import time import mujoco import mujoco.viewer import numpy as np from Go2Py import ASSETS_PATH import os from scipy.spatial.transform import Rotation import cv2 pnt = np.array([-0.2, 0, 0.05]) lidar_angles = np.linspace(0.0, 2 * np.pi, 1024).reshape(-1, 1) x_vec = np.cos(lidar_angles) y_vec = np.sin(lidar_angles) z_vec = np.zeros_like(x_vec) vec = np.concatenate([x_vec, y_vec, z_vec], axis=1) nray = vec.shape[0] geomid = np.zeros(nray, np.int32) dist = np.zeros(nray, np.float64) # Credit to: https://github.com/google-deepmind/mujoco/issues/1672 class Camera: def __init__(self, resolution, model, data, cam_name: str = "", min_depth=0.35, max_depth=3.): """Initialize Camera instance. Args: - args: Arguments containing camera width and height. - model: Mujoco model. - data: Mujoco data. - cam_name: Name of the camera. - save_dir: Directory to save captured images. """ self._min_depth = min_depth self._max_depth = max_depth self._cam_name = cam_name self._model = model self._data = data self._width = resolution[0] self._height = resolution[1] self._cam_id = self._data.cam(self._cam_name).id self._renderer = mujoco.Renderer(self._model, self._height, self._width) self._camera = mujoco.MjvCamera() self._scene = mujoco.MjvScene(self._model, maxgeom=10_000) self._image = np.zeros((self._height, self._width, 3), dtype=np.uint8) self._depth_image = np.zeros((self._height, self._width, 1), dtype=np.float32) self._seg_id_image = np.zeros((self._height, self._width, 3), dtype=np.float32) self._point_cloud = np.zeros((self._height, self._width, 1), dtype=np.float32) @property def height(self) -> int: """ Get the height of the camera. Returns: int: The height of the camera. """ return self._height @property def width(self) -> int: """ Get the width of the camera. Returns: int: The width of the camera. """ return self._width @property def name(self) -> str: """ Get the name of the camera. Returns: str: The name of the camera.s """ return self._cam_name @property def K(self) -> np.ndarray: """ Compute the intrinsic camera matrix (K) based on the camera's field of view (fov), width (_width), and height (_height) parameters, following the pinhole camera model. Returns: np.ndarray: The intrinsic camera matrix (K), a 3x3 array representing the camera's intrinsic parameters. """ # Convert the field of view from degrees to radians theta = np.deg2rad(self.fov) # Focal length calculation (f in terms of sensor width and height) f_x = (self._width / 2) / np.tan(theta / 2) f_y = (self._height / 2) / np.tan(theta / 2) # Pixel resolution (assumed to be focal length per pixel unit) alpha_u = f_x # focal length in terms of pixel width alpha_v = f_y # focal length in terms of pixel height # Optical center offsets (assuming they are at the center of the sensor) u_0 = (self._width - 1) / 2.0 v_0 = (self._height - 1) / 2.0 # Intrinsic camera matrix K K = np.array([[alpha_u, 0, u_0], [0, alpha_v, v_0], [0, 0, 1]]) return K @property def T_world_cam(self) -> np.ndarray: """ Compute the homogeneous transformation matrix for the camera. The transformation matrix is computed from the camera's position and orientation. The position and orientation are retrieved from the camera data. Returns: np.ndarray: The 4x4 homogeneous transformation matrix representing the camera's pose. """ pos = self._data.cam(self._cam_id).xpos rot = self._data.cam(self._cam_id).xmat.reshape(3, 3).T T = np.hstack([rot, pos.reshape(3,1)]) T = np.vstack([T, np.array([0., 0., 0., 1.])]) return T @property def P(self) -> np.ndarray: """ Compute the projection matrix for the camera. The projection matrix is computed as the product of the camera's intrinsic matrix (K) and the homogeneous transformation matrix (T_world_cam). Returns: np.ndarray: The 3x4 projection matrix. """ return self.K @ self.T_world_cam @property def image(self) -> np.ndarray: """Return the captured RGB image.""" self._renderer.update_scene(self._data, camera=self.name) self._image = self._renderer.render() return self._image @property def depth_image(self) -> np.ndarray: """Return the captured depth image.""" self._renderer.update_scene(self._data, camera=self.name) self._renderer.enable_depth_rendering() self._depth_image = self._renderer.render() self._renderer.disable_depth_rendering() return np.clip(self._depth_image, self._min_depth, self._max_depth) @property def seg_image(self) -> np.ndarray: """Return the captured segmentation image based on object's id.""" self._renderer.update_scene(self._data, camera=self.name) self._renderer.enable_segmentation_rendering() self._seg_id_image = self._renderer.render()[:, :, 0].reshape( (self.height, self.width) ) self._renderer.disable_segmentation_rendering() return self._seg_id_image @property def point_cloud(self) -> np.ndarray: """Return the captured point cloud.""" self._point_cloud = self._depth_to_point_cloud(self.depth_image) return self._point_cloud @property def fov(self) -> float: """Get the field of view (FOV) of the camera. Returns: - float: The field of view angle in degrees. """ return self._model.cam(self._cam_id).fovy[0] @property def id(self) -> int: """Get the identifier of the camera. Returns: - int: The identifier of the camera. """ return self._cam_id def _depth_to_point_cloud(self, depth_image: np.ndarray) -> np.ndarray: """ Method to convert depth image to a point cloud in camera coordinates. Args: - depth_image: The depth image we want to convert to a point cloud. Returns: - np.ndarray: 3D points in camera coordinates. """ # Get image dimensions dimg_shape = depth_image.shape height = dimg_shape[0] width = dimg_shape[1] # Create pixel grid y, x = np.meshgrid(np.arange(height), np.arange(width), indexing="ij") # Flatten arrays for vectorized computation x_flat = x.flatten() y_flat = y.flatten() depth_flat = depth_image.flatten() # Negate depth values because z-axis goes into the camera depth_flat = -depth_flat # Stack flattened arrays to form homogeneous coordinates homogeneous_coords = np.vstack((x_flat, y_flat, np.ones_like(x_flat))) # Compute inverse of the intrinsic matrix K K_inv = np.linalg.inv(self.K) # Calculate 3D points in camera coordinates points_camera = np.dot(K_inv, homogeneous_coords) * depth_flat # Homogeneous coordinates to 3D points points_camera = np.vstack((points_camera, np.ones_like(x_flat))) points_camera = points_camera.T # dehomogenize points_camera = points_camera[:, :3] / points_camera[:, 3][:, np.newaxis] return points_camera class Go2Sim: def __init__(self, mode='lowlevel', render=True, dt=0.002, height_map = None, xml_path=None, camera_name = "front_camera", camera_resolution = (640, 480), camera_depth_range = (0.35, 3.0), friction_model = None, ): if xml_path is None: self.model = mujoco.MjModel.from_xml_path( os.path.join(ASSETS_PATH, 'mujoco/go2.xml') ) else: self.model = mujoco.MjModel.from_xml_path(xml_path) if height_map is not None: try: self.updateHeightMap(height_map) except: raise Exception('Could not set height map. Are you sure the XML contains the required asset?') self.friction_model = friction_model self.simulated = True self.data = mujoco.MjData(self.model) self.dt = dt _render_dt = 1 / 60 self.render_ds_ratio = max(1, _render_dt // dt) if render: self.viewer = mujoco.viewer.launch_passive(self.model, self.data) self.render = True self.viewer.cam.distance = 3.0 self.viewer.cam.azimuth = 90 self.viewer.cam.elevation = -45 self.viewer.cam.lookat[:] = np.array([0.0, -0.25, 0.824]) else: self.render = False self.model.opt.gravity[2] = -9.81 self.model.opt.timestep = dt self.renderer = None self.render = render self.step_counter = 0 self.prestanding_q = np.array([0.0, 1.26186061, -2.5, 0.0, 1.25883281, -2.5, 0.0, 1.27193761, -2.6, 0.0, 1.27148342, -2.6]) self.sitting_q = np.array([-0.02495611, 1.26249647, -2.82826662, 0.04563564, 1.2505368, -2.7933557, -0.30623949, 1.28283751, -2.82314873, 0.26400229, 1.29355574, -2.84276843]) self.standing_q = np.array([0.0, 0.77832842, -1.56065452, 0.0, 0.76754963, -1.56634164, 0.0, 0.76681757, -1.53601146, 0.0, 0.75422204, -1.53229916]) self.q0 = self.sitting_q self.pos0 = np.array([0., 0., 0.1]) self.rot0 = np.array([1., 0., 0., 0.]) self.reset() mujoco.mj_step(self.model, self.data) if self.render: self.viewer.sync() self.nv = self.model.nv self.jacp = np.zeros((3, self.nv)) self.jacr = np.zeros((3, self.nv)) self.M = np.zeros((self.nv, self.nv)) self.q_des = np.zeros(12) self.dq_des = np.zeros(12) self.tau_ff = np.zeros(12) self.kp = np.zeros(12) self.kv = np.zeros(12) self.latest_command_stamp = time.time() self.actuator_tau = np.zeros(12) self.mode = mode if self.mode == 'highlevel': from Go2Py.control.walk_these_ways import CommandInterface, loadParameters, Policy, WalkTheseWaysAgent, HistoryWrapper checkpoint_path = os.path.join(ASSETS_PATH,'checkpoints/walk_these_ways') self.cfg = loadParameters(checkpoint_path) self.policy = Policy(checkpoint_path) self.command_profile = CommandInterface() self.agent = WalkTheseWaysAgent(self.cfg, self.command_profile, robot=self) self.agent = HistoryWrapper(self.agent) self.control_dt = self.cfg["control"]["decimation"] * self.cfg["sim"]["dt"] self.obs = self.agent.reset() self.standUpReset() self.step_counter = 0 self.step = self.stepHighlevel self.ex_sum=0 self.ey_sum=0 self.e_omega_sum=0 else: self.step = self.stepLowlevel self.camera_name = camera_name self.camera_resolution = camera_resolution self.camera_depth_range = camera_depth_range self.camera = Camera(self.camera_resolution, self.model, self.data, self.camera_name, min_depth=self.camera_depth_range[0] ,max_depth=self.camera_depth_range[1]) def updateHeightMap(self, height_map, hfield_size = (300,300), raw_deoth_to_height_ratio = 255.): try: map = cv2.resize(height_map, hfield_size)/raw_deoth_to_height_ratio self.height_map = np.flip(map, axis=0).reshape(-1) self.model.hfield_data = self.height_map if self.render: self.viewer.update_hfield(0) except: raise Exception(f'Could not load heightmap. Make sure the heigh_map is a 2D numpy array') def reset(self): self.q_nominal = np.hstack( [self.pos0.squeeze(), self.rot0.squeeze(), self.q0.squeeze()] ) self.data.qpos = self.q_nominal self.data.qvel = np.zeros(18) self.ex_sum=0 self.ey_sum=0 self.e_omega_sum=0 def standUpReset(self): self.q0 = self.standing_q self.pos0 = np.array([0., 0., 0.33]) self.rot0 = np.array([1., 0., 0., 0.]) self.reset() mujoco.mj_step(self.model, self.data) if self.render: self.viewer.sync() def sitDownReset(self): self.q0 = self.sitting_q self.pos0 = np.array([0., 0., 0.1]) self.rot0 = np.array([1., 0., 0., 0.]) self.reset() mujoco.mj_step(self.model, self.data) if self.render: self.viewer.sync() def getJointStates(self): return {"q": self.data.qpos[7:], "dq": self.data.qvel[6:], 'tau_est': self.actuator_tau} def getPose(self): return self.data.qpos[:3], self.data.qpos[3:7] def getIMU(self): return { 'accel': np.array(self.data.sensordata[0:3]), 'gyro': np.array(self.data.sensordata[3:6]) } def getFootContact(self): return self.data.sensordata[6:10] def setCommands(self, q_des, dq_des, kp, kv, tau_ff): self.q_des = q_des self.dq_des = dq_des self.kp = kp self.kv = kv self.tau_ff = tau_ff self.latest_command_stamp = time.time() def stepLowlevel(self): state = self.getJointStates() q, dq = state['q'], state['dq'] tau = np.diag(self.kp) @ (self.q_des - q).reshape(12, 1) + \ np.diag(self.kv) @ (self.dq_des - dq).reshape(12, 1) + self.tau_ff.reshape(12, 1) # Apply the friction model if it is provided to the simulator if self.friction_model is not None: tau = tau.squeeze()-self.friction_model(dq) self.actuator_tau = tau self.data.ctrl[:] = tau.squeeze() self.step_counter += 1 mujoco.mj_step(self.model, self.data) # Render every render_ds_ratio steps (60Hz GUI update) if self.render and (self.step_counter % self.render_ds_ratio) == 0: self.viewer.sync() def getLinVel(self): _, q = self.getPose() world_R_body = Rotation.from_quat([q[1], q[2], q[3], q[0]]).as_matrix() body_v = world_R_body.T@self.data.qvel[0:3].reshape(3,1) return body_v def stepHighlevel(self, vx, vy, omega_z, body_z_offset=0, step_height = 0.08, kp=[2, 0.5, 0.5], ki=[0.02, 0.01, 0.01]): policy_info = {} if self.step_counter % (self.control_dt // self.dt) == 0: action = self.policy(self.obs, policy_info) self.obs, ret, done, info = self.agent.step(action) #Body velocity tracker PI controller _, q = self.getPose() world_R_body = Rotation.from_quat([q[1], q[2], q[3], q[0]]).as_matrix() body_v = world_R_body.T@self.data.qvel[0:3].reshape(3,1) ex = (vx-body_v[0]) ey = (vy-body_v[1]) e_omega = (omega_z-self.data.qvel[5]) self.ex_sum+=ex self.ey_sum+=ey self.e_omega_sum+=e_omega self.command_profile.yaw_vel_cmd = np.clip(kp[2]*e_omega+ki[2]*self.e_omega_sum + omega_z, -2*np.pi, 2*np.pi) self.command_profile.x_vel_cmd = np.clip(kp[0]*ex+ki[0]*self.ex_sum + vx, -2.5, 2.5) self.command_profile.y_vel_cmd = np.clip(kp[1]*ey+ki[1]*self.ey_sum + vy,-1.5, 1.5) self.command_profile.body_height_cmd = body_z_offset self.command_profile.footswing_height_cmd = step_height self.step_counter+=1 self.stepLowlevel() def getSiteJacobian(self, site_name): id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_SITE, site_name) assert id > 0, 'The requested site could not be found' mujoco.mj_jacSite(self.model, self.data, self.jacp, self.jacr, id) return self.jacp, self.jacr def getDynamicsParams(self): mujoco.mj_fullM(self.model, self.M, self.data.qM) nle = self.data.qfrc_bias.reshape(self.nv, 1) return { 'M': self.M, 'nle': nle } def getGravityInBody(self): _, q = self.getPose() R = Rotation.from_quat([q[1], q[2], q[3], q[0]]).as_matrix() g_in_body = R.T @ np.array([0.0, 0.0, -1.0]).reshape(3, 1) return g_in_body def getLaserScan(self, max_range=30): t, q = self.getPose() world_R_body = Rotation.from_quat([q[1], q[2], q[3], q[0]]).as_matrix() pnt = t.copy() pnt[2]+=0.25 vec_in_w = (world_R_body@vec.T).T mujoco.mj_multiRay( m=self.model, d=self.data, pnt=pnt, vec=vec_in_w.flatten(), geomgroup=None, flg_static=1, bodyexclude=-1, geomid=geomid, dist=dist, nray=nray, cutoff=max_range#mujoco.mjMAXVAL, ) pcd = dist.reshape(-1, 1) * vec idx = np.where(np.logical_and(dist!=-1, dist