init(layer, std=np.sqrt(2), bias_const=0.0): torch.nn.init.orthogonal_(layer.weight, std) torch.nn.init.constant_(layer.bias, bias_const) return layer class Agent(nn.Module): def __init__(self): super().__init__() self.critic = nn.Sequential( layer_init(nn.Linear(45, 512)), nn.ELU(), layer_init(nn.Linear(512, 256)), nn.ELU(), layer_init(nn.Linear(256, 128)), nn.ELU(), layer_init(nn.Linear(128, 1), std=1.0), ) self.actor_mean = nn.Sequential( layer_init(nn.Linear(45, 512)), nn.ELU(), layer_init(nn.Linear(512, 256)), nn.ELU(), layer_init(nn.Linear(256, 128)), nn.ELU(), layer_init(nn.Linear(128, 12), std=0.01), ) self.actor_logstd = nn.Parameter(torch.zeros(1, 12)) self.obs_rms = RunningMeanStd(shape = (45,)) self.value_rms = RunningMeanStd(shape = ()) def get_value(self, x): return self.critic(x) def get_action(self, x): action_mean = self.actor_mean(x) return action_mean def forward(self, x): action_mean = self.actor_mean(self.obs_rms(x, update = False)) return action_mean class Policy: def __init__(self, checkpoint_path): self.agent = Agent() actor_sd = torch.load(checkpoint_path, map_location="cpu") self.agent.load_state_dict(actor_sd) onnx_file_name = checkpoint_path.replace(".pt", ".onnx") dummy_input = torch.randn(1, 45) with torch.no_grad(): torch_out = self.agent(dummy_input) torch.onnx.export( self.agent, # The model being converted dummy_input, # An example input for the model onnx_file_name, # Output file name export_params=True, # Store trained parameter weights inside the model file opset_version=11, # ONNX version (opset) to export to, adjust as needed do_constant_folding=True, # Whether to perform constant folding optimization input_names=['input'], # Name of the input in the ONNX graph (can be customized) output_names=['action'], # Name of the output (assuming get_action and get_value are key outputs) ) self.ort_session = onnxruntime.InferenceSession(onnx_file_name, providers=["CPUExecutionProvider"]) ort_inputs = {'input': dummy_input.numpy()} ort_outs = self.ort_session.run(None, ort_inputs) np.testing.assert_allclose(torch_out.numpy(), ort_outs[0], rtol=1e-03, atol=1e-05) print("Exported model has been tested with ONNXRuntime, and the result looks good!") def __call__(self, obs, info): #with torch.no_grad(): # action = self.agent.get_action(self.agent.obs_rms(obs.unsqueeze(0), update = False)) ort_inputs = {'input': obs[np.newaxis].astype(np.float32)} ort_outs = self.ort_session.run(None, ort_inputs) return ort_outs[0] class CommandInterface: def __init__(self, limits=None): self.limits = limits self.x_vel_cmd, self.y_vel_cmd, self.yaw_vel_cmd = 0.0, 0.0, 0.0 def get_command(self): command = np.zeros((3,)) command[0] = self.x_vel_cmd command[1] = self.y_vel_cmd command[2] = self.yaw_vel_cmd return command, False class CaTAgent: def __init__(self, command_profile, robot): self.robot = robot self.command_profile = command_profile # self.lcm_bridge = LCMBridgeClient(robot_name=self.robot_name) self.sim_dt = 0.001 self.decimation = 20 self.dt = self.sim_dt * self.decimation self.timestep = 0 self.device = "cpu" joint_names = [ "FL_hip_joint", "FL_thigh_joint", "FL_calf_joint", "FR_hip_joint", "FR_thigh_joint", "FR_calf_joint", "RL_hip_joint", "RL_thigh_joint", "RL_calf_joint", "RR_hip_joint", "RR_thigh_joint", "RR_calf_joint", ] policy_joint_names = joint_names unitree_joint_names = [ "FR_hip_joint", "FR_thigh_joint", "FR_calf_joint", "FL_hip_joint", "FL_thigh_joint", "FL_calf_joint", "RR_hip_joint", "RR_thigh_joint", "RR_calf_joint", "RL_hip_joint", "RL_thigh_joint", "RL_calf_joint", ] policy_to_unitree_map = [] unitree_to_policy_map = [] for i, policy_joint_name in enumerate(policy_joint_names): id = np.where([name == policy_joint_name for name in unitree_joint_names])[0][0] policy_to_unitree_map.append((i, id)) self.policy_to_unitree_map = np.array(policy_to_unitree_map).astype(np.uint32) for i, unitree_joint_name in enumerate(unitree_joint_names): id = np.where([name == unitree_joint_name for name in policy_joint_names])[0][0] unitree_to_policy_map.append((i, id)) self.unitree_to_policy_map = np.array(unitree_to_policy_map).astype(np.uint32) default_joint_angles = { "FL_hip_joint": 0.1, "RL_hip_joint": 0.1, "FR_hip_joint": -0.1, "RR_hip_joint": -0.1, "FL_thigh_joint": 0.8, "RL_thigh_joint": 1.0, "FR_thigh_joint": 0.8, "RR_thigh_joint": 1.0, "FL_calf_joint": -1.5, "RL_calf_joint": -1.5, "FR_calf_joint": -1.5, "RR_calf_joint": -1.5 } self.default_dof_pos = np.array( [ default_joint_angles[name] for name in joint_names ] ) self.default_dof_pos = self.default_dof_pos self.p_gains = np.zeros(12) self.d_gains = np.zeros(12) for i in range(12): self.p_gains[i] = 20.0 self.d_gains[i] = 0.5 print(f"p_gains: {self.p_gains}") self.commands = np.zeros(3) self.actions = np.zeros((1, 12)) self.last_actions = np.zeros((1,12)) self.gravity_vector = np.zeros(3) self.dof_pos = np.zeros(12) self.dof_vel = np.zeros(12) self.body_linear_vel = np.zeros(3) self.body_angular_vel = np.zeros(3) self.joint_pos_target = np.zeros(12) self.joint_vel_target = np.zeros(12) self.prev_joint_acc = None self.torques = np.zeros(12) self.contact_state = np.ones(4) self.foot_contact_forces_mag = np.zeros(4) self.prev_foot_contact_forces_mag = np.zeros(4) self.test = 0 def wait_for_state(self): # return self.lcm_bridge.getStates(timeout=2) pass def get_obs(self): cmds, reset_timer = self.command_profile.get_command() self.commands[:] = cmds # self.state = self.wait_for_state() joint_state = self.robot.getJointStates() if joint_state is not None: self.gravity_vector = self.robot.getGravityInBody() self.prev_dof_pos = self.dof_pos.copy() self.dof_pos = np.array(joint_state['q'])[self.unitree_to_policy_map[:, 1]] self.prev_dof_vel = self.dof_vel.copy() self.dof_vel = np.array(joint_state['dq'])[self.unitree_to_policy_map[:, 1]] self.body_angular_vel = self.robot.getIMU()["gyro"] self.body_linear_vel = self.robot.getLinVel() try: self.foot_contact_forces_mag = self.robot.getFootContact() except: pass ob = np.concatenate( ( self.body_angular_vel * 0.25, self.commands * np.array([2.0, 2.0, 0.25]), self.gravity_vector[:, 0], self.dof_pos * 1.0, #((self.dof_pos - self.prev_dof_pos) / self.dt) * 0.05, self.dof_vel * 0.05, self.last_actions[0] ), axis=0, ) #return torch.tensor(ob, device=self.device).float() return ob def publish_action(self, action, hard_reset=False): # command_for_robot = UnitreeLowCommand() #self.joint_pos_target = ( # action[0, :12].detach().cpu().numpy() * 0.25 #).flatten() self.joint_pos_target = ( action[0, :12] * 0.25 ).flatten() self.joint_pos_target += self.default_dof_pos self.joint_vel_target = np.zeros(12) # command_for_robot.q_des = self.joint_pos_target # command_for_robot.dq_des = self.joint_vel_target # command_for_robot.kp = self.p_gains # command_for_robot.kd = self.d_gains # command_for_robot.tau_ff = np.zeros(12) if hard_reset: command_for_robot.id = -1 self.torques = (self.joint_pos_target - self.dof_pos) * self.p_gains + ( self.joint_vel_target - self.dof_vel ) * self.d_gains # self.lcm_bridge.sendCommands(command_for_robot) self.robot.setCommands(self.joint_pos_target[self.policy_to_unitree_map[:, 1]], self.joint_vel_target[self.policy_to_unitree_map[:, 1]], self.p_gains[self.policy_to_unitree_map[:, 1]], self.d_gains[self.policy_to_unitree_map[:, 1]], np.zeros(12)) def reset(self): self.actions = torch.zeros((1, 12)) self.time = time.time() self.timestep = 0 return self.get_obs() def step(self, actions, hard_reset=False): self.last_actions = self.actions[:] self.actions = actions self.publish_action(self.actions, hard_reset=hard_reset) # time.sleep(max(self.dt - (time.time() - self.time), 0)) # if self.timestep % 100 == 0: # print(f"frq: {1 / (time.time() - self.time)} Hz") self.time = time.time() obs = self.get_obs() joint_acc = np.abs(self.prev_dof_vel - self.dof_vel) / self.dt if self.prev_joint_acc is None: self.prev_joint_acc = np.zeros_like(joint_acc) joint_jerk = np.abs(self.prev_joint_acc - joint_acc) / self.dt self.prev_joint_acc = joint_acc.copy() foot_contact_rate = np.abs(self.foot_contact_forces_mag - self.prev_foot_contact_forces_mag) self.prev_foot_contact_forces_mag = self.foot_contact_forces_mag.copy() infos = { "joint_pos": self.dof_pos[np.newaxis, :], "joint_vel": self.dof_vel[np.newaxis, :], "joint_pos_target": self.joint_pos_target[np.newaxis, :], "joint_vel_target": self.joint_vel_target[np.newaxis, :], "body_linear_vel": self.body_linear_vel[np.newaxis, :], "body_angular_vel": self.body_angular_vel[np.newaxis, :], "contact_state": self.contact_state[np.newaxis, :], "body_linear_vel_cmd": self.commands[np.newaxis, 0:2], "body_angular_vel_cmd": self.commands[np.newaxis, 2:], "torques": self.torques, "foot_contact_forces_mag": self.foot_contact_forces_mag.copy(), "joint_acc": joint_acc[np.newaxis, :], "joint_jerk": joint_jerk[np.newaxis, :], "foot_contact_rate": foot_contact_rate[np.newaxis, :], } self.timestep += 1 return obs, None, None, infos