998 lines
315 KiB
Plaintext
998 lines
315 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Without ARM"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 61,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"ename": "ValueError",
|
||
"evalue": "Mesh dae/base.dae could not be found.",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn[61], line 7\u001b[0m\n\u001b[1;32m 5\u001b[0m urdf_root_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/home/Go2py/Go2Py/assets\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 6\u001b[0m urdf_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/home/Go2py/Go2Py/assets/urdf/go2_reordered.urdf\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 7\u001b[0m robot \u001b[38;5;241m=\u001b[39m \u001b[43mpin\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mRobotWrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBuildFromURDF\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43murdf_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murdf_root_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpin\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mJointModelFreeFlyer\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
|
||
"File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/pinocchio/robot_wrapper.py:21\u001b[0m, in \u001b[0;36mRobotWrapper.BuildFromURDF\u001b[0;34m(filename, package_dirs, root_joint, verbose, meshLoader)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[38;5;129m@staticmethod\u001b[39m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mBuildFromURDF\u001b[39m(\n\u001b[1;32m 18\u001b[0m filename, package_dirs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, root_joint\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, meshLoader\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 19\u001b[0m ):\n\u001b[1;32m 20\u001b[0m robot \u001b[38;5;241m=\u001b[39m RobotWrapper()\n\u001b[0;32m---> 21\u001b[0m \u001b[43mrobot\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minitFromURDF\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage_dirs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mroot_joint\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmeshLoader\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m robot\n",
|
||
"File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/pinocchio/robot_wrapper.py:32\u001b[0m, in \u001b[0;36mRobotWrapper.initFromURDF\u001b[0;34m(self, filename, package_dirs, root_joint, verbose, meshLoader)\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minitFromURDF\u001b[39m(\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 26\u001b[0m filename,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 30\u001b[0m meshLoader\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 31\u001b[0m ):\n\u001b[0;32m---> 32\u001b[0m model, collision_model, visual_model \u001b[38;5;241m=\u001b[39m \u001b[43mbuildModelsFromUrdf\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 33\u001b[0m \u001b[43m \u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage_dirs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mroot_joint\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmeshLoader\u001b[49m\n\u001b[1;32m 34\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 35\u001b[0m RobotWrapper\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m(\n\u001b[1;32m 36\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 37\u001b[0m model\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[1;32m 38\u001b[0m collision_model\u001b[38;5;241m=\u001b[39mcollision_model,\n\u001b[1;32m 39\u001b[0m visual_model\u001b[38;5;241m=\u001b[39mvisual_model,\n\u001b[1;32m 40\u001b[0m )\n",
|
||
"File \u001b[0;32m/opt/conda/lib/python3.12/site-packages/pinocchio/shortcuts.py:63\u001b[0m, in \u001b[0;36mbuildModelsFromUrdf\u001b[0;34m(filename, package_dirs, root_joint, verbose, meshLoader, geometry_types)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m geometry_type \u001b[38;5;129;01min\u001b[39;00m geometry_types:\n\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m meshLoader \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mor\u001b[39;00m (\u001b[38;5;129;01mnot\u001b[39;00m WITH_HPP_FCL \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m WITH_HPP_FCL_BINDINGS):\n\u001b[0;32m---> 63\u001b[0m geom_model \u001b[38;5;241m=\u001b[39m \u001b[43mpin\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuildGeomFromUrdf\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 64\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgeometry_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage_dirs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpackage_dirs\u001b[49m\n\u001b[1;32m 65\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 67\u001b[0m geom_model \u001b[38;5;241m=\u001b[39m pin\u001b[38;5;241m.\u001b[39mbuildGeomFromUrdf(\n\u001b[1;32m 68\u001b[0m model,\n\u001b[1;32m 69\u001b[0m filename,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 72\u001b[0m mesh_loader\u001b[38;5;241m=\u001b[39mmeshLoader,\n\u001b[1;32m 73\u001b[0m )\n",
|
||
"\u001b[0;31mValueError\u001b[0m: Mesh dae/base.dae could not be found."
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pinocchio as pin\n",
|
||
"import crocoddyl\n",
|
||
"import pinocchio\n",
|
||
"import numpy as np\n",
|
||
"urdf_root_path = '/home/Go2py/Go2Py/assets'\n",
|
||
"urdf_path = '/home/Go2py/Go2Py/assets/urdf/go2_reordered.urdf'\n",
|
||
"robot = pin.RobotWrapper.BuildFromURDF(\n",
|
||
"urdf_path, urdf_root_path, pin.JointModelFreeFlyer())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 62,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"import mim_solvers\n",
|
||
"pinRef = pin.LOCAL_WORLD_ALIGNED\n",
|
||
"FRICTION_CSTR = True\n",
|
||
"MU = 0.8 # friction coefficient"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 28,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ee_frame_names = ['FL_foot', 'FR_foot', 'RL_foot', 'RR_foot']\n",
|
||
"rmodel = robot.model\n",
|
||
"rdata = robot.data\n",
|
||
"# # set contact frame_names and_indices\n",
|
||
"lfFootId = rmodel.getFrameId(ee_frame_names[0])\n",
|
||
"rfFootId = rmodel.getFrameId(ee_frame_names[1])\n",
|
||
"lhFootId = rmodel.getFrameId(ee_frame_names[2])\n",
|
||
"rhFootId = rmodel.getFrameId(ee_frame_names[3])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 29,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"q0 = np.array([0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 1.0] \n",
|
||
" +4*[0.0, 0.77832842, -1.56065452]\n",
|
||
" )\n",
|
||
"x0 = np.concatenate([q0, np.zeros(rmodel.nv)])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 30,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"pinocchio.forwardKinematics(rmodel, rdata, q0)\n",
|
||
"pinocchio.updateFramePlacements(rmodel, rdata)\n",
|
||
"rfFootPos0 = rdata.oMf[rfFootId].translation\n",
|
||
"rhFootPos0 = rdata.oMf[rhFootId].translation\n",
|
||
"lfFootPos0 = rdata.oMf[lfFootId].translation\n",
|
||
"lhFootPos0 = rdata.oMf[lhFootId].translation "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"The desired CoM position is: [0.00060515 0. 0.27853327]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"comRef = (rfFootPos0 + rhFootPos0 + lfFootPos0 + lhFootPos0) / 4\n",
|
||
"comRef[2] = pinocchio.centerOfMass(rmodel, rdata, q0)[2].item() \n",
|
||
"print(f'The desired CoM position is: {comRef}')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"supportFeetIds = [lfFootId, rfFootId, lhFootId, rhFootId]\n",
|
||
"supportFeePos = [lfFootPos0, rfFootPos0, lhFootPos0, rhFootPos0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 36,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"state = crocoddyl.StateMultibody(rmodel)\n",
|
||
"actuation = crocoddyl.ActuationModelFloatingBase(state)\n",
|
||
"nu = actuation.nu"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 37,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"comDes = []\n",
|
||
"\n",
|
||
"N_ocp = 250 #100\n",
|
||
"dt = 0.02\n",
|
||
"T = N_ocp * dt\n",
|
||
"radius = 0.065\n",
|
||
"for t in range(N_ocp+1):\n",
|
||
" comDes_t = comRef.copy()\n",
|
||
" w = (2 * np.pi) * 0.2 # / T\n",
|
||
" comDes_t[0] += radius * np.sin(w * t * dt) \n",
|
||
" comDes_t[1] += radius * (np.cos(w * t * dt) - 1)\n",
|
||
" comDes += [comDes_t]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 38,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import friction_utils\n",
|
||
"running_models = []\n",
|
||
"constraintModels = []\n",
|
||
"\n",
|
||
"for t in range(N_ocp+1):\n",
|
||
" contactModel = crocoddyl.ContactModelMultiple(state, nu)\n",
|
||
" costModel = crocoddyl.CostModelSum(state, nu)\n",
|
||
"\n",
|
||
" # Add contact\n",
|
||
" for frame_idx in supportFeetIds:\n",
|
||
" support_contact = crocoddyl.ContactModel3D(state, frame_idx, np.array([0., 0., 0.]), pinRef, nu, np.array([0., 0.]))\n",
|
||
" # print(\"contact name = \", rmodel.frames[frame_idx].name + \"_contact\")\n",
|
||
" contactModel.addContact(rmodel.frames[frame_idx].name + \"_contact\", support_contact) \n",
|
||
"\n",
|
||
" # Add state/control reg costs\n",
|
||
"\n",
|
||
" state_reg_weight, control_reg_weight = 1e-1, 1e-3\n",
|
||
"\n",
|
||
" freeFlyerQWeight = [0.]*3 + [500.]*3\n",
|
||
" freeFlyerVWeight = [10.]*6\n",
|
||
" legsQWeight = [0.01]*(rmodel.nv - 6)\n",
|
||
" legsWWeights = [1.]*(rmodel.nv - 6)\n",
|
||
" stateWeights = np.array(freeFlyerQWeight + legsQWeight + freeFlyerVWeight + legsWWeights) \n",
|
||
"\n",
|
||
"\n",
|
||
" stateResidual = crocoddyl.ResidualModelState(state, x0, nu)\n",
|
||
" stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2)\n",
|
||
" stateReg = crocoddyl.CostModelResidual(state, stateActivation, stateResidual)\n",
|
||
"\n",
|
||
" if t == N_ocp:\n",
|
||
" costModel.addCost(\"stateReg\", stateReg, state_reg_weight*dt)\n",
|
||
" else:\n",
|
||
" costModel.addCost(\"stateReg\", stateReg, state_reg_weight)\n",
|
||
"\n",
|
||
" if t != N_ocp:\n",
|
||
" ctrlResidual = crocoddyl.ResidualModelControl(state, nu)\n",
|
||
" ctrlReg = crocoddyl.CostModelResidual(state, ctrlResidual)\n",
|
||
" costModel.addCost(\"ctrlReg\", ctrlReg, control_reg_weight) \n",
|
||
"\n",
|
||
"\n",
|
||
" # Add COM task\n",
|
||
" com_residual = crocoddyl.ResidualModelCoMPosition(state, comDes[t], nu)\n",
|
||
" com_activation = crocoddyl.ActivationModelWeightedQuad(np.array([1., 1., 1.]))\n",
|
||
" com_track = crocoddyl.CostModelResidual(state, com_activation, com_residual)\n",
|
||
" if t == N_ocp:\n",
|
||
" costModel.addCost(\"comTrack\", com_track, 1e5)\n",
|
||
" else:\n",
|
||
" costModel.addCost(\"comTrack\", com_track, 1e5)\n",
|
||
"\n",
|
||
" constraintModelManager = crocoddyl.ConstraintModelManager(state, actuation.nu)\n",
|
||
" if(FRICTION_CSTR):\n",
|
||
" if(t != N_ocp):\n",
|
||
" for frame_idx in supportFeetIds:\n",
|
||
" name = rmodel.frames[frame_idx].name + \"_contact\"\n",
|
||
" residualFriction = friction_utils.ResidualFrictionCone(state, name, MU, actuation.nu)\n",
|
||
" constraintFriction = crocoddyl.ConstraintModelResidual(state, residualFriction, np.array([0.]), np.array([np.inf]))\n",
|
||
" constraintModelManager.addConstraint(name + \"friction\", constraintFriction)\n",
|
||
"\n",
|
||
" dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(state, actuation, contactModel, costModel, constraintModelManager, 0., True)\n",
|
||
" model = crocoddyl.IntegratedActionModelEuler(dmodel, dt)\n",
|
||
"\n",
|
||
" running_models += [model]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 39,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Create shooting problem\n",
|
||
"ocp = crocoddyl.ShootingProblem(x0, running_models[:-1], running_models[-1])\n",
|
||
"\n",
|
||
"solver = mim_solvers.SolverCSQP(ocp)\n",
|
||
"solver.max_qp_iters = 1000\n",
|
||
"max_iter = 500\n",
|
||
"solver.with_callbacks = True\n",
|
||
"solver.use_filter_line_search = False\n",
|
||
"solver.termination_tolerance = 1e-4\n",
|
||
"solver.eps_abs = 1e-6\n",
|
||
"solver.eps_rel = 1e-6"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 40,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 40,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"xs = [x0]*(solver.problem.T + 1)\n",
|
||
"us = solver.problem.quasiStatic([x0]*solver.problem.T) \n",
|
||
"solver.solve(xs, us, max_iter) "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 41,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"nq, nv, N = rmodel.nq, rmodel.nv, len(xs) \n",
|
||
"jointPos_sol = []\n",
|
||
"jointVel_sol = []\n",
|
||
"jointAcc_sol = []\n",
|
||
"jointTorques_sol = []\n",
|
||
"centroidal_sol = []\n",
|
||
"xs, us = solver.xs, solver.us\n",
|
||
"x = []\n",
|
||
"for time_idx in range (N):\n",
|
||
" q, v = xs[time_idx][:nq], xs[time_idx][nq:]\n",
|
||
" pin.framesForwardKinematics(rmodel, rdata, q)\n",
|
||
" pin.computeCentroidalMomentum(rmodel, rdata, q, v)\n",
|
||
" centroidal_sol += [\n",
|
||
" np.concatenate(\n",
|
||
" [pin.centerOfMass(rmodel, rdata, q, v), np.array(rdata.hg.linear), np.array(rdata.hg.angular)]\n",
|
||
" )\n",
|
||
" ]\n",
|
||
" jointPos_sol += [q]\n",
|
||
" jointVel_sol += [v]\n",
|
||
" x += [xs[time_idx]]\n",
|
||
" if time_idx < N-1:\n",
|
||
" jointAcc_sol += [solver.problem.runningDatas[time_idx].xnext[nq::]] \n",
|
||
" jointTorques_sol += [us[time_idx]]\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"sol = {'x':x, 'centroidal':centroidal_sol, 'jointPos':jointPos_sol, \n",
|
||
" 'jointVel':jointVel_sol, 'jointAcc':jointAcc_sol, \n",
|
||
" 'jointTorques':jointTorques_sol} \n",
|
||
"\n",
|
||
"for frame_idx in supportFeetIds:\n",
|
||
" # print('extract foot id ', frame_idx, \"_name = \", rmodel.frames[frame_idx].name)\n",
|
||
" ct_frame_name = rmodel.frames[frame_idx].name + \"_contact\"\n",
|
||
" datas = [solver.problem.runningDatas[i].differential.multibody.contacts.contacts[ct_frame_name] for i in range(N-1)]\n",
|
||
" ee_forces = [datas[k].f.vector for k in range(N-1)] \n",
|
||
" sol[ct_frame_name] = [ee_forces[i] for i in range(N-1)] \n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 42,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTZfvA8W+SpnvvFrpo2XtvZE9BRBEcTEHkZajoT0VFhFdF5QURRZwMBRGZDrZVNpRZ9mwLHXTvnTQ5vz9KIrUFOtImaZ/PdeWCnCQn90lzkjvPuB+ZJEkSgiAIgiAIglAGubEDEARBEARBEEyXSBYFQRAEQRCE+xLJoiAIgiAIgnBfIlkUBEEQBEEQ7kski4IgCIIgCMJ9iWRREARBEARBuC+RLAqCIAiCIAj3JZJFQRAEQRAE4b5EsigIgiAIgiDcl0gWBUEweYGBgchksgdeli1bZuwwBUEQaiULYwcgCIJQXt27dyckJKTM25o1a1bD0QiCINQNIlkUBMFsTJkyhYkTJxo7DEEQhDpFdEMLgiAIgiAI9yWSRUEQap3Y2FhmzZpFw4YNsba2xsnJie7du/P111+j0WhK3X/NmjXIZDImTpxIWloaL7/8MsHBwVhZWdG7d+8S9/3rr78YPXo09evXx8rKCg8PDzp27Mj8+fNJTU0tte/r168zbdo0goOD9bH06tWLdevWVdfhC4IgGJTohhYEoVY5efIkgwcPJi0tDX9/f0aOHElmZib79+/n6NGjbNu2jd9++w1LS8tSj01JSaFDhw5kZGTQs2dP2rdvX+J+s2fP5vPPPwegTZs29OzZk8zMTK5du8bChQvp06dPieRy06ZNjB8/noKCApo0acLQoUPJzMwkLCyMcePG8ddff7Fq1apqf00EQRCqRBIEQTBxAQEBEiCtXr36gfcrKCjQ3/fFF1+UVCqV/raIiAgpMDBQAqS33nqrxONWr14tARIg9evXT8rMzCy17+XLl0uA5ObmJv3111+lbg8LC5Oio6P118+fPy9ZWVlJ1tbW0pYtW0rc99atW1LLli0lQFq7dm15XgJBEASjEcmiIAgmT5cA3u/yyCOPSJIkST/++KMESL6+vlJBQUGp/WzevFkCJAcHByk/P1+/XZcsKpVKKSIiotTj1Gq15OHhIQGlEr/7GTNmjARI//vf/8q8/cSJExIgtW/fvlz7EwRBMBbRDS0Igtm4X+mcJk2aALB//34Axo4di5WVVan7jRo1ChcXF9LT0zl9+jTdu3cvcXvbtm1p0KBBqcedPn2a5ORk3N3defzxxx8ap1arZdeuXQCMGTOmzPt06NABe3t7zp49S0FBAdbW1g/dryAIgjGIZFEQBLPxsNI5cXFxAAQFBZV5u0wmIygoiPT0dP197xUYGFjm427fvg1A48aNkclkD40zNTWVrKwsAPz8/Mp1/3r16j30foIgCMYgkkVBEIS7bGxsDLIfrVar//+ECRMeev+yWkEFQRBMhUgWBUGoNXStc5GRkfe9T1RUVIn7loe/vz9QXAZHkqSHti66u7tjY2NDfn4+//vf/3B3dy/3cwmCIJgaUWdREIRaQ1e2ZuPGjRQUFJS6fdu2baSnp+Pg4ED79u3Lvd8OHTrg7u5OcnIy27dvf+j9FQoFAwYMAOCXX34p9/MIgiCYIpEsCoJQa4wePRp/f3/u3LnDnDlzKCoq0t8WFRXFq6++CsCsWbMqNKHEwsKCt99+G4AXXniBgwcPlrrPyZMniY2N1V+fP38+lpaW/N///R9r164t0TWtc/HiRbZu3VruOARBEIxBJIuCINQaVlZWbN68GVdXV1auXElISAhjx45l2LBhNGvWjKioKAYNGsT8+fMrvO+XXnqJF198kZSUFB555BHatWvH008/zbBhwwgODqZTp07cvHlTf/927drpV2mZOHEiAQEBDBo0iOeee46hQ4fi5+dHy5YtRcujIAgmr9JjFhUKBfHx8Xh6epbYnpqaiqenZ5lLagmCIFS3jh07Eh4ezscff8yuXbvYtm0bVlZWtG3blvHjxzNlyhQsLCr+0SeTyVi5ciWPPfYYX331FcePH+fixYs4OzsTFBTEhAkTaNWqVYnHjB49mo4dO7J8+XL27dvHkSNH0Gg0eHl5ERISwsyZM3nyyScNdeiCIAjVQiZJklSZB8rlchISEkoli3fu3CE4OJj8/HyDBCgIgiAIgiAYT4V/Xi9fvhwo/pX93XffYW9vr79No9Fw8OBBfYFcQRAEQRAEwbxVuGVRV+z29u3b1K9fH4VCob/N0tKSwMBAFi5cSOfOnQ0bqSAIgiAIglDjKt0N3adPH7Zu3YqLi4uhYxIEQRAEQRBMRKWTRUEQBEEQBKH2q3TpnCeeeIKPP/641PZPPvmE0aNHVykoQRAEQRAEwTRUumXRw8ODv/76i5YtW5bYfuHCBfr3709iYqJBAhQEQRAEQRCMp9Itizk5OVhaWpbarlQqycrKqlJQgiAIgiAIgmmodLLYsmVLNm7cWGr7zz//TLNmzaoUlCAIgiAIgmAaKr2Cy7x58xg1ahQRERH07dsXgNDQUDZs2MCmTZsMFqAgCIIgCIJgPFWaDb1jxw4+/PBDwsPDsbGxoVWrVsyfP59HHnnEkDEKgiAIgiAIRiJK5wiCIAiCIAj3VeluaHOh1Wq5c+cODg4OyGQyY4cjCHqSJJGdnY2vry9yeaWHDxuNOLcEU2VK55Y4TwRTVu5zRaqkoqIiafHixVLHjh0lLy8vycXFpcSlPA4cOCA9+uijko+PjwRI27ZtK3G7VquV5s2bJ3l7e0vW1tZSv379pOvXr1cozpiYGAkQF3Ex2UtMTEyF3tOmQpxb4mLqF1M4t8R5Ii7mcHnYuVLplsUFCxbw3Xff8eqrr/LOO+/w9ttvc+vWLbZv3867775brn3k5ubSunVrJk+ezKhRo0rd/sknn7B8+XLWrl1LUFAQ8+bNY9CgQVy+fBlra+tyPYeDgwMAMTExODo6lrpdrVazd+9eBg4ciFKpLNc+zVldO14w3WPOysrCz89P/x41Nw86t0z1Na9O4phN55hN6dwS30GliWM2nWMu77lS6WRx/fr1fPvttwwbNoz33nuPp59+muDgYFq1asXx48eZPXv2Q/cxZMgQhgwZUuZtkiSxbNky3nnnHR577DEAfvjhB7y8vNi+fTtjx44tV5y6Zn9HR8dSJ+rOC/F88dcNPLHnSUdHk/oDVhe1Wo2trS2OdeR4wfSP2Vy7ph50bpn6a14d7j3m0GupbDwZzdvDmhLiafyEpbqY+t/ZFM6tB50nUPwaXsy148/fI3hjSFMaedXe94uOqb9vqoOpH/PDzpVKJ4sJCQn61Vvs7e3JzMwE4NFHH2XevHmV3a1eVFQUCQkJ9O/fX7/NycmJzp07c+zYsfsmi4WFhRQWFuqv6wqEq9Vq1Gp1ifum5xRwOT4buQulbqutdMdZV44XTPeYTS0ewXD++8dl4jLy+ftaMmfnDcDFrvQCBoKg89cdOfF5yYReTebWR8MeeN/MfDWx6XnkqTTIAGdbS+o522BjqaiZYIU6qdLJYv369YmPj8ff35/g4GD27t1Lu3btOHnyJFZWVlUOLCEhAQAvL68S2728vPS3lWXRokUsWLCg1Pa9e/dia2tbYtvVZBmgQKWFffv2VTlmc1LXjhdM75jz8vKMHYJQDWLT84nLyNdff2PLeb4e194kWrkE05Ra8M//4zPz8XGy0V/PUxWx73Iif11NIiwyjYSsglKPl8uggYc93YLdGNjMm67Bbijk4v0mGE6lk8XHH3+c0NBQOnfuzKxZs3juuef4/vvviY6O5pVXXjFkjBUyd+5c5syZo7+u648fOHBgqS4AxaVEfrx5DrVWxoABA0yyadjQ1Go1+/btqzPHC6Z7zGJZzNpp58XiH7N2lgpUGi17Lyey4UQMz3T2N3JkgqlyUELq3Q6xk7fSGdHahqSsAr7cH8GW07FkFxaVuL+7vSUO1ko0Won0PBXZBUXcTMrhZlIOPxy7TX0XG8Z3DeC5LgHYWtb6oidCDaj0u+ijjz7S/3/MmDEEBARw9OhRGjZsyPDhw6scmLe3NwCJiYn4+PjotycmJtKmTZv7Ps7KyqrMlk2lUlkqUbCzKe4aUmtBLpej0WiqHLep02g0WFhYoNFokMvlKJVKFIq60X1R1nvAmEwpFsEwtBJsPBULwLxHm5FdUMQHO6+w8I9LtA9wobF37R+PJlRckfTP/9cevcXNpBy+PRhJvrr4OynAzZahLX3o1dCD5vUccbQu+dmRlFVAeEwGf11NYvelBGLT8/lw51W+PRTFnAGNGNPBD7mBWxo1Gk2lh9Ko1WosLCwoKCgwu+/duvSdea9KJ4sHDx6kW7duWFgU76JLly506dKFoqIiDh48SK9evaoUWFBQEN7e3oSGhuqTw6ysLMLCwpg+fXqV9q1jbaFABvRrYE9kZGSd6CaSJAlvb29iYmL0x+vs7Iy3t3edOH5BqE43MmVEp+Vjb2XB8Na+2CgVHL6ZwoHrycz86Qy/zewhxpYJpRRp//n/6dvpnL6dDkA7f2deGdCI7sHuD0z2PB2tGdjcm4HNvXlvRHO2n43jy/0RRKflMXfrBbaeieXjJ1rRwMO+yrFKkkRCQgIZGRlV2se/v4fMSV38zqx0stinTx/i4+Px9PQssT0zM5M+ffqU69dCTk4ON2/e1F+PiooiPDwcV1dX/P39efnll3n//fdp2LChvnSOr68vI0eOrGzYJVgr5YxqakffECc8PDywt7ev9X98rVZLTk6O/ljz8vJISkoCKNGCKwhCxR1NLP78GNnWFzur4o/XJU+1Zuhnh7iRlMMbW86zbEwbg7fyCOZN17I4un19dlyIp76LDa/0b8TgFhVPSKyVCsZ28mdUu/r8ePw2S/de4+StdIYtP8xHT7TksTb1qhSrLlH09PTE1ta2Ut+Z934PGbtoekVIklRnvzMrnSxKklTmmyQ1NRU7O7ty7ePUqVP06dNHf1031nDChAmsWbOG119/ndzcXF544QUyMjLo0aMHu3fvLneNxYexUhS3Krq4uePm5mZWb9rK0mq1qFQqrK2tkcvl2NgUD6ROSkrC09Oz1jWvp+eq2Hw6GsvCh99XEKoiNaeQ8+nFn4nPdArQb3e3t+KzsW0Z930Yv527Q30XG14f3MRYYQomSHO3ZfHlAY1YPLq1QfZpaSHn+R5BDGzmxRtbznM0IpWXfg7nbHQGbw9rilJR8e87jUajTxTd3NwqHdu/v4fMiTl+Z2q0UpUnPFU4WdQVz5bJZEycOLHE+ECNRsP58+fp1q1bufbVu3dvpAcsTS2TyVi4cCELFy6saJjlYikHpUIGFnW7rIVulrharTaLN355Fag1TFpzkvCYDNytFQwfUoSrGCcoVJPfzieglWS0qudIM9+Sk+m6BruxaFRL/m/zeb7cH4GjjZIXHwk26POrNVqSsgvxdLCqVCIgGIckSRRJxV/kltXwd/NzteXH5zuzdN81VvwdwZqjt4hKyWXlc+0qPPlFN0bx35VF6hpz+c4sLNLw6b4bXIjL4MfJnavUo1HhZNHJyQkofoM7ODjos2wAS0tLunTpwtSpUysdUE2ytJABukvdVRu73iVJ4o0t5wmPyQAgpUDGZ3/dZMFjLY0bmFBrbT17B4BRbX3LvH10Bz8SMgtYsu86H+26SnqeijcGNalyl/StlFzWHL3FljOxZBcUYaNU0NrPifYBLsUXf1ecbMWPJFNVpP2nwaQ6kkUAhVzG/w1qQuv6zrz0czgHrifzzLdhrJ7YsVI1QGvjd0ZFmMvxL9p5lTVHbwFw6GYKjzTyqPS+Kpwsrl69GoDAwEBee+21cnc5myKruyfm/ds2BXP15f4Ifg2/g4VcxvPdA/n6UBQ/Ho9mdAd/WtRzMnZ4Qi1z+U4WVxOyUcgkhrW8/zimWf0aYmkhZ9Guq3x9IJLLd7JY8lRrPB0qNrRGkiTCotL47lAUoVcT0XXQyGSQr9ZwPDKN45Fp+m2NvRzo0sCNTkGudApyxd2+6rVwBcNQ3TO7xdKieluEBzb3Zt2Uzky+2+My5ptjbJjaBTfxfqh1zkSn89OJaAA+eaJVlRJFqMKYxfnz51fpiU2BlcU/zcdaCUTHTe2w51ICi/dcA+C9Ec0Z096Xk5cjOJMq561tF9j2n+6iYK1gUFvPFJfLaeEi4fyQVrxpjwTjbm/F29svcOhGCgOWHmR672AmdA186Ezp3MIi9lxKYPWRW1yIy9Rv79vEk0ndA+nawI2olFz9jNrTt9OJTMnlakI2VxOy9a0MIZ7FBZz7N/WicwPXEp+FQs1Sa/5prlAqqv9zqX2AC5te7Mq478O4npjDuO9PsGFqF9H6XIv8fTWJF9edRlWkpXuIG6M71K/yPiudLCYmJvLaa68RGhpKUlJSqbGH5lA76d5fcQ8aO2mKJk6cyNq1a0ttv3HjBiEhIUaIyDRcvpPFKxvDAZhwtyitWq3m8UAtN3ItOR+bybrjt5nQLdCocQq1R5FGy/bw4i7ojh7l+xx5on19Wvs5MXtDOJfjs/ho11VW/HWTAc286BrsRoinPQ7WyuIyJVkFXE/MISwylUM3UvS196ws5DzZvj6TewQRfE9JlIZeDjT0cmBsp+Ii4MnZhZyISiMsKpWwyDSuJWaXKOBsb2XBI408GNrSh35NPbFWisSxJqnuzm6Ry8CihsaaNvJyYP2ULoz95hiX47MYv/oE66d0xt6q9hbwrivfmX9fTWLaj6dRabT0beLJ50+3NUi3eaXfGRMnTiQ6Opp58+bh4+NjNn3495LLZejC1ppXrgjA4MGD9cMCdDw8qtbUbM6SswuZsvYkeSoNPULcmfdoM/1tjpbwav8Q3vvjKkv2XuPRVj6i60UwiIM3kknJKcTVTkkz56KHP+CuEE8Hfp/Vg21n41geeoPotDy2no1j69m4Bz4uwM2WJ9vV59kuAbiWY7yZh4MVw1r5MKxVcfd4eq6KsKg0DlxP4s8rSSRnF7LjQjw7LsTjaF1cH/LpTmK4Rk1R300Wa3pSUoinPeumdGbsN8c5F5PBjPVn+H5ChxpLWI2htn9nHotI1SeKQ1p4s/zptgZ7X1U6WTx8+DCHDh164Goq5kCX4mrNrGURiler0a10o5OcnEzLli2ZPXs2b731FgBHjx6ld+/e7Nq1q0SpotqksEjDtB9PcSezgAbudqx4pl2pD72xHf3YdOYOl+5ksXjPNT56opWRohVqky2ni5O74a18UBBZoccq5DKebF+fUW3rcSY6nT2XErh0J4vI5Fzy1Zri4sVO1vi72tI+wJVuwW60qu9UpR/nLnaWDG7hzeAW3nyglbgQl8nuSwlsPxtHfGYB68OiWR8WTdcGbkztFUTvRp6iLmQ10o1ZrO7ximVp4u3I2kmdGPPNMQ5cT2b+b5d4f2QLs2z8KY+yvjNv3bpFUFBQqfs+8sgj7N+/v4Yiq7qbSdlM+/EUKo2WQc29DJooQhWSRT8/P7Prui2L7qTQHYokSfpunppko1QY5AT18PBg1apVjBw5koEDB9K4cWPGjRvHzJkz6devH1qt9uE7MTOSJDF36wXORGfgaG3BdxM6lDn+RiGXsfCx5jyx8hgbT8XwdCd/Wvs513zAJmTFihUsXryYhIQEWrduzeeff06nTp2MHZbZyMxTs+9yIgCPt/HldnjFkkUduVxGh0BXOgS6GjK8cj1vaz9nWvs589rAxhyLSGXjqRh2XojnWGQqxyJTaerjyJtDmtCroXutTSKMSZcs1sR4xbK09nPms7FteXHdadaHRRPoZsfUXg3K/fjKfGdqtVryVRosVEVVqrNoiO9NPz8/4uPj9dcTEhLo379/lVehq0nJ2YVMXH2SrIIi2vkX/z0N3VJd6WRx2bJlvPnmm3z99dcEBgYaMKSa9e+WxXy1hmbv7qnxOC4vHFThmld//PEH9vb/jFUaMmQImzZtYujQoUydOpVnn32WDh06YGdnx6JFiwwdssn44q+bbD0Th0IuY8Wz7R64pFX7AFdGtavH1jNxvPvbJbZN71ZnW002btzInDlz+Oqrr+jcuTPLli1j0KBBXLt2rdTKTELZ/rhwB5VGSxNvB5r5OHA73NgRVZ5CLqNHQ3d6NHTnzSFNWHMkig0nYrgSn8WEVSfoHuLGghEtCPGs+pJxwj90E1yqq2xOeQxq7s3bQ5vy/o4rfLjrCgFutgxs7v3wB2K870yo+Pfm/b4zda2NBQUFjBw5kq5du/Lee+8ZOtxqUaDWMOWHU8Sm5xPgZsu34ztUy7jjSr87x4wZw/79+wkODsbBwQFXV9cSF3Oh+1Fijo2kffr0ITw8XH9Zvny5/rb//e9/FBUVsWnTJtavX1+ieHptsvVMLEv2XQeKZz73bPjw8SdvDmmCvZUF52Iy2Hw6trpDNFlLly5l6tSpTJo0iWbNmvHVV19ha2vLqlWrjB2a2dhy9/0zql29WtXqVs/ZhreHNePg6314vkcQlgo5R26mMvSzQywPvVGi3ItQNSojjVn8t+d7BPFcF38kCV795RyRyTlGjac6POg7E2Dy5MlkZ2fz008/mcXKMpIk8da2C5yLycDZVsnqiR2rbSx+lVoWawN9y+Ldaos2SgWXFw6q8ThsKvFLwM7O7r6zuCIiIrhz5w5arZZbt27RsmXtK0Z99GYKb2w5D8C0Xg0Y1yXgIY8o5ulgzcv9G/L+jit8vPsqg1p442RTt8pGqFQqTp8+zdy5c/Xb5HI5/fv359ixY2U+prCwkMLCf9ZNzMrKAopXMdCt7KCju/7v7bVJVEouZ6IzkMtgWAuvWnnMDpYy3hzUkGc71WPB71c5cCOFpfuus+tCPEtHtyTApfiLydSO2dTieRDdBBdjjFm8l0wmY/7w5lyNz+bU7XReXHea7TO6P7TlrjLfmVqtluysbBwcHarcDV0RD/rOfP/999mzZw8nTpzAwcGh0jHVpPVh0Ww9E4dcBl8+8+BetaqqdLI4YcIEQ8ZhPLpsUV/UVlbh7mBTo1KpeO655xgzZgyNGzdmypQpXLhwoVZ1LV5PzGbautOoNRLDWvnwRgXX2p3QLZCfT8ZwMymHT/dd570RzaspUtOUkpKCRqPBy8urxHYvLy+uXr1a5mMWLVrEggULSm3fu3dvqeW//r4jI0slJ/X3fbgZZil3k7MjWg7Iaeyk5dShUP32ffv2GS+oavS4GwQgY0uUnCsJ2Yz44gijgrR08zK9Y87LyzN2COWmn+BiArOQlQo5Xz7bjmGfH+Z6Yg5vbrnAZ2PbPLDVvDLfmVqtliJLBbaWFibRgrdlyxYWLlzIrl27CA427DKc1eVMdDoLfr8EwBuDm9AtxL1an69KWZFGo2H79u1cuXIFgObNmzNixAiTXivx32R3s0Uz7IW+r7fffpvMzEyWL1+Ovb09O3fuZPLkyfzxxx/GDs0gErMKmLT6JNkFRXQMdGHJ6NYVHneoVMh5b3hznvs+jB+P32ZsJz+aeDs+/IF12Ny5c5kzZ47+elZWFn5+fgwcOBBHx5Kv3bJlh4lKzWP8gHZ0b1h7fqToaLUSHy89BBQwbWAbhrb0Rq1Ws2/fPgYMGICylq5BPgyYll3IG1svcvhmKhsjFbhaaZg1ur9JHbOu1dsc6LuhLUxjGIOnozUrnmnHM98e57dzd+gQ6ML4roHGDqvaXLx4kfHjx/PGG2/QvHlzEhISgOLli011SF1KTiH/WXcGtUZiSAtvXqjAhKTKqnSyePPmTYYOHUpcXByNGzcGilse/Pz82LFjh9lk57XN/v37WbZsGX///bf+C/zHH3+kdevWrFy5kmnTphk5wqpJy1Ux7vsw4jLyaeBuxzfjKj+Yt0dDd4a08GbXxQTm/3qJn1/oUqvGnT2Iu7s7CoWCxMTEEtsTExNLlZbQsbKyKnPsq1KpLJUoWN39m2iRm1QSYShHI1K4k1mAg7UFg1v6orznPVjW61Gb1HNV8sPkzry9/SIbTkSzOUrODJnCpI7ZlGJ5GFNqWdTpFOTKm0Oa8P6OK7y/4wodA11p6lM7f0yfOnWKvLw83n//fd5//339dlMtnaPRSszecJaErAKCPexYPLp1jXxvVfrdOXv2bIKDg4mJieHMmTOcOXOG6OhogoKCmD17tiFjrBHmVgZozZo1bN++vdT23r17o1ar6dGjh35bYGAgmZmZTJ8+vQYjNLzsAjUTVp3gemIOXo5WrJnUCZdyFCV+kLeHNcVaKScsKo0/zsc//AG1hKWlJe3btyc09J/uU61WS2hoKF27dq36/u+2ktTWiRC62oqPtvKpkyueyOUy5g5tgoe9JckFMr47fMvYIZktlQnMhi7L8z2C6NvEE1WRltkbzpKvMv1V2R7kft+ZEydORJKkUhdTTBQBvjoQwdGIVGwtFXw9rn2NrbpT6XfngQMH+OSTT0o007q5ufHRRx9x4MABgwRXE/41ZFEwUfkqDc+vOcWFuExc7SxZP6Uz/m62D3/gQ9R3sWX6I8UDnj/YcYXcwvKvwGHu5syZw7fffsvatWu5cuUK06dPJzc3l0mTJlV537ovPl0XW22SW1jErovFPyyeaFf1NVfNlaO1kjcHF/cqrTwQSUya+YwTNCX6FVyMPMHl32QyGYufbIWHgxU3knJ4f8dlY4dU552NTmfp3eofC0Y0J8Sz5ibiVPrdaWVlRXZ2dqntOTk5WFpWrbWnRtWNXkezVqDWMG3daU7cSsPB2oIfJncy6Eky7ZEG+LnakJBVwIq/bxpsv6ZuzJgx/O9//+Pdd9+lTZs2hIeHs3v37lKTXirDyqK4ta2wFrYs7r6YQJ5KQ6CbLe0DXIwdjlENb+VNQ0cthUVaFvwukonKMMVuaB03eyuWPtUaKJ55e+h6spEjqrtyCot46edwNFqJR1v58GT7mv2hWul356OPPsoLL7xAWFiYvtn2+PHjvPjii4wYMcKQMdYIM+uFrjPyVEU8v/YkB68nY6NUsGZSR4OvWWutVDBvWPE60t8eiiQqJdeg+zdlM2fO5Pbt2xQWFhIWFkbnzp0Nst/a3A295YyutmL9OjPG9X5kMhlPBmmxkMv480oiuy/WnaEchqIvnWOCySJAz4YeTLs7geJ/e6+h0YovS2OY/+slotPyqOdswwePt6zxz55KvzuXL19OcHAwXbt2xdraGmtra7p3705ISAifffaZIWOsVnX7o9606cYoHrmZip2lgtWTOtI+oHpmpw1o5kWvRh6oNRIL75YjECqvtnZDx2XkcywyFYDH29YzcjSmwdsWpvYIBOCd7RdJz1UZN6AKWLRoER07dsTBwQFPT09GjhzJtWvXStynd+/eyGSyEpcXX3zRYDH8U5TbdL+NXh3YmJb1nMgpLCI9T2V2Y/zN3a/hcWw5E4tcBsvGtjFKXeBKJ4vOzs78+uuvXL9+nc2bN7N582auXbvGtm3bcHIybMtPdZIAJKlOj1k0xRM/JaeQ574L4+StdBytLfhxSme6NHCrtucrLkjbDKVCxt/Xkgm9kvjwBwn3peuGrm0ti1tPxyJJ0DnIFT/Xqo+ZrS1m9Ammoac9KTkqfe03c3DgwAFmzJjB8ePH2bdvH2q1moEDB5KbW7J3YerUqcTHx+svn3zyicFiUBfdneBiYmMW72VpIWfpU61RKuQUqLVk5ptP0XNzF5eRzzvbLgIws29DOtbw+vE6VZ5GExISct+K6KZOqVSi0UpIRao63Q+tK2BrKuUmbiblMGnNCWLS8nG1s+SHyZ0M3vVclmAPeyb3COLrA5Es+P0y3UPc6+RMV0PQffHVpjGLGq3EzydjAHiqg5+RozEtVhZyPnmyFU+sPMr28Ds82sqX/s2qPva1uu3evbvE9TVr1uDp6cnp06fp1auXfrutre19S0r9W0VWOgIoUBVvU8hMe+WZQFdrJnT1B/JIyi7ExUFT6dZQXQOFJEloteb3GaHVapEkCbVaXe660pVZ4UmSJP5vUzjZhUW08XNies8Ag79Hyru/SieLTzzxBJ06deKNN94osf2TTz7h5MmTbNq0qbK7rjEKhYLraVoakoKTrRI7C6daPwZJq9WiUqkoKChAJpORl5dHUlISzs7OJlFM/VhEKtN+PEVWQRH+rrasntSR4GpcwujfZvVtyLYzcUSn5fHdoUhm9m1YY89dm9TGMYuHbiQTl5GPo7UFw1r5GDsck9PW34UpPRvwzcFI3t5+gY5Brma3jGZmZiZAqWLM69evZ926dXh7ezN8+HDmzZtXatUinYqsdARw/XbxSkDxcTHs3Hm76gdRjdwVFijdfZAkidsp2XhYQ1W+MsuaJGsOVCoV+fn5HDx4kKKiilXQqMhqR0cSZRyNVKCUSwxzS2Xvnt0Pf1AFlXe1o0oniwcPHuS9994rtX3IkCEsWbKksrutcRfT4VpSJqMt5BRkpRs7nGonSRL5+fnY2NjoE2NnZ+dy/2quzrhWH7nFol1XUGsk2ge48M249tW2KPr92FtZ8NbQpry8MZwv/r7JiNb1DFKip66pjWMWfwqLBoontogW57LNGdCIPy8nEpmSy8LfL7Pk7kxac6DVann55Zfp3r07LVq00G9/5plnCAgIwNfXl/Pnz/PGG29w7do1tm7dWuZ+KrLSEcDpPy7DnVhCGgQytILLlta0goICom5Hg0xGgQY0Fta4VqLWrSRJZGdn4+DgYJYNNAUFBdjY2NCrVy+srcu3nmlFV3iKTc/nrS+OAhr+b1ATJnYLqGLUZSvvakeVThbvVyJHqVSa1VJLCrmMLVdyaejvw8Tm1fPHMCVqtZqDBw/Sq1cv/UoTxm5RzMxX88bm8+y+VLzM0vDWvix+spXRvpAfa+PLzyejOR6ZxtvbL/DD5E5m+YFmTLWtdE5iVgGhV5MAeKazv5GjMV3WSgWfPNmK0V8fY8uZWPo28TSbVtgZM2Zw8eJFDh8+XGL7Cy+8oP9/y5Yt8fHxoV+/fkRERJS5UllFVjoCuDtkEWulhckMBbofjUaDUiHH2d6K5HwtCVmFOFgr9Ss2lZeu61kmk5nE2tAVJZfLkclklVqtqTyP0Wol3v71MrkqDR0DXZjSM7jCS9pWJJ7yqPRfqWXLlmzcuLHU9p9//plmzZpVdrc1TvcHKNLK9LO6a/ulqKhI/39jJ4phkakM//wwuy8loFTIWDCiOcvHtjFqy41MJmPRqFZYWsg5dCOFrWfijBaLuapt3dA/hUWj0Up0CHChkVfNFcI1Rx0CXflP7+Ik6s2t54lNN/1i3TNnzuSPP/7g77//pn79B9ev05WXunnTMDVZ1RrTn+Dyb862SuytLNBKEjHp+SY5SfLfevfuzcsvvwwUr2q2bNkyo8bzIOtPRHM0IhVrpZzFT7autkSxIirdsjhv3jxGjRpFREQEffv2BSA0NJQNGzaYxXhFHcXdFiNRO6pm5RQW8fGuq/x4vHiMTn0XG758th2t6jsbN7C7gtzteLl/Qz7ZfY3/7rjMI409cK/hLnFzVpu6oQuLNKwPK36fTugWaNxgzMTL/Rtx5GYq4TEZvLIxnJ9f6IrCBL7w/k2SJGbNmsW2bdvYv38/QUFBD31MeHg4AD4+hmkx1f2gUpponcWyyGQy6rvYcCMxhzxVEam5KvH5aCAxaXks2nkFgDcGNyHQ3c7IERWr9Ltz+PDhbN++nZs3b/Kf//yHV199ldjYWP78809GjhxpwBCrly5j15jBL6PaIiwylcHLDuoTxac7+bFjdk+TSRR1pvZsQFMfRzLy1Pz3D7E6RUXouqVqQ8vijvPxpOSo8Ha0ZnAL447tNRdKhZzlY9tib2XByVvpfPGXaa6MNGPGDNatW8dPP/2Eg4MDCQkJJCQkkJ+fD0BERAT//e9/OX36NLdu3eK3335j/Pjx9OrVi1atWhkkBn1RbjNqWQSwtFDg7VQ8Xi8hswBVkXmvHW0KtFqJ/9t8jjyVhk5BrkzoGmjskPSq9O4cNmwYR44cITc3l5SUFP766y8eeeSREvfZsGFDqZpVpkS0LNacArWGD3ZcZuy3x4lNz6e+iw3rp3Rm0ahWJjlrUqmQ8/ETLZHL4NfwO/x9d8ya8HCWd0tqmPuYRd3EK4BxXQPMqvXH2PzdbHl/ZPFEkc9Cr3PohuktFbdy5UoyMzPp3bs3Pj4++otuiJWlpSV//vknAwcOpEmTJrz66qs88cQT/P777waL4Z+WRdNreX0YVztL7O52R1+PTSEnJ4fc3NxyX+6dSVxUVERubq4+Ude532OrKjs7m6effho7Ozvq1avHihUrqrzPqloXdpvjkWnYKBX8z0S6n3Wq/ZNv2rRpJCaaboFj3R9DK5LFanXpTiaPfXGEbw9FIUkwpoMfu17qSfcQd2OH9kCt6jvzfI/irqk3tpwnzYxWpzAmXSuJubcsnr6dzoW4TCwt5DzdSUxsqaiRbesxpoMfWglmbzhLTJppjV/ULVX778vEiRMB8PPz48CBA6SmplJQUMCNGzf45JNPypzVXFn6MYtm+ENEJpNR39kGuUxGyyBvHBwcsLe3f+jF0dGR+vXrs23bNv2+tm3bhr29PUOGDCnxHIGBgWXuo6oWL15M69atOXv2LG+++SYvvfRShcraGNrt1FwW7bwKwNyhTUyuCke1vztNfeCrheiGrlZFGi1f/HWDx744wrXEbNztLflufAc+frIVDtam15pYljkDGhPiaU9SdiFvbDlv8u9pU1BbxiyuPnoLgJFtfCtVIkSABY81p1V9J9Lz1Exff5oCteiuvNc/y/2ZX7IIxUNOvBzNb7xi9+7defPNN2nUqBGzZs3iySef5NNPPzVKLMXdz+fJV2vo0sCV5zqbXmWWKq/gYu50rbyiG9rwIpJzmPPLOc7FZAAwuLk3HzzeosZrJ1aVjaWCz8a2YeSKI+y7nMjPJ2NEK9ND1IaWxfjMfHZfLC7nNKn7wyc+CGWzVipY+Vx7hn9+mItxWby97SL/G91KlKO6S3eOmNuYxXu521sRHhlPvlqDo5USfzfbB/59tVotWVlZeHh46Lc9/vjj5OTklCqlc+vWrWqJuWvXrqWuG2uG9Lqw25yISsPWUmEys5//rc4ni7oZeiJXNBxVkZbVR6JYuu86hUVaHKwtWPhYc0a2qWe2XxDNfZ34v0GN+XDnVRb+fplOQa41urKMuTHXZFGSJIqKitBoNPxyPBJvOzmt6jsR5GJJQUHBAx+rVquxsLCgoKAAjca8Ws8UCgUWFhbVdn7Wc7bh86fbMu77MLaciSXY047/9DbPZWINTa0x3zGLOjKZjEb1PbiZmEMREhq5JU6292+J12q1aDQaLCz+SUEsLCxKXNexszON2cDVJSYtj492FXc/vzmkicmuOS+SRTHBBY1WIk9VhFIhr1J9Q0mSOHA9mYV/XCYyuXgAcs+G7nz8RCt8nW0MFa7RTOnRgP3XkjkakcqM9WfY+p9u2FrW+VOoTOaYLKpUKuLj48nLy0MrSbRwLKRZH0/c7S2Jiop66OMlScLb25uYmBiz/FFka2uLj49PmYstGEL3EHfmD2/O/N8u8cnua/i52DK8tW+1PJc5qQ0tiwA2SgUejlYkZRUQl1GAnZUFFibctX78+PFS15s2bVqjMUiSxJtbz+tnP5ti97NOnf+m05fOqYPJYlJWAa9uOseJqDT9rFUnGyUBbrY093WiZT0nmvs60tjb4YFJZJ6qiD+vJPH94Sh9l7O7vSWvD27C6Pb1zfKLsyxyuYylT7Xh0c8PcTUhmze2XGD52Da15vgMycrCvMYsarVaoqKiUCgU+Pr6kqOSKLJVYWmhIPAhXWr37iMnJwd7e3uzWpVCkiRUKhXJyclERUXRsGHDaot/QrdAbqfmsepIFK9uOoePkzUdAl0f/sBaTGXGE1z+zdPBiqw8NQVFGuIzC0y2lQzgyJEjfPLJJ4wcOZJ9+/axadMmduzYUaMxbDgRw5GbxcW3P3milUl2P+tUe7IYEBBg0ksY6VsW69ikhTxVETN+OsvJWyXXw87MV3M+NpPzsZlsuLtNIZcR7GFHMx9H6rnY4GSjRK2RSM1RcTUhizPR6RSoi5MCKws5z3UJYHa/hiZZDqeqvJ2sWfFMO579Lozfz92hVT0npvZqYOywTI7ui89cSueoVCq0Wi1+fn5YW9sQl5CNzMISb1dbbGzK19Km1WpRqVRYW1ubVbIIYGNjg1Kp5Pbt2/pjqC5vD2tKTHoe+y4nMuWHU/wyrWudXhVH94OqNiSL8rvFum8m55Cep8LZVmmyExlfffVVTp06xYIFC3B0dGTp0qUMGjSoxp4/LiOfD+8W335tYGOTKb59P5VOFhs0aMDJkydxc3MrsT0jI4N27doRGRkJwMWLF6sWYTWri6VzCorg+R/OcOp2BvZWFnw9rj3tA1xQabQkZBZwMymHC3GZXLx7Sc9Tcz0xh+uJOffdp7+rLSPb+DKuayAeDuY1gaWiOjdwY96jzZj/2yUW7bqCv5stg5qLYs33MsduaChe8zU9T0WRVoulQl4rf/DcT00luAq5jM/GtuHpb8M4F5PBc9+FsenFrgS4mfaXZXUx16Lc92NrZYG7vRUpOYXEpefT0MvCJFbv2b9/v/7/1TVpprwkSWLu1gvkFBbRzt/ZLCbQVTpZvHXrVpmDuAsLC4mLM5+1dOta6ZyMPDVfXlFwOycDB2sLfpjcibb+LkDxrEVHayWNvBwY2rJ4KStJkkjMKuRyfCZX4rNJzi4kM1+NpUKOg7UFjbwcaFnfiSbeDnWqO3Z81wCuxGfx88kYZm04y4+TO9G5gdvDH1hHWFncXcHFTLqhdbSSRHJOcS1Ndwcr5HXoPV2TbC0tWDupI2O+Ps61xGyevZsw+jiZ/9jmijLnotz34+VoTVaBGlWRlqSsAnxqwZh1Q9p0OpaD15OxtJDzyZOtTSKZfpgKJ4u//fab/v979uzByclJf12j0RAaGkpgYKBBgqsJuh/TdaFlMTo1j4mrw7idI8PZRsm6KZ1pUc/pgY+RyWR4O1nj7WRN3yZeNRSp6ZPJZLw/sgUpOSr+vFLcnfbzC11o7vvg17OusLQo/vAzt5bFzPziLzgLuRzXB8zmFKrO2daSH6d04qmvjnErNY9nvwtjw9QueDlWXxe4KVIZsGUxIyODqKgoUlNTSU9PJzMzEyie7W5vb4+3tzeNGzfG09Ozys/1IAq5jHrONkSl5JKSo8LFzrJKkydrk8SsAv3ysa/0b0SIp3lU1ahwsqhb91kmkzFhwoQStymVSgIDA1myZIlBgqsJ/8yGNnIg1ez07XRe+OEUqbkqnC0l1j/fgeYPSRSFB7NQyPnimbaM//4EJ26l8ex3YfwwuZPJrXFtDOY2ZhGKW9HTclQgt8DTwcqkB5vXFp4O1qyb0pmnvjpGZHIuT319jPVTOlPfxXQnRhiaWiOhycvk9PEj1B/UFxub8rXCabVaVq1axalTpwgPD+fmzZukpqY+9HGffvopL7/8MgBZWVkcOHCAPn36GGRVlHs5WCtxtFaSVaDmTkY+Qe52dar3qSySBO/+doXsgiJa13diak/T737WqfBPGa1Wi1arxd/fn6SkJP11rVZLYWEh165d49FHHzVokCtWrCAwMBBra2s6d+7MiRMnDLbv2j4bWquV+OZgBGO+PkZqrormvg7Maamp0wPKDclaqeDbCR1o6+9MRp6aZ78NM8k1cGuarpVEKxWv4mMOclUairRalAq5Wa3WMnHiRGQyWanLzZs3jR1audR3sWXjtK74udpwOzWPMV8f53Zq1df+NQeSJKEq0pLyx1KefvxRevfuXeb9NBoNp06d4tdff9Vvk8vlLFiwgK+//pqwsDB9oujp6Unz5s3p2bMnjz76KMOHD2fIkCH06NGDhg0b4u//z4ICf/75JyNGjKBVq1bVsjKVj7M1MpmMnMIisgqKHv6AWu50ioy/riWjVMj45MnWJl1a6N8qPWaxPHXHDGHjxo3MmTOHr776is6dO7Ns2TIGDRrEtWvXDNKUXptnQ8em5/H2toscuF6cvAxr6cMHjzXlQOheI0dWuzjZKPnx+c48v+YkYVFpjF91gtb1nbG3suDd4c3qZGJudU+XmkqjNfkPxUK1huyCItwADzNsVRw8eDCrV68use3e1TFMnZ+rLb9M68qz34YRmZLL6K+O8dPUzoR41u5zp0grIUlaCqJOA3DixAkuX75Ms2bNkCRJ3xJ39OhRevXqhYeHByNGjNBvnzx5MgUFBbRv354mTZrQoEGDCrUQFhQUEBQUxNixY/X7lCSJbdu2MWLEiDKLZOvuUx5WFgo87K1Iyi4gPiMfBysLszu3ylKZxDoxq4AtUcWfg7P6NqSxt3m9t6v0CX7gwAGGDx9OSEgIISEhjBgxgkOHDhkqNgCWLl3K1KlTmTRpEs2aNeOrr77C1taWVatWGWT/tbFlMTY9j6X7rjNg6UEOXE/GykLOh4+35Itn2mJnVedLa1YLeysL1k7uxNiOfkgShMdkcPhmCt8dijR2aEZxbxmQQrXptyxuORuLRisVj1W0s0SSigvVV/SSr9JU6nH3XirzRWRlZYW3t7f+8tZbb/HYY4+VuI9arcbT05Pvv//eUC+bQfk42bBxWlcaezmQlF3Ik18d4+StNGOHVa1URRpiPh1dYtuYMWPo168fb7zxhn5b586d8fX1pWvXrvpxiAALFizg448/5qmnnqJVq1YV7kp+5plniIiIYMGCBfptv//+O0888QRNmjQpMUcB0JfBy8vLK/dzeDhYoVTIUWm0JOcUVig+U6U7/vKWBZQkibd/vUyeRkYLX0em9w6uzvCqRaUzh3Xr1jFp0iRGjRrF7NmzgeIil/369WPNmjU888wzVQ5OpVJx+vRp5s6dq98ml8vp378/x44dK/MxhYWFFBb+84bMysoCij8o1Wp16Qdoi7/IijTasm+vJlqtRJ5aQ5FGQq3RotZokctlWCrkWFrIsVTIUSpkDx3jkVtYREx6PlEpuZyNyeTkrXQu3snS394x0IUFw5vS0NOeoqIi/THW5LEaW00dswL474imjG7nyw/Ho/n1XDyHbqSgUqnK/DvW5r+BhUKODAkJmcnPiE7KLuCn49G80cMNd3tL5DIZeaoimr27xyjxXF44qMorA02ZMoVevXoRHx+Pj09xZYM//viDvLw8xowZY4gwq4WHgxUbXujC5DUnCY/J4Nnvwvj0qTYMa+Vj7NCqhZ2VEhulgry7HwVKpVJfbi4yMpKPP/4YmUyGpaUlsbGx1TLmTyaTlUh6srOz8fDwICIigscee4xhw4bx+eefExQUhEKhwNnZmaSkJKB41Z/yxORmDfGZKhLT1djINVjIZahUKgoKCsyqJqkkSeTl5ZGUlISzszMKRfkm7aw9cIX9l++gVCr5ZFQLlDXU0yJJEhEREYSEVH1pzUp/In3wwQd88sknvPLKK/pts2fPZunSpfz3v/81SLKYkpKCRqPBy6vkLFwvLy+uXr1a5mMWLVpU4leSzt69e7G1LT1o+lqSDFCQmJTEzp07qxyzjkaCtAJILJCRlA9J+TKSCyBHLSOnCPLUoOXBJ5kMCYUMFHKwkIFCBrrevUJN8aVIKr0PGRIhjhLdvCTauiVz41QyN/51n3379hnoSM1HTR5zDyv4XaYgPrOADdt34VxG6cmK/Do3R0o5qLSmPyN66d7r5Ks1WFrIcDTTuop//PFHiValIUOG0LhxY3788Udef/11AFavXs3o0aMNPpHB0FztLNkwtQuzfz7LvsuJzPjpDHEZTZjas0GtnCDRoUMHDh48CBTXAtyyZQtBQUEMHDiwxPHW1LE/++yzPPbYY3zwwQcsWbKEHTt2cPDgQb744gvGjRuHt3dxTVldwlhemdmFFBZpyUoqbr3Pz8/HxsbGLP+mzs7O+tfhQc5di+TF198jbOcvyJRW9Bj2FIGufWsgwmIymYzw8HBOnDhR5Zys0sliZGQkw4cPL7V9xIgRvPXWW1UKqirmzp3LnDlz9NezsrLw8/Nj4MCBODo6lrp/7qloNkRcxdXNnZ5927DxVCwWChk9Q9xp4P7gX02SJJGWpyY6NY+o1FyiUvKISM4lKiWX22l5qDXl705SKmRopZLd4RIyiiQo0sCDGu+dbZT4u9rQ3NeRDgEudA5yuW/5CbVazb59+xgwYIBJr6xjSMY65sVXDpCUXUibLj1o5lP6vadr9a6tLGSgwrRnRF+6k8nGUzH42itwtrHUn+82SgWXF1ZsNQetVkt2VjYOjg5Vai2xqUSJkT59+rBy5Ur9dTs7O37++We++eYbXn/9dRITE9m1axd//fVXpeOqSTaWCr56rj0Lf7/E2mO3+XDnVa4n5vD+yBa1rgTL6tWrefzxx/nggw/o1q0b3bp1M3ZI2Nvbs2jRIiZOnMiUKVM4fPgwEyZMYOfOnXz77bf4+Pjg6elZsd6R5FxeXHeKIq3EW4MbQ0IUvXr1MrvvIaVS+dAWxSNnLzP7rQWc3bcNSVP8GklFhdw6sbdaW1ITEhJYsWIF0dHRrF27FoAnn3zSIN81lU4W/fz8CA0NLdW8+eeff+Ln51flwADc3d1RKBQkJiaW2J6YmHjfrN7Kygorq9LNOEqlssw3peXdAbwSMl7bcpG/rup+LV3Dx8kaf1db3B2ssFTIUchl5BYWkZGnJj1PRWx6PjmF95/hZWUhJ8jdjmBPe4Ld7QjysMPTwRpXO0tc7SxxtFaiVMhQyP/pbtZoi2fHqYq0FGqKu6lVRcXd1CqNFrVGQpIk7KwssLVU4GRTueWU7vd61GY1fcxONkqSsgvJVUllPm9tf/0t5IAGCotKF+83BVqtxPxfLyFJ0KexZ4k6dzKZrMJdwVqtliJLBbaWFjXetWZnZ1fqs3j8+PG8+eabHDt2jKNHjxIUFETPnj1rNK6qUMhlvDeiOX6utny48wqbT8dyNSGLlc+2N+k1hyvKz8+PhQsX1uhSc+XVuHFj9u/fz8cff8z8+fPZuHEjFy9e5NdffyU4OLjc3bAATf2sGdkhiM9CbzBv5w1ea1qEtbV1rfoc3HHgBK+9s5CrR3aBVPwj2bVBS96c+zb26jQSExP1r1lmZibr169n/PjxVWrt17XQQvGEpffffx+ZTMbixYv1k4DLaiirqEoni6+++iqzZ88mPDxc/0voyJEjrFmzhs8++6zKgQFYWlrSvn17QkND9fUdtVotoaGhzJw50yDPoZvgcjstj9j0fACa+zpyIzGH+MwC4jMLHvh4mQx8HK0JcLMj2NOOBu72BHva08DdjnrONhWe+aWQy7CxVGBjqQBqz0lUF+mWisvMr71jEx9El3uZajf0+rDbnLqdjp2lgqm9GpCXGm/skAzKzc2NkSNHsnr1ao4dO8akSZOMHVKFyWQypvRsQFMfR2ZtOMvFuCwGLzvI28Oa8Uxn/4fvQKgyhULBW2+9Rd++fRk1ahSXLl2iY8eObNmyhT59+lRoX//pE8yui/FcT8xh6y05ox/+EJOn1Wr5auMffLx4CdFnD+q3+zTrxNy5c5nxzAjkcjlqtbrEULfvv/+eV199lfXr13PkyJFyP19mZibHjh1j9+7d7Nq1i4YNG/LHH38AEBgYyOuvv07r1q0NPtyk0sni9OnT8fb2ZsmSJfzyyy8ANG3alI0bN5aahVcVc+bMYcKECXTo0IFOnTqxbNkycnNzDfbBpyudo0sUOwW68suLXclTFXHpThZ3MvJJy1UVT0TRarG3ssDJRomTjZL6LjbUd7Gtdd0igmHU+WTx7u8kU0wW4zPz+Xj3NQBeH9wEL0droh5ez9jsTJkyhUcffRSNRlNqEQVz0j3EnT9m9eCln89y8lY6b227QD0XGx5pZD7lgcxdly5dOHXqFI8//jgnTpxg8ODBbNiwgVGjRpV7H1YWCj5+ohWjVh7lVIqc3ZcSGd6mfjVGXX3yVRreWvIN332xhJw7EXe3ymjQsQ8fvvcuY4Y+8sDHe3t707BhwxLnZUREBOPGjaNZs2b4+vpiY2ODRqMhMTGRuLg4Ll26xPXr10vsJyYmhtzcXOzsitdW//jjjw16nDpVmnL3+OOP8/jjjxsqljKNGTOG5ORk3n33XRISEmjTpg27d+8uNemlsv7d8tfIuzgbt7W0oGOgq0GeQ6ibnGyLk8WMupos6loWTWw2tFYr8dqmc+QUFtHO35nnugSgVtWOkh7/1r9/f3x8fGjevDm+vr7GDqdKfJ1t2PhCV9759SI/hUUzd8t59rzSq1LDcITK8fX15cCBAzz77LNs3bqVKVOm0LdvX5ydncu9j7b+LkztEcg3h27xzq+X6BDkZjZrgmu1Wi7GZbIt/A5bz8QR/XcYOXcikFlY0brPcD6a/yaDurcv176eeeYZxo4di0bzzzCdsLAwjh07dt9qLzqBgYH079+fwYMH079/f32iWJ2qXHTv9OnTXLlyBYDmzZvTtm3bKgf1bzNnzjRYt/O/Kf41gSXAtfpfdKFuEC2Lxf+aWp3Fbw9FcuRmKjZKBZ882RqFXIY5/4XWrFlz39tyc3NJT0/n+eefr7mAqpFcLuOdYU05dCOZmLR81h2PNsuadebM2tqaX375hZdeeonRo0dXKFHUealvCLvORBGTW8ScjedYN6UzChMu1p2YVcDcj75g05qVWLV/HPvmxd3vjXo9hn9zX/731ssE1Kv4IiFyubzE+OY+ffqwbt06oqKiuHPnjr7smoeHB/Xq1SM4OJgOHTrg7u5usGMrr0oni0lJSYwdO5b9+/fr3ywZGRn06dOHn3/+2WxWD/j3OPTaNHBaMK66niwq755bBUUazkSn42FvZfTz62x0Oov3FHc/zx/ejBBP0y4jU1larZaUlBSWLFmCs7MzI0aMMHZIBmNracHHT7TiUlwWk3uYz9q6tYlCoeCLL74osS0tLQ1X1/L1xllayBnfUMPSS5Yci0zlh2O3mNTddP6WWq2WPUfOcCVbycGoHMJjMsg4fJac+Ei0l/czZuwzPNG+Ho808kQhN1zvqo+PD88++6zB9mdIlZ6yN2vWLLKzs7l06RJpaWmkpaVx8eJFsrKy9EW6zYHFv37N+ItkUTAQZ12ymFezyaKuBIetre19f/VHR0czbNgwbG1t8fT05P/+7/8oKjLs2q0KeXEZqFkbzjLqy6P0Wvw372y/QHaBcZLn+Mx8XvjxNEVaiaEtvRnT0TBVG0xRdHQ0Xl5e/PTTT6xateq+y7aZq27B7kzt1cCkW6PqkrNnz9KoUaMS5ZsextMG3hjcmIzDP/HypLF88M3PaI20kppKXcSeI6eZ+tbHNOkxFGsXL4b26siir38iPCYDgC6DRjHx/97n8sGdrHi2HX2beNWp91+lP0F2797Nn3/+SdOmTfXbmjVrxooVKxg4cKBBgqsJ/x6z6O1Udn1CQago3ZjFmm5ZVKlUjB49mq5du5a5tJtGo2HYsGF4e3tz9OhR4uPjGT9+PEqlkg8//NBgcei6oXWr10kSrDsezV9Xkvjg8Zb0aVL1td3LK7ewiBd+OE1ydiGNvRz45MnWZlkMuLwCAwMrtWygIFTG77//TmpqKmvXrmXq1Knl/nEyorkbc5Kukn7jDEs2hnJC7ce8YU3pUM3zBa5FxbL0+584duw4MTevknknEqmo5LhlmcICf2UOcx5vQf+mXvetXVxXVDpZ1Gq1960dp9Wa1hilB7l3zKJc9k/XoSBUVaCbHYObe9Pct+o1ripCt4LR/cay7d27l8uXL/Pnn3/i5eVFmzZt+O9//8sbb7zBe++9h6WlZZmPq8hSmmq1Wt8NDTC8lTej29fj7e2XiUnPZ9KakzzW2oe3hjTG1a7s5zOUfJWGqevOcCEuExdbJSufbY2VXCoRs1qtRpIktFptpT+/dMmZbj/mRqvVIknFr0t56+eZ6vKhphZPbTdv3jxcXV0ZN25chVqxHexsOX8klCEjR6PuMIRzMRk8+dUxOjlkMHtwG3q0b26wGM9fj2LJN+vY/cevJF0/q6+DqCOzsMQtqBltO3Zj+OD+PDO8P27ODgZ7fnNX6WSxb9++vPTSS2zYsEE/yy4uLo5XXnmFfv36GSzA6nZvM7KzrWWdalYWqldbfxe+Gle+mXE16dixY7Rs2bJERYFBgwYxffp0Ll26dN9JahVdStPingHBrvlxpF+NZVZD2Bkj50C8jF/PxRN66Q6P+mvp7ClRHadeQRF8f13O9Uw5VgqJScH5XDi2nwv/jtXCAm9vb7Kzs1GpVFV6zuzs7Co93lgKCwvJz8/n4MGDFR6SYGrLh9b2pTRNjUwmKzUJ9UFjGAsLC/U/rup7OHPhyD6SsgtYuvc6P5+4xfZlb7FpXizBHfsy9//mMGnUoEoVuo9OzWPv5QR2X0xg1/I3ybt6SH+bY/2GdOzRj04d2tGvewd6tm+JpbJ2DdcwpEq/Ml988QUjRowgMDBQv2JLTEwMLVq0YN26dQYLsLrJ72lZrO4WDkEwBQkJCWWut6677X4qspSmWq1m261Q/fUZT/bDxbb4/HocCI/JYO62S9xMzuXnSAVnc+15c3BjeoS4VfXw9OIzC3jhxzNcz8zB1lLBqvHtaB/gUuZ9NRoNkZGRyOXySq92IEkS2dnZODg4mGUXd2pqKjY2NvTr169CLYumuHxobV9K05RJksTHH3/MkiVLOHLkCI0aNSp1+8SJE0lISKBPnz44OTkB4OlgzUdPtOLRRvY8tcOH+JRoIk78yZTRfzLDxZu2PQcwasQwnhrc574zj5OyCrgQl8mH/13A8b924jTs/7D0CATAtnF3rArT6Dt4OC8//5xBWy3rgiot93fmzBn+/PNPrl69ChQX5e7fv7/BgqsJ97YkimRRMFVvvvnmQ4utXrlyhSZNmlRbDBVdSrN/PS29OzSnQ6Abnk4lS1J1bODBzpd68cOxWywPvcG1xBwmrT1Np0BX/tMnmEcaeVQp4dpxPp63t18gI0+Nu70V30/oQGs/5/veX6lU4uLiQkpKCnK5HFvbB68LXxatVotKpaKwsLDGl/urCkmSyMvLIyUlBRcXF6ytKz42y9SWDzWlWOoalUrFli1bSElJYdCgQRw7dqzE8rwffPABW7ZswcLCgosXL9K9e/cSj+/RsgF3Lh5ne+hR3v3wf1w8uJPC9ASO//Yjx3/7kdcBCztnbF08sbQurs+Yn5NJgxdWklVYXLMw6cQp8hNvYx15kp6d2jG4hTeD5/bFx2lRjb0OtU2FkkVXV1euX7+Ou7s7kydP5rPPPmPAgAEMGDCguuKrdvd2fbnaimRRME2vvvoqEydOfOB9GjRoUK59eXt7c+LEiRLbdOuv32/N9cpwUMLQTn73/eK2tJAzpWcDnmhXn+V/3WD98WhO3ErjxOo0mvs68lyXAIa18sGxAkWXr8RnsWTvNf68UrzGe3NfR74e1576Lg+vcqA79qSkpIfcs2ySJOnXaTXHlkVnZ2eD/v1rmxUrVrB48WISEhJo3bo1n3/+OZ06dTJ2WCbHysqKHTt20L17d27evMnjjz/O33//jbW1Ndu3b2fevHkATJs27YGv38h+3RjZbyupGdks/2Ezm7duI+riGfJT4yjKzSArN6PE/dMz0lHaOhLiaU/HZ6bSwH4y/xn3BAE+5lHGz9RVKFlUqVRkZWXh7u7O2rVr+fjjj3FwMO8BoCXGVdmLZFEwTR4eHgarXdq1a1c++OADkpKS9AvN79u3D0dHR5o1a2aQ56gIFztL5g9vzrRewXx3KJKfTkRz6U4Wc7de4L3fLtG7sQc9QtzpGuxGoJsdFop/zllJkohJy+d4ZCrbw+M4FpmKJBX3GPyndzCz+jbE0qJ8rXwymQwfHx88PT0rNUFCrVZz8OBBevXqZXYtW0qlstxdz3XRxo0bmTNnDl999RWdO3dm2bJlDBo0iGvXrunPIeEfnp6e7Ny5k86dO3P8+HGmTp3K9OnTeeaZZwCYMWNGuRuZ3JwdWDB7EgtmFy/xezs+mVMXrnI14ha5eQVIkoSvtye9e/Yg2McZW0sL4MFL7QkVV6FksWvXrowcOZL27dsjSRKzZ8/GxqbsZXpWrVplkACr2729RfWczWPJIUF4kOjoaNLS0oiOjkaj0RAeHg5ASEgI9vb2DBw4kGbNmjFu3Dg++eQTEhISeOedd5gxY0aZ3cw1xdvJmncebcaMPiH8ciqGzadjuZGUw55Liey5VNzyqVTI8HK0xs7SApVGS3J2ITmFJSdjDGvpw5yBjQj2qFzBbYVCUanESaFQUFRUhLW1tdkli8KDLV26lKlTpzJpUnHC8tVXX7Fjxw5WrVrFm2++aeToTFPDhg3ZvHkzAwcOZN26dfq5DEOHDmXx4sXs3bu3UvsN8PG421rY04DRCg9ToWRx3bp1fPrpp0RERCCTycjMzKSgoKC6YqsR3o7WKGQSSgsFz3TyN3Y4glBl7777LmvXrtVf181u/vvvv+nduzcKhYI//viD6dOn07VrV+zs7JgwYQILFy40VsgluNhZMu2RYF7o1YCLcVkcuJ7E4ZsphMdkUKDWEpueX+L+SoWM5r5O9Gviyci29Yy+SoxQu6hUKk6fPs3cuXP12+RyOf379y9zDd+KlJjSbb/339qkZ8+efP/990ydOhW1Wk3v3r1Zv369fiZ0bTzm+zHVv3N546lQsujl5cVHH30EQFBQED/++CNuboabvWgMrnaWvN1Gw2ND+uIiJrgItcCaNWseuF4wQEBAADt37qyZgCpJJpPRsr4TLes7MbNvQ7RaifisAhIyCyhQa7CQy3Czt6K+iw3WStGFKlSPlJQUNBpNmRUEdJM771XRElM6plZ+yFCcnZ35+uuvSUtLo0GDBhw4cEB/W2095gcxtWMub5mpSs+GjoqKKtf9WrZsyc6dO/XldUyRmzU4imLcgmDS5HIZ9ZxtxHARwaRVpMQUmG75oeokjtl0jrm8ZaaqvQLlrVu3jNrsqmvuvt8LolarycvLIysry6T+gNWlrh0vmO4x696T5ros24POLVN9zauTOGbTOWZDnlvu7u4oFAp9xQCdxMTEMmeP/7vElC6G/Pz8Ml8j3WuYn59v8PXZTZU4ZtM55vz84mE9DztXan25ct1qCqbcsinUbdnZ2frCtOZEnFuCqTPEuWVpaUn79u0JDQ1l5MiRQHFNzdDQ0FKrltwvBhDniWDaHnau1Ppk0dfXl5iYmPuuqqDrIoiJian0yg3mpK4dL5juMetW/NAtl2luHnRumeprXp3EMZvOMRv63JozZw4TJkygQ4cOdOrUiWXLlpGbm6ufHf0g4juoNHHMpnPM5T1Xan2yKJfLqV+//kPv5+joaFJ/wOpW144XTPOYzbFFUac855YpvubVTRyzaTDkuTVmzBiSk5N59913SUhIoE2bNuzevbvUpJeyiO+g+xPHbBrKc67U+mRREARBEKpq5syZ5ep2FoTayHwWMBUEQRAEQRBqnMGTxdjYWF544QX99a+//rpcTfXGYmVlxfz58426ckVNqmvHC3XzmI2tLr7m4piFyqiLr6E4ZvMjkwxct+PcuXO0a9cOjUZjyN0KgiAIgiAIRiC6oQVBEARBEIT7EsmiIAiCIAiCcF8iWRQEQRAEQRDuq8Klc0aNGvXA2zMyMiobiyAIgiAIgmBiKtyy6OTk9MBLQEAA48ePr45YDW7FihUEBgZibW1N586dOXHihLFDqjaLFi2iY8eOODg44OnpyciRI7l27Zqxw6pRH330ETKZjJdfftnYodR64tyqO+eWOK+qpq6cK3X9PAEzP1ekCoqIiJA0Gk1FH2Zyfv75Z8nS0lJatWqVdOnSJWnq1KmSs7OzlJiYaOzQqsWgQYOk1atXSxcvXpTCw8OloUOHSv7+/lJOTo6xQ6sRJ06ckAIDA6VWrVpJL730krHDqdXEuVV3zi1xXlVNXTpX6vJ5Iknmf65UOFmUy+Ul3shPPfWUlJCQYNCgakKnTp2kGTNm6K9rNBrJ19dXWrRokRGjqjlJSUkSIB04cMDYoVS77OxsqWHDhtK+ffukRx55xCxPVHMizq26cW6J86rq6vK5UlfOE0mqHedKhbuhpX+VZdy5cye5ubmGaeasISqVitOnT9O/f3/9NrlcTv/+/Tl27JgRI6s5mZmZALi6uho5kuo3Y8YMhg0bVuLvLVQPcW7VnXNLnFdVU9fPlbpynkDtOFfq5NrQKSkpaDSaUivLeHl5cfXqVSNFVXO0Wi0vv/wy3bt3p0WLFsYOp1r9/PPPnDlzhpMnTxo7lDpBnFt149wS51XV1eVzpa6cJ1B7zpUKJ4symQyZTFZqm2A+ZsyYwcWLFzl8+LCxQ6lWMTExvPTSS+zbtw9ra2tjhyPUAXXh3BLnlVBVdeE8gdp1rlQ4WZQkiYkTJ+rXNywoKODFF1/Ezs6uxP22bt1qmAirgbu7OwqFgsTExBLbExMT8fb2NlJUNWPmzJn88ccfHDx4kPr16xs7nGp1+vRpkpKSaNeunX6bRqPh4MGDfPHFFxQWFqJQKIwYYe0jzq3af26J88ow6uq5UlfOE6hd50qFxyxOmDABT09Pfamc5557Dl9f31IldEyZpaUl7du3JzQ0VL9Nq9USGhpK165djRhZ9ZEkiZkzZ7Jt2zb++usvgoKCjB1StevXrx8XLlwgPDxcf+nQoQPPPvss4eHhZnOSmhNxbtX+c0ucV4ZR186VunaeQO06Vyrcsrh69erqiKPGzZkzhwkTJtChQwc6derEsmXLyM3NZdKkScYOrVrMmDGDn376iV9//RUHBwcSEhKA4rqZNjY2Ro6uejg4OJQaD2NnZ4ebm1utHydjTOLcqt3nljivDKcunSt17TyB2nWuVHqCS4MGDTh58iRubm4ltmdkZNCuXTsiIyOrHFx1GjNmDMnJybz77rskJCTQpk0bdu/eXWqwcW2xcuVKAHr37l1i++rVq5k4cWLNByTUWuLcKibOLeFh6tK5Is4T8yaT/l0Lp5zkcjkJCQl4enqW2J6YmIi/vz+FhYUGCVAQBEEQBEEwngq3LP7222/6/+/Zs6fE+ESNRkNoaCiBgYEGCU4QBEEQBEEwrgq3LMrlxXNiZDJZqQLdSqWSwMBAlixZwqOPPmq4KAVBEARBEASjqHQ3dFBQECdPnsTd3d3QMQmCIAiCIAgmotLJoiAIgiAIglD7VbjOos7s2bNZvnx5qe1ffPEFL7/8clViEgRBEARBEExEpZPFLVu20L1791Lbu3XrxubNm6sUlCAIgiAIgmAaKp0spqamlrlSi6OjIykpKVUKShAEQRAEQTANlU4WQ0JC2L17d6ntu3btokGDBlUKShAEQRAEQTANlV7BZc6cOcycOZPk5GT69u0LQGhoKEuWLGHZsmWGik8QBEEQBEEwoirNhl65ciUffPABd+7cASAwMJD33nuP8ePHGyxAQRAEQRAEwXgMUjonOTkZGxsb7O3tDRGTIAiCIAiCYCIqPWbxXh4eHpVKFA8ePMjw4cPx9fVFJpOxffv2ErdLksS7776Lj48PNjY29O/fnxs3bhgiZEEQBEEQBKEcKj1mEWDz5s388ssvREdHo1KpStx25syZhz4+NzeX1q1bM3nyZEaNGlXq9k8++YTly5ezdu1agoKCmDdvHoMGDeLy5ctYW1uXK0atVsudO3dwcHBAJpOV78AEoQZIkkR2dja+vr76ZTTNiTi3BFNlSueWOE8EU1buc0WqpM8++0yyt7eXZs6cKVlaWkrTpk2T+vfvLzk5OUlvvfVWhfcHSNu2bdNf12q1kre3t7R48WL9toyMDMnKykrasGFDufcbExMjAeIiLiZ7iYmJqfD5YgrEuSUupn4xhXNLnCfiYg6Xh50rlW5Z/PLLL/nmm294+umnWbNmDa+//joNGjTg3XffJS0trbK71YuKiiIhIYH+/fvrtzk5OdG5c2eOHTvG2LFjy3xcYWEhhYWF+uvS3SGZUVFRODg4lLq/Wq3m77//pk+fPiiVyirHberq2vGC6R5zdnY2QUFBZb4vzYEu7piYGBwdHUvcplar2bt3LwMHDjSp17w6iWM2nWPOysrCz8/PJM6tB50nYLqvYXUSx2w6x1zec6XSyWJ0dDTdunUDwMbGhuzsbADGjRtHly5d+OKLLyq7awASEhIA8PLyKrHdy8tLf1tZFi1axIIFC0ptP3bsGLa2tiW2xeTApXQZHjZ22IaFVSlec2Jra0tYHTpeMM1jzsvLAzDbrild3I6OjmUmi7a2tjg6Ohrsg7FIo+V8XCZX4rNIy1GhtJBT38WGtv4u1HO2MchzVEV1HLOpM/VjNoVz60HnCZj+a2hI8Zn5RKXkEpeWy7lsOzTXs5CQYWdlwbBWPlhZKIwdYrUx9b/zw86VSieL3t7epKWlERAQgL+/P8ePH6d169ZERUXpW/OMYe7cucyZM0d/XZc1Dxw4sNSJuuFkDLsuXKGli5Y3n+5vkn9AQ1Or1ezbt48BAwbUieMF0z3mrKwsY4dgFi7dyWTNkVvsuphATmFRmfdpVd+Jyd2DGN7aF4Xc+AmCIAigKtJy8lYaf19N4q9rSUQm595zqwIiL+uvLd13nf8b1JjhrXyRi3PY5FQ6Wezbty+//fYbbdu2ZdKkSbzyyits3ryZU6dOlTlZpaK8vb0BSExMxMfHR789MTGRNm3a3PdxVlZWWFlZldquVCpLJQoONpYAFGrLvr02q2vHC6Z3zKYUiymKScvjw51X2HXxn54EZ1slbf2c8XSwRqXREpmcw4W4TM7HZvLyxnC+PxzFJ0+2oqlP6RYcQRCqX3quin2XE/nrahKHb6aU+IGnkMsIcLXF29GKzPQUvL28UGvhUlwmsen5vPRzON8eimTukKZ0D3E34lEI/1bpZPGbb75Bq9UCMGPGDNzc3Dh69CgjRoxg2rRpVQ4sKCgIb29vQkND9clhVlYWYWFhTJ8+vcr7B7BRFh++Wit+xQi1y8GDB1m8eDGnT58mPj6ebdu2MXLkSP3tkiQxf/58vv32WzIyMujevTsrV66kYcOGxgv6ntjWHL3Fol1XURVpkctgWCtfxncNoL2/S6lWh9ScQn4Ki+abg5FciMvk8S+P8MHIljzRvr6RjkAQ6pYijZY9lxLZciaWg9eTKdL+07vobm9F78Ye9G3iSY+G7jhaK1Gr1ezcuZOhQ9uiVCrJV2lYdSSKlfsjuBiXxbPfhdGnsQfvP97SJIaYCFVIFmNjY/Hz89NfHzt2LGPHjkWSJGJiYvD393/oPnJycrh586b+elRUFOHh4bi6uuLv78/LL7/M+++/T8OGDfWlc3x9fUt86VWFrWXx+AiVxiC7EwSTURNlqapDZp6alzaeZf+1ZAC6NnDjvRHNaex9/8HXbvZWzOrXkLGd/Hlt0zkOXE/m1U3niMvIZ3Y/4ye/glBbZeap+flkNGuP3uJOZoF+ezMfRwY296JvE09a+Do9tFvZxlLBjD4hjO3ox+d/3WR92G3+vpbMoE8P8vawpozt6GcS40/rskoni0FBQcTHx+Pp6Vlie1paGkFBQWg0D8/ATp06RZ8+ffTXdWMNJ0yYoJ9hnZubywsvvEBGRgY9evRg9+7dBvsys7mbLBZqDbI7QTAZQ4YMYciQIWXeJkkSy5Yt45133uGxxx4D4IcffsDLy4vt27fft9JAdYtKyeX5NSeJTMnFykLO28OaMq5LQLm/JDwcrFg9sSPL/rzO8r9usnTfdbSSxMv9G1Vz5IJQt+QWFvH94Si+PRhJ9t1uZjc7S8Z28uPxtvUI8azcLHQ3eyveG9GccV0DeH3zeU7fTmfu1gvsvBDP0qfa4OFQeoiZUDMqnSxKklTmh3hOTk65k7nevXs/cDKMTCZj4cKFLFy4sLJhPpCNUrQsCnWPocpS6SboqNVq1Gp1ifvqrv97+/2cvJXO9J/OkplfhI+TNV8/25amPg4UFZU9oeVBZvVpgLVSxid7brDszxu42FjwTCe/hz+wiip6zLWBqR6zqcVTWxRptKwPi2Z56A1Sc4sX4mjs5cDzPYMY0doXa6VhZjMHe9jzy7SurD4SxeI91zh0I4Vhyw/xxTPt6BTkapDnECqmwsmirvVPJpMxb968EuVoNBoNYWFhD5yAYkp03dBq0bIo1CGGLku1d+/eUmWpdPbt2/fQeG5mwddXFKi0MgLtJZ4PySHq7CGizj70ofdVDxjqJ2NnjIIFf1wmOeIiDZ1qpkpDeY65tjG1Y9aVpRIM5/TtdN7ZfpEr8cU/EgPdbJkzsDGPtvSpltnLCrmMKT0b0LuxB9PXneFGUg5Pf3uc1wc15oVeDUS3dA2rcLJ49mzxJ7gkSVy4cAFLS0v9bZaWlrRu3ZrXXnvNcBFWI9ENLQjlV5GyVOUtV3TqdjpzfziDSquhR4gbK59pY7DWiSGShHzTBf64kMD6W9b8PqMrXo7VNx7TVEs0VSdTPWZRlspwsgvUfLjzChtOxADgZKPktUGNGdvRD6Wi+pdSDPF04NeZ3Xl720W2nY1j0a6rXEvMZtGolrW6LqOpqXCy+PfffwMwadIkPvvsszKLjJoL27uzobWSDFWRFhP6rBOEalMTZakAirRwKSGXdoHuZdY+PH07jSk/nCFPpaFHiDvfTehgsERR539PtSEq9SiX7mQxd/tl1k7qVO013EytRFNNMLVjNqVYzNnxyFRe/aV4shjAk+3rM3dIE9zsa3bsoK2lBUufak07f2fe+/0yW8/EEZuez9fPtcfFzvLhOxCqrNI/C1avXm3WiSL807IIUKAWAxeFuuHeslQ6urJUXbt2Ndjz7ImVM/qbE4z5+hhabcku4DPR6UxYdZJclYZuwW58O97wiSKAtVLBZ2PbYq2Uc+hGCquP3jL4cwhCbVOg1vD+H5d5+tvjxGXkU9/Fhp9f6ML/Rreu8URRRyaTMa5rIKsmdsTeyoITUWmMWnmUmDQx5KAmVDpZzM3NZd68eXTr1o2QkBAaNGhQ4mIOLC3kWNxtZcgTyaJQi+Tk5BAeHk54eDjwT1mq6OhoZDKZvizVb7/9xoULFxg/frxBy1IBJN+tpHHqdjo3k3P028NjMpjw/QlyCovo0sCV7yd0LPHDzdBCPO15e1gzABbvuSq+XAThAaJScnn8y6N8dzgKSYKxHf3Y/XIvujRwM3ZoADzSyIMt07tRz9mGqJRcnvzqKDcSs40dVq1X6dnQU6ZM4cCBA4wbNw4fHx+zHWxqrVSQU1hEvpgSLdQixi5L9W/hMRk08nLgfGwG474PI7uwiE5BrqyaWL2Jos5znf3ZdSGeoxGpzPv1IqsndjTbzyxBqC67L8bzf5vOk11YhJudJZ882Yp+Tb0e/sAa1tjbgS3TuzHu+zBuJOXw1NfHWDu5E63qOxs7tFqr0snirl272LFjB927dzdkPDXO1rI4WcwTyaJQixi7LBWA5p6nD4/JoJmPI899F0Z2QREdA11YPbEjtpaV/giqEJlMxn9HtmDIskPsv5bMzgsJDGvl8/AHCkIdoNZo+WjXVb4/HAVAx0AXvnimXbVOCKsqbydrfpnWlYmrT3AuNpNnvg3juwkdTKYFtLapdDe0i4sLrq7mX+9IV2tRjFkUBMO6N1n8KSyaJ786SlZBEe0DXFg9qRN2VjWTKOoEe9gzvXcwAB/uvCLOeUEAkrMLefqb4/pEcVqvBvw0tYtJJ4o6LnaWrJ/aha4N3MgpLGLi6hMcvZli7LBqpUoni//973959913zb6ela4LTIxZFATD0vyrJFWBWks7f2fWTCoeoG4M03sH4+tkTVxGPquP3DJKDIJgKq4mZDFyxRFO3U7HwdqCr8e1Z+7QpjVSEsdQ7K0sWD2pI30ae1Cg1jJ57UmRMFaDSr8jlixZwp49e/Dy8qJly5a0a9euxMVcWFoUj1tSFYlii4JgSEV3WxYndgukZ0N3xncNYO3kTjhYG6+sibVSwasDGwPw5d83Sbu7CoVgXt799SLjvg/jWESqsUMxW6FXEnniy6PEZeQT5G7H9hndGdTc29hhVYq1UsFX49qXSBiPiITRoCr9896QsyaNSXF3kLtW5IqCYFAaqfjc6tLAjfdGNDdyNP94vG09vj8cxeX4LJaH3jCp2ISHkySJ0CtJxGXkM6WneVTeMCWSJPH94Sg+2HkFSYKuDdxY+Vw7nG3Nu16hlUVxwjh93Rn+uprE82tP8v2EjnQPcTd2aLVCpZPF+fPnGzIOo9EVC9Y8YDKAIAgVp+uG1rXemwq5XMbbw5ry7HdhrDt+m+d7BOHnWvZyhYLpiU3PJy4jHwu5jA4BLsYOx6yoirTM236RjaeKV2N5upM/Cx9rblbdzg9iZaFg5XPt9Anj5DUnWTVRJIyGUOV3yOnTp1m3bh3r1q3TLwVoTuT6lkWRLAqCIekmuJjiF1H3EHd6NnSnSCux4u+bxg5HqICDN5IBaO3nXOOTpMxZeq6Kcd+HsfFUDHIZzHu0GR8+3sIkz8+q0CWM/Zp4UlikZfIa0SVtCJV+lyQlJdG3b186duzI7NmzmT17Nu3bt6dfv34kJycbMsZqJVoWBaF66MYsWshN88vo5f6NANh8OlYU6jYTkiSx9UwcAP2aeho5GvNxMymHkV8eISwqDXsrC76f0JHnewTV2lqjVhYKvvxXwnjohvnkJaao0p/is2bNIjs7m0uXLpGWlkZaWhoXL14kKyuL2bNnGzLGaiVaFgWhephqN7RO+wAXfevil/tF66Kpyy5Q89LP4Zy+nY5cBiNa+xo7JLNw6EYyj395hNupedR3sWHL9G70aVL7E+1/J4zPrz1F6JVEY4dltiqdLO7evZsvv/ySpk2b6rc1a9aMFStWsGvXLoMEVxN0LfCiZVEQDMuUu6F1XurXEIBNp2KJTReti6YqMjmHkSuO8Nu5O8hlsGBEc+q7iHGmD/PjsVtMXH2S7IIiOgS4sH1Gdxp7Oxg7rBpT3CXdnkHNvVAVaZn242l2nI83dlhmqdKf4lqtFqWydAkMpVKJ1oymFutaFv9dE04QhKrRmHg3NECHQFd6hBS3Lq7cH2HscIQy/HU1kcdWHCEiORdvR2s2T+/GuK6Bxg7LpBVptMz/9SLzfr2ERisxql091k/tjLu9lbFDq3GWFnJWPNOOx9r4UqSVmLXhDFtOxxo7LLNT6U/xvn378tJLL3Hnzh39tri4OF555RX69etnkOBqgm7Mola0LAqCQenGLJpqN7TOzL4hQPHYxZScQiNHI+hotRKfh97g+bWn9C1jv83qTjt/w82Afu+995DJZCUuTZo00d9eUFDAjBkzcHNzw97enieeeILERNPuyszMUzNpzUnWHrsNwOuDG7NkdGusLKp/DXZTZaGQs/SpNozp4IdWglc3nePL/TcfuCSqUFKlk8UvvviCrKwsAgMDCQ4OJjg4mKCgILKysvj8888NGWO1+qdlUbxpBMGQzKEbGqBzkCut/ZwpLNLyw9Fbxg5HABKzCpiw+gRL9l1HkuC5Lv78NLULng6GX4KuefPmxMfH6y+HDx/W3/bKK6/w+++/s2nTJg4cOMCdO3cYNWqUwWMwlMjkHB7/8giHbqRgo1Tw1XPt+U/vkFo7kaUiFHIZi0a1ZHL3IAA+2X2NV385R56qyMiRmYdK1x3w8/PjzJkz/Pnnn1y9ehWApk2b0r9/f4MFVxNEy6IgVA/d0A5TTxZlMhnTejXgP+vP8MPx27zYOxhbS1GSxRgkSeKP8/HM+/UiGXlqrCzkLHysOWM6+lfbc1pYWODtXXrlkszMTL7//nt++ukn+vbtC8Dq1atp2rQpx48fp0uXLtUWU2UcvpHCf9afJqugCF8na76d0IHmvk7GDsukyOUy3h3ejCB3W977/TJbz8YRHpvB50+3Fa/VQ1TpE1EmkzFgwAAGDBhgqHhqnEK0LAqCwUmS9M+YRYXpt2oMau5NgJstt1Pz+OVkDBPvtj4INedmUjbzf7vEkZvFS/i1rOfEp2PaEOJpX63Pe+PGDXx9fbG2tqZr164sWrQIf39/Tp8+jVqtLtEA0qRJE/z9/Tl27Nh9k8XCwkIKC/8ZzpCVlQWAWq1GrVaXur9uW1m3ldf6sGj+u/MaGq1EGz8nvny6DR4OVlXaZ3UyxDFXxdgO9Qhys+HVTReITM5l5IojvD6oERO6+FdbK6yxj/l+yhtPpZPF2bNnExISUqpMzhdffMHNmzdZtmxZZXddo3Rj70WuKAiGo9FKSBR/6FqaeMsiFPcwTOnZgHnbL/Ld4Sie6xKAhRnEXRvEpuex4u8INp2KoUgrYWkhZ0bvEP7TJ7jaW6U7d+7MmjVraNy4MfHx8SxYsICePXty8eJFEhISsLS0xNnZucRjvLy8SEhIuO8+Fy1axIIFC0pt37t3L7a295/BvW/fvgrHr9bClig5x5KKX6cO7lrG+qZy8lBohfdlDJU5ZkOa3Rg2RMi5mC7ng53X2Hb0CmODtThV48qHxj7mf8vLK18ViEoni1u2bOG3334rtb1bt2589NFHZpMsipZFQTC8onvOJ1PvhtYZ3b4+n+67Tmx6PjsvJog6ftXsXEwGPxy7za/hcfr3S/+mnrz7aHP83WqmLM6QIUP0/2/VqhWdO3cmICCAX375BRsbm0rtc+7cucyZM0d/PSsrCz8/PwYOHIijo2Op+6vVavbt28eAAQPKrDByP3EZ+czccI6LSVnIZDCnXwjTeplHoe3KHnN1GC1JrD8Rw6Ld17mcAf+7ZMlbQxozqq2vQV9LUzrme+lavh+m0sliamoqTk6l+/gdHR1JSTGfpXXkcpEsCoKhqe+pRWUuyaK1UsGEroF8+ud1vj8UyfBWPmbxxWtOolPz2HUxnt/P3+Fi3D9fUj1C3Hmpf0M6BroaMTpwdnamUaNG3Lx5kwEDBqBSqcjIyCjRupiYmFjmGEcdKysrrKxKl6hRKpUPTBIedvu9DlxP5qWfz5KRp8bZVslnY9vySCOPcj3WlFTkmKvTpB7BdA3x4P82nedCXCZvbrvEjouJfPh4S4OvG28qx6xT3lgq/SkeEhLC7t27S23ftWsXDRo0qOxua5yY4CIIhqfS3NuyaD4J13Nd/LG0kHMuNpMz0RnGDsfsZRWoCb2SyIc7rzD0s0P0Wvw3i3Zd5WJcFpYWcka1rcfW/3Rj3ZTORk8UAXJycoiIiMDHx4f27dujVCoJDf2nS/fatWtER0fTtWtXo8RXpNHy6b7rTFx9gow8Na3qO/HHrB5mmSiamibejmz7TzfmDmmClYWcQzdSGPDpAZbuuy5mTFOFlsU5c+Ywc+ZMkpOT9TPFQkNDWbJkidl0QYMonSMI1UHXsmghl5lV65ybvRWPtfZl0+lYVh+Jon2A4Wr61QWZ+WpO3UrjeGQqxyPTuHQns8R4cLkMuga7MaSFD0Nb+uBqV42Dw8rhtddeY/jw4QQEBHDnzh3mz5+PQqHg6aefxsnJieeff545c+bg6uqKo6Mjs2bNomvXrkaZCR2TlsfLG4uXOwR4upM/84c3w1pZd+snGpqFQs60R4IZ2NybuVvPczwyjeWhN9h4MppXBzZmVNt6dXYsc6WTxcmTJ1NYWMgHH3zAf//7XwACAwNZuXIl48ePN1iA1U2hn+AikkVBMJSiuy2L5tSqqDOpexCbTsey62IC8Zn5+DhVbuxaXZCVr+Ziuozzu69x4lZGqeQQIMjdjs5BrnRp4EbPhu64mdAqIrGxsTz99NOkpqbi4eFBjx49OH78OB4exS11n376KXK5nCeeeILCwkIGDRrEl19+WaMxSpLE9vA45m2/RE5hEQ5WFrz/eAsea1OvRuOoS4Lc7dgwtQt7LiXwwc4rxKTl8/rm83zx101m9Anm8bb1sbSoW0ljlUrnTJ8+nenTp5OcnIyNjQ329qVLHBw5coQOHTqUOYbDFCjEcn8mrbBIw6lb6Ry6kUJUSg6JWYUo5DI8Haxo7utI78aeNPd1NKvWq7pA17JoLuMV79XM15HOQa6ERaXx47HbvD64ycMfZKJScgq5EJvJ7dRc4rMKKFRrKSzSYKmQ42ijxNFaiYudJR4OVng6WOHhYIWrraV+LHdZMvJU/H0tiS2n4zgakYJWUgC39bcHudvRpUFxctg5yA1vJ8MX0jaUn3/++YG3W1tbs2LFClasWFGtcUTnwHeHb/FkB388HP75rkzILGDerxfZd7l41ZiOgS4sfaqNwcfRCaXJZDIGt/Chd2NP1h69xdcHI4lOy+ONLRdY9ucNxnT0Y0xHvzrzY9IglWd1v8LKMmTIEMLDw012HKNcjFk0SSk5haw9eov1YdGk5arKvM+uiwn8b+91WtV3YlqvYIa29BZJo4nQd0ObYcsiFLcuhkWlseFENLP7NTSrrr47GflsPRPLr+F3uJGUU+HHK+Qy3O4mkB4OVjjbKClQa8kpLOJWai6x6fkl7u9pLdGnhR/dQtzp0sANL0fTTQ5N1ZYoBbcuXGflgUjOzBuAXCZj/YloPtl1lezCIizkMl7q15D/9AnRj7MXaoa1UsG0R4IZ1zWAn8Ki+fpgJPGZBSz78wbLQ2/wSCMPhrTwoX8zL6MPq6hO1b5MgamvvShK55gWVZGWtUdv8VnoDXIKiwcVezhY0auhB639nO4u9yURm57PyVtp/H0tmfOxmcz46Qzdgt348PGWBLrbGfcgBNT6bmjza1kEGNDMi/ouNsSm57P9bBxjO1XfCiKGcj42g3m/XuJ8bAb3fuyGeNoT4mGPr7MNtpYKrCzkFBZpySpQk5WvJjVXRXJ2IcnZhaTlqdBoJZKyC0nKvv862U28Hejf1ItRbb25cGw/Q4c2M6kZnuYm4+7v4ayCIt7YcoHIlBzO3p1g1cbPmY+eaEkT79Jld4SaY2tpwZSeDXiuSwB7LiXwU1g0YVHF30F/X0tGvrW4V6JjoCtt/JwJ9rCngYddrVkNqnYcRRWIlkXTEZGcw0s/n9WX1GhZz4n/9A5mQDOvMgcVT+nZgJScQn44eotvDkVyNCKVocsPsfSpNgxucf/SFkL1M+duaChuXZvQNZAPdl5h9ZFbjOnoZ9Kt1jFpeTz3XRhZBcU/sDoHuTK6gx/9m3ribFv+1g61RkvaPcljcnYhGfkqbCwtsLNU4OtsQ2MvB1zutqCo1WouVMsR1S1F93z9bDkTC4CdpYL/G9SYcV0DRWuiCbFWKnisTT0ea1OPiOQcdpyPZ8+lBC7dyeJiXFaJklAADlYWuDtY0aa+I42NkGZotBJ5qiIcrKv2Y67OJ4uiZdE07LoQz5xfzpGv1uBsq+StoU15sl39B46dAnC3t2LOwMY80b4+r28+T1hUGi+uO83/DWrMjD4hD3ysJEkkZhUSkZxDSk4hWknC3kpJPWcbgj3tsLIwn65HU6NrWbQ0025ogKc6+vHpn9e5lpjNsYhUuoW4GzukMqmKtMzccJasgiJa1Xfii6fbVbqotVIhx8vRWnQl17BCTfG/I1r7EpGcQ+cgN6Y90kD8HUxcsIc9s/s1ZHa/hiRkFnDiVhono9K4mpBFRHIuabkqsguLyC4sIiolF7DgjDqcmX0b0qq+c7XHV1ik4ZWN4cRnFrB+SucqtXLW+WRRt9yfRuSKRrPu+G3m/XoRSYJuwW4sfapNhQfFB7jZsX5KZ97fcYU1R2+xeE/xOqmz+zUsdd+rCVlsPBnDn1cSiUnLL2NvYGUhp52/C4Oae/Foa1/cTWgGpzn4p3SOebYsAjjZKHmiXX1+PH6bVUdumWyy+L+91zgXk4GjtQVfPtuO+i5i8oM50Wgl1NriH1XzhzczqdniQvl5O1kzorVviZWfMvPVpOQUcicjn/XHb7PnUgJ7Lyex93ISres78VyXAIa39q2WMdG3U3OZ/9sl9l9LxlIh53xsJl0auFV6f9WeLJpy1w3807KoFS2LNU6SJJb9eYPPQm8AxXXD3h/ZotJdLhYKOe+NaI6vszUf7rzK0n3XUSrkTOlePN7semI2/9t3k7+vJesfo5DLCHC1xcvRGguFjMx8NbdT88jMV3MsMpVjkam8v+MKI9r48p/ewYR4OlT9wOsAfTe0hWmf/w8zsXsgPx6/TejVRG6n5hLgZlrjYf++msQ3ByMB+OTJ1iJRNEP3Fny2s6rz7Te1ipONEicbJcEe9nQJdGbV5jiu4MfOi4mci83k3ObzLPj9Mr0bezC4hTe9G3tiX8n3gEYrcSU+i9ArSey+lMCV+OLucKVCxqqJHauUKIKY4PLPcn8mHmdto9FKvPvrRdaHRQMwu19DXunf0CA/Ll7oFYxGCx/vvsrHu6+ikEmciJazP+w4RVoJuQwGNfdmZNt69GzoXqppXpIkIpJzOHA9hd/C4zgXm8nWM3FsOxvH0JY+zB3SRHwpP0SRmU9w0Qn2sOeRRh4cuJ7M2qO3eXd4M2OHpBefmc+cX8IBmNgtUIzTNVM5d/ugLeQyrOpY7b66xtsWJg9tybzhzfnlVCzrw24Tm57PH+fj+eN8PAq5jKY+DrTzd6GRlwMN3O3wdbbByUaJvbUFWklCo5XIyFOTlF1IbHoe1xOyuRyfzclbaWTmq/XPpZDL6NLAlRd6BdOjYdV7RSqdLPbt25etW7eWWDMTihelHjlyJH/99RcA2dnZVQqwuomWxZpXoNbw8s/h7L6UgEwGC0c0Z1zXQIM+x/TewWQXqPlyfwQf7rpG8cqWEgObefHW0KYPnDEtk8kI8XQgxNOB53sEcS4mgy/332TPpUR2nI/nz8uJTHskmP/0Djarkio1SWXmE1zuNal7IAeuJ7PpVAxzBjaq9C9/QyrSaHlpQzjpeWpa1HNk7lDzrQVZ1+WpipNFW0uFyffECYbhZm/F9N7BTOvVgHOxGey5lMieSwlEpeSWOUmmvOytLOjSwJWBzb0Z0NRLPxHNECr9qbd//35UqtL17woKCjh06FCVgqpJuh5P0bJYM85Gp/Pe75c5F5OBpULOsrFtGNrSp1qe6/8GNaZIK/HNwUjcrCTef6ItQ1pVfNWD1n7OfD2uA5fvZLHwj0v6JaB2nL/D4tGtaecvloT7N33pnFowi7NXQw8aeNgRmZzL5lMxTOweZOyQWB56gxO30rCzVPD50+3EZCwzlnu3RJjogq575HIZbf1daOvvwptDmhCfmc+pW+mEx2QQlZJLZHIOydmF5N79QaFjIZfh4WCFt5M1jTwdaOTtQDt/Z1rWc6q25Qgr/O48f/68/v+XL18mISFBf12j0bB7927q1TOfZYj0pXNEy2K1ikrJZfGeq+y8UPx+sbey4Jtx7at10oBMJuOtoU2Z1iOAQ3/to39Tzyrtr5mvIxumdmHXxQTm/3aJiORcnlx5lKk9G/DKgEailfEe5l46515yuYxJ3QKZ9+sl1hy9xfiugQ+dpV+dDlxP5vO/bwLw4aiWBIm6omYt9+6YRTtL8flR1/k42TC8tQ3D75kkA8UVD/JURcjlMhQyGTZKRY1/BlU4WWzTpg0ymQyZTEbfvn1L3W5jY8Pnn39ukOBqgm4yhVjur3pk5qv5dN911h2/TZFWQiaD0e3r88qARjW2TJKjjRJD9e7IZDKGtvShW7AbC3+/zNazcXx9MJJ9VxL59Kk2tPZzNswTmbkirfmuDV2WUe3qs3jPNW6l5hF6NYkBzbyMEsedjHxe/vksklQ8IUysD2z+8u6OWbS1EsmiUDZLCzmWFsZdHabCyWJUVBSSJNGgQQNOnDhRYqk/S0tLPD09USjM500vl4kJLtVlx/l45v92iZSc4pUgejf24M0hTWrFSgTOtpYsHVPchf7WtgtEJucyauVRZvQJYVbfkFrRolYVtallEYq7CJ/u5M/XByP5/nCkUZJFVZGWGT+d0Y9TnG9Ck22Eysu528VoX0tW+hBqpwq/OwMCAgDQamtHU5xCdEMbXL5Kw3u/XWLjqRgAGnjYsXBEC4PMyDI1/Zt50SHQhXd/vcRv5+6wPPQGf11NZEBTbywUMp7rHICTbd1bBk03ZtFc14Yuy4RugXx3OIrjkWlcupNJc1+nGntuSZJ4a9sFzkYX11Nc+Wx7MeyhlhBjFgVzUKWf/REREcyaNYv+/fvTv39/Zs+eTUREhKFi01uxYgWBgYFYW1vTuXNnTpw4YbB9K8QEF4NKzCrgiZVH2XgqBpkMZvYJYddLPWtloqjjbGvJ8qfb8vnTbXG2VXIxLotP/7zO4j3X+Pqg4c8Hc6Aqql0tiwC+zjYMuVueZtXhWzX63Cv+vsnm07HIZfDZ023xcxWlm2qLe2dDC4KpqvQn+Z49e2jWrBknTpygVatWtGrVirCwMJo3b86+ffsMFuDGjRuZM2cO8+fP58yZM7Ru3ZpBgwaRlJRkkP2LCS6Gcy0hm8dXHOFyfBZudpase74zrw1qXGdmag5v7cuel3sxqXugftvRiFTjBWRE/4xZrD3JIsDzPYpnQv9+7g5J2QU18pw/Hr/N//ZeB2DBYy3o07hqE7UE0/JPy2Ld+JwUzFOlP8nffPNNXnnlFcLCwli6dClLly4lLCyMl19+mTfeeMNgAS5dupSpU6cyadIkmjVrxldffYWtrS2rVq0yyP4VYsyiQZy+nc6TK49yJ7OAYA87ts/oTncTXR6tOnk5WjN/eHMOv9EHgAtxmSVWaKgr/hmzWHu6oQHa+rvQzt8ZlUbLumO3q/35NpyIZt72i0Bx7dBxXQKq/TmFmqUri2InxiwKJqzS784rV67wyy+/lNo+efJkli1bVpWY9FQqFadPn2bu3Ln6bXK5nP79+3Ps2LEyH1NYWEhhYaH+elZWcXFLtVqNWq0udX9JKv5SK9Joy7y9ttEdoyGP9UJcJhNWnyansIgOAc6sfKa4O9ZUXs/qOOaH8bJX4mBtQXZBEdEpOQR7lC5vYiqvT3WobRNc7vV8jwac+ekM68Ki+U+fkGoZOyhJEl/uj2DxnmsATO4exOuDGhv8eQTj0/2YFGMWBVNW6Xenh4cH4eHhNGzYsMT28PBwPD0N002SkpKCRqPBy6vkzEMvLy+uXr1a5mMWLVrEggULSm3fu3cvtralx/lcSZYBCpKTU1i3bSenkmW4W0MbN4maLGOkleBOHtzOkZFWKCNLBflFoGvvtLMAZ0twt5EIsJfwsKZK8RlqqEBcLnxxSUGeRkawg8RTXikc3W+4YQiGZMjhEeWhlBSAjD1/HSCwjCWl8/LyajSemvTPcn+1q2URYFBzL+o52xCXkc+v4XGM6ehv0P0XqDXM//WfCWIv9GrA3CFNxOoetZRuuT8xZlEwZZVOFqdOncoLL7xAZGQk3bp1A+DIkSN8/PHHzJkzx2ABVtTcuXNLPH9WVhZ+fn4MHDgQR8fSJVsKzsSw/uYVnF3d+D1F4kxMBgBHM+14bWAj+jRyr5YP6ZzCIsJjMjkbncHp6AzCYzPILdQ8/IF3edhb0reJB8Nb+dAp0KXcMarVavbt28eAAQNQKqs2S/dGUg7vfX+SPI2aNn5OrJ7Q3iSWQvs3Qx5zRayMOkZaQjYt23WiZxkTfHSt3rVRbW5ZtFDImdAtgA93XuX7w1E81cHPYJ8RNxKzmfnTWa4lZiOTwbuPNmOSCawYI1Qf3ZhFezFmUTBhlf5mnzdvHg4ODixZskTfTezr68t7773H7NmzDRKcu7s7CoWCxMTEEtsTExPx9vYu8zFWVlZYWVmV2q5UKstMFCwtil+CG0m5pOb+s3zhjaRcpq07S6v6Tozu4MeIVr5VKoFyJyOfU7fTOX0rjVO307kSn8W/59TYW1nQ1t+ZBu52eDpa42yrRCGToZUgNaeQhKwCridmcyEuk+QcFRtPxbHxVBzBHnZM7x3CyDa+5V7q536vR3lFJucwYc1p0vPUtKznxNrJnXGyMe0SMVU95orSvR65aqnM563JWGqaSlc6pxYs91eWMR39WfbnDa4n5nD4Zgo9G3o8/EEPIEkSm07F8u5vFylQa3G3t+TTMW2qvF/B9Ikxi4I5qPS7UyaT8corr/DKK6+QnZ0NgINDGX1tVWBpaUn79u0JDQ1l5MiRQHF9x9DQUGbOnGmQ59DVWdQlij0buvPF0+1YeSCC1UeiOB+byfnYTBb+fon2AS50D3anrb8LwZ52eDtal2pRUBVpicvI51ZqLpfiMrkQV/z4+MzSMyfrOdvQIdCFDgEutA9wpbG3gz6eB1EVaTkemcrOC/H8du4OEcm5vLbpHCv33+T/BjVmUHPvau2yik7N45lvw0jOLqSJtwM/Pt/J5BNFY3C8+5pkF9TlCS61r2URin8IPNXBjzVHb/H94agqJXXZBWre2X6RX8PvAMWfQUueao2ng7WhwhVMmG7MoljBRTBlVf4pk5yczLVrxYOwmzRpgru7YWfAzpkzhwkTJtChQwc6derEsmXLyM3NZdKkSQbZv/xfSVWwhz1OtkreHNKE53sE8Wt4HJtPx3I1IZvjkWkcj0zT39fSQo6DlQW2VgqKNBJ5Kg1ZBWrKmlitkMto5uNI+wCXuwmiK95OlfsysLSQ06uRB70aefD2sKasD4vmqwMRRCTn8uK6M/Rt4snCx5pT38XwtdjiMvJ55rvjJGQV0NDTnvVTOuNsa9xliEyVg3Xx6ZVVUHsnstyPbsyipUXtTBYBJnUPZO2xW+y/lszNpGwCXCp+Pl++k8WMn84QlZKLQi5jzoBGTH8k2KhrTws1Szf8SLQsCqas0u/O3NxcZs2axQ8//KBfzUWhUDB+/Hg+//zzMieTVMaYMWNITk7m3XffJSEhgTZt2rB79+5Sk14q698tefVd/lmv2MPBiik9G/B8jyBupeZx5GYKRyNSuJqQze3UPFRFWlKLVKTmltynjVKBn6sNTbwdaVXfiRb1nGhZz6laZrs5WCt58ZFgnunszzcHIvn6YAR/XU3i1K00Ph3Thn5NDbcsWWJWAc9+e5zY9HyC3O1YP6Uzbvalu/yFYo7WxS2LWfl1L1msraVz7hXgZkf/pl7su5zIqiO3WPBokwo9/pdTMczbfpHCIi2+TtYsf7otHQJdqylawVQZus5iTk4OaWlp+sogKpUKCwsLbG1tsbOzw9XVtcyhWoLwIJXOXubMmcOBAwf4/fff6d69OwCHDx9m9uzZvPrqq6xcudJgQc6cOdNg3c7/9u9f8P5lrIwgk8kIcrcjyN2O5+7WOVMVaUnMKiBXVURuoQZLhRxbKwVONkrc7CxrfOaio7WS1wY1ZmRbX17ddJ5zMRlM/eEUHz/RitEd/Kq8/5ScQp759ji3UvPwc7Xhp6md8XQU3WQPIrqhwUJee1sWobhI977LiWw9E8vLfRuU6zGSJLF4zzW+3F+8uk/vxh58+lQbXOxEC31dpF/BpYIlmBITE/nuu+/Izs7mo48+0m8fOHDgfUvL6bi7u1OvXj2Cg4Np0aIFffr0oXfv3hWOXag7Kp0sbtmyhc2bN5d4gw0dOhQbGxueeuopgyaL1enfDR/lXUbL0kJukktuhXg6sGlaV97ZfoFfTsXyf5vPk6/WML5rYKX3mZpTyHPfhRGRnIuvkzU/TemCj5PNwx9YxznW4W5odS0unXOvzkGuNPNx5HJ8FhtPxvKwIjparcSbW8/zy6lYAF7q15CX+jUU3c51lFYrkavSkLx9Ec2WhDFr1iyWLFmib2zIyMggPDycs2fPcvbsWR555BGef/55APLz83nnnXdQKpV88MEHKBTFyaa3tzdKpRJra2usra2xtLSkqKiIvLw8cnNz0Wq1pKSkkJKSwrlz59i6dStJSUn673K1Ws2qVat49NFHqVevnlFeF8H0VDpZzMvLK7Mr2NPT06zqx/37Q9qrFrSWWVrI+fiJVthZWbD6yC3e/fUS+SoN0x4JrvC+0nJVPPtdGFcTsvF0sGL91C4mmSSbojrdDa2t3RNcdGQyGc/3COLVTedYFxbD683uf19Jkljw+yV+ORWLQi7jw8dbGLxGo2Be8tQakn/9mLxrRwD49NNPuXPnDgUFBZw/f56oqKiS98/L0yeLfn5+TJo0iZCQEFQqFTY2xT/gN27ceN9KC5IkkZaWRlxcHLGxsVy/fp0LFy7Qv39//X3Onj3Liy++iKOjIykpKbW6akNdUFRUhIVF1YfAVXoPXbt2Zf78+fzwww9YWxcnWPn5+SxYsICuXbtWObCaorinu1gmo9bM6pXJZLz7aDPsLC344u+bLNp1FVWRlhd7BZZ7H+m5Kp67myh6OFix4YUuBLmXXolEKJujTfHpZcrd0CtWrGDx4sUkJCTQunVrPv/8czp16lTl/daVlkUoXhP8kz1XScwq5FiSjBH3ud+X+yNYe3eJwKVPteaxNqLVpq6zUSoY3jGEjVcP6bdt3LixxH0CAgJo27Ytbdu2pWfPnvrtCoWizGVvH5TcyWQy3NzccHNzo1WrVgwdOrTUfbRaLV27dsXf37/EvsaNG0fnzp0ZO3aswSeyCoZ37tw5fvnlF3777Td27NiBv3/VfphWOllctmwZgwcPpn79+rRu3VofnLW1NXv27KlSUDXp3gkuzjbKcpWuMRcymYzXBjXGykLOkn3XWbLvOgXqIhqWYxnspOwCJqw6yZX4LNztrdgwtTPBHvbVH3Qt0qeJJxfeG2iysxw3btzInDlz+Oqrr+jcuTPLli1j0KBBXLt2rcqrMNX20jn3srSQM7NPCPN+vcTeWDnvqjSlvrBP3Upjyd7iqhHvDW8mEkUBKP7++Wr5UuRFBbz99ttERkZy+PBh6tWrR8uWLWndujWurjU76alLly4cPXoUjeafRSLOnTvHunXrWLduHa+88gqPPvoozz//PIMHDzZIq5VQklqtJisri8zMTP3l3usKhYLp06fr7z979mzCwsJYsWIFHTp0AIoXSfnwww8B+Oyzz1iyZEmVYqr0X7lly5bcuHGD9evX65fee/rpp3n22Wf1zeHm4N7SObV1gPmsfg2xtJCzaNdVVuyPpJ+vnKFl1fe561ZKLuNXnSA6LQ93e0s2TO1MiKdha2jWBVYWCqwsTLd22tKlS5k6daq+DNVXX33Fjh07WLVqFW+++WaV9l0XZkPfa0xHf74+EEFsRgHrT8Qwvc8/y6DmFBYx55dzaCUY1a4eE8WKLMI97OzsGDNmDI0aNaJ58+YMHz7c2CEB6MdAQnGX92effcYPP/zA6dOn2b59O9u3b8fX15eJEycyefJkgoMrPszJFGRnZ5OZmUn9+vX129544w2SkpJ47733CAgontT6008/sXz5cv19rK2tsbe3L3FxcHDA0dFR/6+bmxuDBg3SPyYsLIyoqChGjx6tHw+6adMmFi9eXCIZzM/Pf2DMnp6eJZLFc+fOceLECa5evapPFtu3b8+zzz5L//79GTduXJVfpwoli+3atSM0NBQXFxcWLlzIa6+9xtSpU6schDHd25LoUovrBU57JBilQs7CPy4TekfOh7uuMX9Ei1Kzts9Ep/PCD6dIyVHh72rLD5M7ESi6nmsdlUrF6dOn9asvAcjlcvr373/fmZS6Uhw6uuUK1Wo1anXJcZnqouJkUSZpS91WG8mA6b0Cefu3q6w8EMkT7Xz1nyf//f0S0Wl5+DpZ886QRrXq9dAdi6kdk6nFY+5cXV2ZPXs2s2fP5tKlS6xatYoffviBO3fu8OGHH/Lhhx/Sp08fnn/+eUaNGmWyDUaZmZns37+f0NBQjh07RmRkJGlpaXTs2JETJ07o77d582YiIyP5f/buPCzK6m3g+HcWhn0RERDZFQVcQFFw38W0MrPMdpeyLM2K3kpbLNv012K2WLaYtplmpVaaibgvuO8CCqKA7Cj7Nsw87x/IJIEpwwwzwPlcF5fyzMwz9xk4MzfnOec+06dP1yWLGRkZ7N+/v0HP5+npSWpqqu77lStXcvHiRbp27apLFgsLCzl48GC9j7exscHBwQFHR0fdl4ODA+3a1d4E4NVXX6W4uJiIiAjdsYiIiFrfN1aDksW4uDhKSkpo06YN8+fPZ8aMGQarp2gq1151bsnJIsC0gX4oZBKv/RHHin0paCQZ88d1RS6XIUkSKw+k8Prvp1FrJILbO7BiWh+xi0QLlZubi0ajqbNIzc3NTXel4N8WLFjA/Pnz6xzfvHlznfeB/EIFIOP40cMUJxksbLNmLUF7GwUZpVVEfbOVif5aTl2WsTpBgQyJCR1K2LU12tRhGkV0tHm1qzktsmxuunbtygcffMCCBQv4/fff+frrr9m8eTPbtm1j27ZtODk58cADD/DYY4/Ro0cPk8ZaXl7Ovn372LJlCzExMRw8eFBXF/paNbvQ1XjhhRfIz8+vNdo4fvx4OnfuDFQvFCovL6e4uFj3VVRUpPsqLCyksLCwztzOkJAQevfuTZs2bXTHRo0axbp163BycqqVGDo4ONz04qJrFygZS4OSxdDQUKZOncrAgQORJIn3338fO7v657HNmzfPIAEa27Uji862LWNxy3+5P9yL+DOnWHVewfexF1FrtPzf6C689ecZ1l3dbmxsd3fevTsEOyMUERear7lz5xIVFaX7vrCwEC8vLyIjI3FwcKh1X/tO2ezef5hJY4bg6tg6RqbVajXnC7fw6RkFe7PlPDqmD7+tOQlUMm2AL0/f0sXUIRqcWq0mOjqaUaNGmdWq2ZpRb8F4VCoVd999N3fffTcpKSksX76cb775hpSUFJYsWYJSqWTx4sVA9VWJwsJCnJ2ddZe3r1y5QlRUFLGxsWRkZNCmTRv8/f3p1KkTAQEBdOrUiU6dOuHl5VXrkviNpKen88MPP7BlyxZ2795d55Ju586dGTFiBMOGDSMwMBAfH58671+PP/54nfN27Nix0Zfap02bxtixY2v1FW9v70YvPmkKDcoGVqxYwWuvvcaff/6JTCbjr7/+qndyq0wmazbJ4rVzFp1tW0dV+76uEmGh3Xjht1OsOpjKqoPVw+RyGTw/OpAZQ/ybvKi40LRcXFxQKBRkZWXVOp6VlYW7u3u9j7G0tKx35wcLC4s6icKgzq4UJUq4OtqaVRJhbAGOEmO7ubHxVBZTVhwGoIubPc/fEoRFA4suNyf1/Q6YkjFiMVblgJbA29ub1157jVdeeYWYmBiWLVumK/EDsH79eiZNmsS0adNYtmwZUD0n8tNPP9Xd59KlS5w6darOuVUqFX5+fnh4eODi4sLChQvx968ugL9p0yZ++eUXIiMjueeeewBITU3lxRdf1D3e3d2dESNGMHLkSEaMGIGXV+M3qWiNGpQsdunShVWrVgHV85tiYmIavWrS1Oys/nkJbg9pb8JImtYdoR5Yqix4bs1xKqu0BLd34K07u9HLu82NHyw0eyqVirCwMGJiYhg/fjxQXTIjJibGaLsltRZzbunCvvOXuVKqxt5SySf398SqBSeKrYExKwe0JAqFgsjISCIjI2sdP3bsGAA5OTm6Yw4ODrzyyisEBwcTEBBAXl4eSUlJJCYmkpiYyLlz5zh//jyVlZUkJCSQkFBdTeCtt97SnWPXrl0sW7ZMtxkIQI8ePRg/fjzDhg1j5MiRBAUFicEPA9D7OmN91/3rc+utt/L111/Tvr15JmI+zjZM9NMwdnA4XT0cTR1Ok7o9xIPBAe3IL6tezCI6VOsSFRXF5MmT6d27N+Hh4SxevJiSkhLd6mhBP+0drfj+kQj+Pp3JhF6eojZpC2DMygGtwTvvvMP8+fPrzCWdN2/ef44CazQa0tLSSExMJDs7m5ycnFq7ygwcOJA33niD/v37645ZW1uzdu1awzeilTP6pLSdO3fecBm4qQ10lxjYqa2pwzAJRxsLHG3M5/KR0HQmTZpETk4O8+bNIzMzk9DQUDZt2lTvzkxCw3Tr4Ei3Dq3rj8+WqqGVAxpSNaDm+LX/tmQ2Nja1XoebabOHhwceHh61jtU8buTIkbrFHeb++pnrz/lm42nxKxikq/UErzfhWa1WU1paSmFhoVnNuTGW1tZeMN821/xOSv9R89LYZs2apfdl5//qW+b6mhuTaLP5tNmQfauhlQOuVzVg3bp1/1k9ZP369Y2OtbkRbTa9mtHeG/WVFp8s1iyJF5NaBXNVVFSEo2PzG4USfUswd6boW/+uGnDp0iWCg4N59NFHmzQOQWiIG/WVFp8senh4kJqair29fb1z8mrKf6SmptZZPt8Stbb2gvm2WZIkioqK6lxiaS7+q2+Z62tuTKLN5tNmQ/athlYO+HfVADs7O/EZ9C+izebT5pvtKy0+WZTL5bUKa16Pg4ODWf0Aja21tRfMs83NcUSxxs30LXN8zY1NtNk8GKpvNbZygPgMuj7RZvNwM32lxSeLgiAIgtAYonKA0NoZJVksKyvT7Q350ksv4ezsbIynEQRBEASjE5UDhNZObsiTVVRU8MEHH+Dn56c7NnfuXJycnAz5NAZlaWnJa6+9Vu/OFC1Ra2svtM42m1prfM1Fm1u2WbNmcfHiRSoqKti/fz8REREGOW9reg1riDY3PzKpgbUFKioqeP3114mOjkalUvHCCy8wfvx4li9fzssvv4xCoWDWrFm1ttsRBEEQBEEQmqcGJ4svvvgiX3zxBSNHjmTv3r3k5OQwdepUYmNjeemll5g4cWKDNv0WBEEQBEEQzFeD5yyuWbOG7777jnHjxnHq1Cl69OhBVVUVx48fF9vFCYIgCIIgtDANHllUqVQkJyfr9me0trbmwIEDdO/e3SgBCoIgCIIgCKbT4AUuGo0GlUql+16pVGJnZ2fQoARBEARBEATz0OBkUZIkpkyZwoQJE5gwYQLl5eXMmDFD933NV3OwZMkSfH19sbKyIiIiggMHDpg6JKNZsGABffr0wd7eHldXV8aPH09CQoKpw2pSCxcuRCaT8cwzz5g6lBZP9K3W07dEv2qc1tJXWns/gebdVxqcLD788MO4urri6OiIo6MjDz74IB4eHrrva77M3erVq4mKiuK1117jyJEjhISEMHr0aLKzs00dmlHs2LGDmTNnEhsbS3R0NGq1msjISEpKSkwdWpM4ePAgX3zxBT169DB1KC2e6Futp2+JftU4ramvtOZ+Ai2gr0gNlJSUJGk0moY+zOyEh4dLM2fO1H2v0WgkDw8PacGCBSaMqulkZ2dLgLRjxw5Th2J0RUVFUkBAgBQdHS0NGTJEevrpp00dUosm+lbr6FuiXzVea+4rraWfSFLL6CsNHlkMCAggNzdX9/2kSZPqbLBu7iorKzl8+DAjR47UHZPL5YwcOZJ9+/aZMLKmU1BQANAqdteZOXMmt956a62ft2Acom+1nr4l+lXjtPa+0lr6CbSMvtLg0jnSvxZPb9y4kQULFhgsoKaQm5uLRqOps1WTm5sb8fHxJoqq6Wi1Wp555hkGDBhAt27dTB2OUa1atYojR45w8OBBU4fSKoi+1Tr6luhXjdea+0pr6SfQcvqKUfaGFszbzJkzOXXqFLt37zZ1KEaVmprK008/TXR0NFZWVqYOR2gFWkPfEv1KaKzW0E+gZfWVBl+GlslkyGQypk2bRlFRke5YjZKSEqZNm2a4CI3AxcUFhUJR5/J5VlYW7u7uJoqqacyaNYs///yTbdu24enpaepwjOrw4cNkZ2fTq1cvlEolSqWSHTt28PHHH6NUKtFoNKYOscURfavl9y3RrwyjtfaV1tJPoGX1Fb0uQ0+ZMoWNGzeSlZWlK51ja2sLVO8d/ddff/HNN98YPFhDUalUhIWFERMTw/jx44HqYfGYmBhmzZpl2uCMRJIknnrqKdauXcv27dvx8/MzdUhGN2LECE6ePFnr2NSpUwkMDOTFF18U21IagehbLb9viX5lGK2tr7S2fgItq680OFm87777dP+3srLinnvu0X0vSRI5OTnNYrg1KiqKyZMn07t3b8LDw1m8eDElJSVMnTrV1KEZxcyZM1m5ciXr16/H3t6ezMxMABwdHbG2tjZxdMZhb29fZz6Mra0tbdu2bfHzZExJ9K2W3bdEvzKc1tRXWls/gRbWVxq6fFomk0lyufy6XwqFQnrrrbcMu2bbSD755BPJ29tbUqlUUnh4uBQbG2vqkIwGqPdr+fLlpg6tSTXXsgXNjehbratviX6lv9bSV0Q/qdZc+0qD94besWMHkiQxfPhwfv3111rL3lUqFT4+Pnh4eDQyhRUEQRAEQRDMQYOTxRoXL17E29u71uIWQRAEQRAEoWVp8GroGlu3buWXX36pc3zNmjV8++23jQpKEARBEARBMA96J4sLFizAxcWlznFXV1feeeedRgUlCIIgCIIgmAe9k8WUlJR6l777+PiQkpLSqKAEQRAEQRAE86B3sujq6sqJEyfqHD9+/Dht27ZtVFCCIAiCIAiCedA7WbzvvvuYPXs227ZtQ6PRoNFo2Lp1K08//TT33nuvIWMUBEEQBEEQTETv1dCVlZU89NBDrFmzBqWyura3Vqvl4YcfZunSpahUKoMGKgiCIAiCIDQ9vZPFGmfPnuX48eNYW1vTvXt3fHx8DBWbIAiCIAiCYGKNThYFQRAEQRCElqvBe0NfKy0tjd9//52UlBQqKytr3bZo0aJGBWYoWq2W9PR07O3tRQFxwaxIkkRRUREeHh7I5XpPHzYZ0bcEc2VOfUv0E8Gc3Wxf0TtZjImJYdy4cfj7+xMfH0+3bt24cOECkiTRq1cvfU9rcOnp6Xh5eZk6DEG4rtTUVDw9PU0dRoOJviWYO3PoW6KfCM3BjfqK3sni3Llz+b//+z/mz5+Pvb09v/76K66urjzwwAPccsst+p7W4Ozt7YHqF8LBwaHO7Wq1ms2bNxMZGYmFhUVTh9fkWlt7wXzbXFhYiJeXl+53tLn5r75lrq+5MYk2m0+bzalvic+gukSbzafNN9tX9E4W4+Li+Omnn6pPolRSVlaGnZ0db7zxBnfccQdPPPGEvqc2qJphfwcHhzoddWt8Fl/tPI9DhR13OziY1Q/QWNRqNTY2Nji0kvaC+be5uV6a+q++Ze6vuT6KK6pYsSeZwxevYGOpxMVWRVs7S9raqXCxs8TNzgJUNtjb27eaahDm/nM2h771X/2kXK3hyZ8PkpFlz+3WttjZWJkixCZn7r83xmDubb5RX9E7WbS1tdXNU2zfvj1JSUl07doVgNzcXH1P26SyCivYd/4y3dqYOhJBEMyVVivxy+E03v07gdziihvcW8nbJ7bh2caa7h0cmTrAj2CPuqNJggAgl8nYnZgHyKio0mJn6oAE4Tr0Thb79u3L7t27CQoKYuzYsTz33HOcPHmS3377jb59+xoyRqNRXM2ktWI9uCAI9TibVcT/rTnOibQCAHzb2jClvy9aCfJKKsgrriS3uJKconLSrpSRV1JJcUUV8ZlFxGcWseZwGmO6ufP0yAAC3UXSKNRmofhnNKdSozVhJILw3/ROFhctWkRxcTEA8+fPp7i4mNWrVxMQEGA2K6FvRC6v7qgiVxQE4VparcQ3e5J59+8EKqu02FsqmT0igMn9fVEp618xqFarWffHRrpFDCa9sJJ1x9L580Q6f53K5K9TmYwKdmNSby+GdGmHhaL5rX4XDE8mk2GplFNRpaWiSiSLgvnSO1n09/fX/d/W1palS5caJKCmVPN+LUYWBUGokV9aydOrjrHjbA4Aw7q043939cDV4cbzyVQK6ORqR1AHC0YEuTFrWCc+jjnHhpMZRJ/JIvpMFjYqBX18nenq4YCfiy0eTtbYWiqxVSmwVilQKeVYKhVYKuVYKuVmMe9OMB7V1WSxUiSLghlrVLJ48OBB2rZtW+t4fn4+vXr14vz58zc8x4IFC/jtt9+Ij4/H2tqa/v3787///Y8uXbro7lNeXs5zzz3HqlWrqKioYPTo0Xz22We4ubnpG7qOXFyGFlq5JUuW8N5775GZmUlISAiffPIJ4eHhpg7LZE6nFzDjh8OkXi7DykLOvNu6cl+4l94JWxd3e5Y80ItnsopYfTCVdcfSyS2uYMfZHF0yeiMqpRy/trZ06+BIZFc3hge6ipHJFkR19WcpRhYFc6b3O86FCxfQaDR1jldUVHDp0qWbOseOHTuYOXMmsbGxREdHo1ariYyMpKSkRHefZ599lj/++IM1a9awY8cO0tPTmTBhgr5h16LQXYYWf7kLrc/q1auJioritdde48iRI4SEhDB69Giys7NNHZpJ/H48nQmf7SX1chnezjb89sQA7o/wNsjIXoCbPa/cFsyBl0awcfYgXr89mIf6+jCgU1sCXO3o4GRNGxuLqyOJtR9bWaUlIauIX4+k8fj3hxn94U52nbu5RFMwf5ZXpzWIkUXBnDV4ZPH333/X/f/vv//G0dFR971GoyEmJgZfX9+bOtemTZtqfb9ixQpcXV05fPgwgwcPpqCggGXLlrFy5UqGDx8OwPLlywkKCiI2NrbRC2nEAhehNVu0aBHTp09n6tSpACxdupQNGzbwzTffMGfOHBNH13QkSWLpjvP8b1M8AEO7tOOjST1xtDF8eQu5XEawh8N/rpCWJAm1RqJSo6VCraGkQsPZrCJiz+fx29FLnM8t4eFvDvDy2CAeHeR/3fMIzUPNHFixwEUwZw1OFsePHw9UT8ydPHlyrdssLCzw9fXlgw8+0CuYgoLqFYfOzs4AHD58GLVazciRI3X3CQwMxNvbm3379tWbLFZUVFBR8U95i8LCQqB68rlara51X0lb3Tm1EnVua6lq2tla2gvm22ZTxlNZWcnhw4eZO3eu7phcLmfkyJHs27ev3sc0pG+Z62v+b1UaLW9ujGflgTQApvb34cXRnVHIGx67IdssAyzlYGkpx8FSTnsHZ4YEOPPkED8Wbkrg58OXeGtDHFZKGZN6m26HEnP9OZtbPP9FXIYWmoMGJ4vaqwmWn58fBw8exMXFxSCBaLVannnmGQYMGEC3bt0AyMzMRKVS4eTkVOu+bm5uZGZm1nueBQsWMH/+/DrHN2/ejI2NTa1jpy7LAAUSEB0dbYhmNButrb1gfm0uLS012XPn5uai0WjqzP11c3MjPj6+3sc0pG/VMLfX/FoVGvjunJxTV+TIkBjvqyVUSuLvTUmNOq+x29zfAgo6yPn7kpx5v58mL+kEvibeqMTcfs6m7FsNZWkhLkML5k/vBS7JycmGjIOZM2dy6tQpdu/e3ajzzJ07l6ioKN33NVvZREZG1qmeb3M2h68SjqKVYNSoUWZZVd3Q1Go10dHRraa9YL5trhmZay4a0rfM9TWvkVdcwWM/HOXUlUIslXLev7s7t3Rt3KK5pmzzWEni6dUn+Ot0FhuynVh3d1+TLHox159zc+pbNSOLIlkUzJneySJATEwMMTExZGdn60Yca3zzzTc3fZ5Zs2bx559/snPnzlobWbu7u1NZWUl+fn6t0cWsrCzc3d3rPZelpSWWlpZ1jltYWNR5M1Nd/V4r1X97S9ba2gvm12ZTxuLi4oJCoSArK6vWcUP1rZu5zVTO5xQzZflBUi6X0sbGgq8n9ybMx9lg52+qNr8zoQf7L+zgbHYxPxxI47HBHY3+nNdjbj9nc4rlRmoWuIjL0II50/tP0fnz5xMZGUlMTAy5ublcuXKl1tfNkCSJWbNmsXbtWrZu3Yqfn1+t28PCwrCwsCAmJkZ3LCEhgZSUFPr166dv6Dq6BS6NPpMgNC8qlYqwsLBafUur1RITE2OQvmWuDl+8zF2f7yXlcinezjb8+kR/gyaKTamNrYo5twQC8Pn2JEoqqkwckaAPC7HARWgG9B5ZXLp0KStWrOChhx7S+8lnzpzJypUrWb9+Pfb29rp5iI6OjlhbW+Po6MgjjzxCVFQUzs7OODg48NRTT9GvXz+DbCkov5oqS2I1tNAKRUVFMXnyZHr37k14eDiLFy+mpKREtzq6pdl0KoOnVx2jokpLiKcjy6b0wcWu7khpczKhVwc+257IhbxSvo+9yIwhphtdbI5ef/31OvNwu3Tpopu3a8w6vzXEZWihOdB7ZLGyspL+/fs36sk///xzCgoKGDp0KO3bt9d9rV69WnefDz/8kNtuu4277rqLwYMH4+7uzm+//dao560hSucIrdmkSZN4//33mTdvHqGhoRw7doxNmzYZ9IPQXHyzO5knfjxCRZWWkUGu/PRY32afKAIoFXJmDusEwNe7zlOurlv7VvhvXbt2JSMjQ/d17bx5Y9b5rSEuQwvNgd4ji48++igrV67k1Vdf1fvJpZsY0rOysmLJkiUsWbJE7+e5npqi3KKLCq3VrFmzmDVrlqnDMBqtVuKtDXF8s6d6Qd6Dfb2ZP66bru+3BON7duDD6LOkF5Sz9ugl7gv3NnVIzYpSqax3nq6+dX4bUmIKoGar8fLK+m9vicy15JIxmWubbzYevZPF8vJyvvzyS7Zs2UKPHj3qTChetGiRvqduMvKaHVzEyKIgtDjlag3Prj7GX6eqp7e8eEsgM4b4t7i9li0UcqYN9OOtDXF8tfM8k3p76d7bhBs7d+4cHh4eWFlZ0a9fPxYsWIC3t7dedX6h4SWmsjPlgJwzCefYWHrWYO1qDsyt5FJTMLc232yZKb2TxRMnThAaGgrAqVOnat3WXN6MxWVoQWiZLpdUMv27Qxy+eAWVQs57E3twR2gHU4dlNPeGe/NRzDnO55YQHZfF6K71r2gXaouIiGDFihV06dKFjIwM5s+fz6BBgzh16pRedX6hYSWmAA79eYa9WWl4+fgx9uqCpZbOXEsuGZO5tvlmy0zpnSxu27ZN34eaDblYDS0ILU5cRiHTvztE2pUyHKyUfPlwb/r6tzV1WEZlZ6nkwb4+fL49iS93nhfJ4k0aM2aM7v89evQgIiICHx8ffv75Z6ytrfU6Z0NLTFlZVH8MaySZWSURTcHcSi41BXNr883GYpAqrmlpaaSlpRniVE1KrIYWhJblr5MZTPhsL2lXynSlcVp6olhjan9fVAo5hy9eIfZ8nqnDaZacnJzo3LkziYmJter8Xuu/apHqQyUWuAjNgN7Jolar5Y033sDR0REfHx98fHxwcnLizTffrFOg21zpFriIZFEQmjWtVuLD6LM88eMRytQaBnZy4fdZAwhwM/E+eE3I1cGKiVf3iV6wMQ6teGNrsOLiYpKSkmjfvr3R6/zWsBR1FoVmQO/L0C+//DLLli1j4cKFDBgwAIDdu3fz+uuvU15ezttvv22wII1FFOUWhOYvv7SS/1tznC1x2QBMG+DHS2MDUZpg+ztTe3pkAGuPXuJ4WgF/nsxgXIiHqUMya//3f//H7bffjo+PD+np6bz22msoFAruu+8+o9f5rVEzsijqLArmTO9k8dtvv+Xrr79m3LhxumM9evSgQ4cOPPnkk80iWRSroQWheTt04TKzfzpKekE5KoWct+/sxsTeXqYOy2Rc7a2YMaQji6LP8u6meEZ3dcNSqTB1WGYrLS2N++67j7y8PNq1a8fAgQOJjY2lXbt2QHWdX7lczl133VWrKLch1YwsihqZgjnTO1m8fPkygYF1V24FBgZy+fLlRgXVVMRqaEFonrRaiaU7k/hg81k0Wgk/F1s+vb8nXT0cTR2ayT06yI8f918k7UoZ3+29yPTB/qYOyWytWrXqP283Zp3fGjaq6mS+tFIki8I/tFqJ/DI1pZXV23gq5DLa2KiwsjDNH396J4shISF8+umnfPzxx7WOf/rpp4SEhDQ6sKYginILQvOTklfK//1ynAPJ1X+U3hHqwdt3dsfOUu+3sxbFRqXkucguvPDLCT7Zeo6JvT1xslGZOizhOmp+b4vF3t6t1pWSSvadz+NYaj5xGYUkZheTU1RBVT0jWfaWSnxcbAh0dyC4vQP9O7Wli5u90UsW6v3u+u6773LrrbeyZcsW3WTfffv2kZqaysaNGw0WoDHJxQIXQWg2JEnih/0pLNgYR2mlBhuVgtduD+ae3l7NprZrU7mrlyff7E4mPrOIT7Ym8uptwaYOSbgO26vJYkmFGFlsTdLzy/jjeDobTmZw8lLBdafDqZRyZIBGK1GllSiqqOLUpUJOXfqnPmI7e0tGBrlxZ88O9PZpY5Si/Honi0OGDCEhIYHPPvtMt+n6hAkTePLJJ/HwaB6TqmsuQ4s5i4Jg3pJzS3hl3Un2JFaXhInwc+b9iSF4OdfdEUOovmry0tggHv7mAN/tu8DD/XzwaWtr6rCEeoiRxdZDK8GOszl8G5vK7sTcWrlHZzc7IvzaEuzhQBd3ezwcrXG2VekWQEmSRGFZFTnF5SRmlxCfWcjRlHz2J+eRU1TBTwdS+OlACh2crLk7zJO7wzwN+v7YqOs2HTp0aBYLWa6nps6iFjEqIQjmqFyt4bPtSSzdnkSlRouVhZwXbwlkcj9fsaXdDQzu3I7Bndux82wO725KYMkDvUwdklAP26tzFksqRbLYUmm1Er8eucSiYwqyY4/qjkf4OTMu1IORQW64OVj95zlkMhmONhY42ljQydWeW7pV1/qsqNJwIPkyvx9LZ9OpTC7ll/FRzDk+ijmHT1sbHu7nyyMD/RrdBr2TxeXLl2NnZ8fEiRNrHV+zZg2lpaVMnjy50cEZm+KaS1eiJpkgmJcdZ3OYt/4UF/Oq9y4d3Lkdb4zriq+LGCG7WXPHBLLrXA4bTmYw7eIVwnzamDok4V/srGpGFjVIkiSmVLQw+aWVTFtxkCMp+YAMO0sl9/bxYnJ/X4OM/FkqFQwKaMeggHa8Ob4bf5/O5OdDqexJzONiXilv/nmGTq52DOncrlHPo3chsgULFuDi4lLnuKurK++8806jgmoqimtGJjTiWrQgmIVzWUVMW3GQyd8c4GJeKW4Olnz2QC++ndpHJIoNFNTegYlh1YW639kYhyTe58yOrerqdn9aSezi0sJUVGl45NtDHEnJx9ZSwThvDbueH8wrtwUbZQqNlYWCO0I78OOjfTn8ykgGX00QdyTkNPrceieLKSkp+PnVHdr08fEhJSWlUUE1lWsvY4mBRUEwrZyiCl5ae5LRi3eyNT4bpVzGIwP9iHluKGO7txcjLnqKGtUFawsFhy9eYdOpTFOHI/xLzWVogKLyKlFvsYWQJIm5v53k8MUr2FspWTM9ghEdpCar2tDWzpJRQa4ApF4pbfT59I7a1dWVEydO4OvrW+v48ePHadu2eezFKi5DC4LplVVqWLb7PJ9vT6Lkaq25yGA35owJxL+dnYmja/7cHa2YPsiPj7cm8r9N8YwIctNNmhfMgYSFppxKuSWTvtjH+dwSwv2ceWt8Nzq3ou0qW5ovd57ntyOXUMhlfPZALwLc7DjXxDF4Xh29TL3c+GRR73eM++67j9mzZ7Nt2zY0Gg0ajYatW7fy9NNPc++99zY6sKYgLkMLgvFd79KnVivxy+E0hr2/nfc3n6WkUkOIpyOrH+vLlw/3FomiAT02pCMudpZcyCvlx/0XTR2OcFVVVRVWVlYkvn832vJizueWAHAg+TK3fbKbVQdSxNSBZigmLouFm6qrxLx6axCDAho3X1Bf3tcki439PdJ7ZPHNN9/kwoULjBgxAqWy+jRarZaHH3642cxZlIuRRUEwmotFMOyDndhaWrB+1oBaOw/sTczlrQ1xnMmorhXWwcmaF27pwu09PMQqZyOws1QSNaozL609yUcx55jQyxNHawtTh9XqKRQKZDIZkiQhadQAPDm0I6fTC9lxNoc5v53kwIXLvDW+GzYqUXS+OUjILGL2T0eRJLg/wpvJ/X1NFksHJ2sASio1XClV42yrf3F+vX/7VCoVq1ev5q233uLYsWNYW1vTvXt3fHx89A6mqYmRRUEwnj1ZctLyy4FytsZnM7Z7exKzi1mwMY6Y+GwA7K2UzBrWicn9fU22jVVrcU9vT5bvSeZcdjGfbU9k7pggU4ekt4+2nCOrqJz7+njT3bP5bvEok8mwtLSkvLwcNGpsVApmDe+ElVLB5zuS+GBzAr8ducSpSwV89kAvOrmKy9LmLK+4gke+PUhJpYZ+/m2ZP66rSedaW1ko6OnthJVSQUlFlWmSxRoBAQEEBARc93YHBweOHTuGv7/57U967QCGGFkUBMMqu2ae/sK/4tl1LoefD6Wh0Uoo5TIeiPDm6ZGdG/UGJtw8pULO3LGBTFtxiOV7LvBghE+zLWr+9+lMzmQUMjLIFWi+ySKgSxYfCGvPiH6huhHEmcM6EebThqd+OsrZrGLGfbqHBRO6c0doBxNHLNRHrdHy5I9HSLtShk9bGz57oBcWCtPPDV775ACDnMfoLTHn+RYymUyXMGrMN0xBaJau3b0s5XIpPx1IRaOVGBnkxt/PDmb+Hd1EotjEhnVxpX/HtlRWaXl7Q5ypw9GLJEmkXJ2w791Mk91rWVpaAjCplxuRXd1r3dbXvy0bZw+if8e2lFZqeHrVMV5Zd5JKUWLH7Lz15xn2J1/GzlLJ1w/3pk0Le28zfdprYjWXojViZFEQDKpCU923xod6EOhuz/BAV35+vB9fT+5NR7F4xSRkMhmv3d4VhVzGptOZbLs6HaA5uVKq1m2N59mm5SSLlZWV9d7ezt6S7x+J4KnhnQD4ITaFh5bt50pJ/fcXmt7PB1P5dl/1wrEPJ4US0AJXsbf6ZLFmkYvWjEdABaE5Kr86sjixtxebnhnMN1P6EO7nbNqgBLq42zNtgC8Ar/1+utnV9asZVXR3sGoR81xrksWKiorr3kchl/FcZBeWTe6NnaWS/cmXuWPJHs5lFTVVmMJ1HEm5wivrTgHw7MjOjAp2M3FExtHqk0UxsigIxlF59UqZjar5f6C3NE+P7Iy7gxUpl0v5bHuSqcNpkPirK+hbwiVoqF4sCv+dLNYYEeTGb0/2x8vZmpTLpdz52d5mOTrcUmQXljPj+8NUarSM7uqmG/1tiYyeLJr7rgtiZFFoad5++2369++PjY0NTk5O9d4nJSWFW2+9FRsbG1xdXXn++eepqqoyaBw1I4tNtWOBcPPsLJXMuz0YgKXbkzifU2ziiG7s8MXLTF1+QDeK079T89j84UZuZmTxWp3d7Fk/cyDhfs4UV1TxyLcH+XrXebNeH9ASVVRpePyHw2QXVRDgascH94S26LJfrXqBC0DNYiWNmC8stBCVlZVMnDiRJ554ot7bNRoNt956K5WVlezdu5dvv/2WFStWMG/ePIPGUbPAxVYki2ZpTDd3BnduR6VGy5zfTpptRYj80kqifj7GXZ/vY1tCDlVaiQGd2jJjSEdTh2YQDU0WAZxtVfzwSASTenuhleCtDXG8tPYUavFB1iQkSWLeutMcTcnHwUrJVw/3bvF/FOudLL7xxhuUltbdQqasrIw33nhD9/1ff/1Fhw7mu9RfN7Jopm+UgtBQ8+fP59lnn6V79+713r5582bOnDnDDz/8QGhoKGPGjOHNN99kyZIl151k31AVVVo0UnXfEsmieZLJZLw9vhs2KgUHki/z7b4Lpg6pjk2nMhi5aCe/HbmETAaTensR89wQfny0b4uYrwgNuwxd63FKOQvv6s4rtwYhk8FPB1KYsvwABaVqY4QpXOOH2IusPpSKXAaf3N8LXxdbU4dkdHq/i8+fP58ZM2ZgY1N73khpaSnz58/XjVIMHDiwcREamW7OopmPgAqCoezbt4/u3bvj5vbPROzRo0fzxBNPcPr0aXr27Fnv4yoqKmp9oBUWVs8dU6vVqNW1P6AKS8p1/1fJtHVub4lq2tic2upub8ELozvz+h9x/G9TPAM7tsG37c1/8BmrzbnFFbzxZzx/nc4CwN/FloV3dqWnt9NNPV9z+hnoM7JYQyaT8eggf3zb2jJ71VH2JOYx4fM9fDOlDz4N+DkKN2//+Tzm/3EGgBduCWRIZ9Ns5dfU9E4WJUmqdz7i8ePHcXZuPiseFTKxwEVoXTIzM2slioDu+8zMzOs+bsGCBcyfP7/O8c2bN9f5ozGvHECJhUxi89+bGh1zcxIdHW3qEBrEUYIABznnCuGxZbt5qqsGRQOnXhmqzZIEh3Nl/HpBTmmVDDkSIzpIjPYsIOPUXjJO3dx56rvqZa5qRhYbM6o/MtiNNTP68ei3h0jKKWH8kj188VBvUX3AwC7ll/Hkj0eo0krcHuLB44PNb7MRY2lwstimTRtkMhkymYzOnTvXShg1Gg3FxcXMmDHDoEEaU82EVLHARTBnc+bM4X//+99/3icuLo7AwECjxTB37lyioqJ03xcWFuLl5UVkZCQODg617ns67QocPYi9tYqxY4cZLSZzolariY6OZtSoUVhYNK99l0P7l3Hbkr0kF2k4pwogatT1d+W6liHbnFlYzrzfz7AtMReAQHd7Ft7Zla4eDjd4ZF01o97NwYsvvkhISAijRo1q1Hm6ejiyfuYAHv3uECfSCnjg61gWTujBXWGeBoq0dStXa3j8+0PklVQS3N6Bd+/qYfYLeA2pwcni4sWLkSSJadOmMX/+fBwd/9lqSaVS4evrS79+/QwapDHV/AUtRhabhiRJHE3NJ6+4kq4eDrR3tGpVHU5fzz33HFOmTPnP+9zslpru7u4cOHCg1rGsrCzdbddjaWmpu2R2LQsLizqJQqW2+mdqY6lsdolTY9X3epg7P1cLFk7owVM/HWXprmT6dmrXoMtrjWmzJEmsOpjKOxviKKqoQqWQM3tEJx4f0lHv7dKa0+vft29fLl++jLe3d6PP5epgxerH+hH18zH+OpXJc2uOcz63mOdGdWnRK3WNTZIkXvz1BKcuFeJsq+KLh8KwbmUlwRqcLE6ePBkAPz8/+vfv36w6ZX3+GVk0cSCtQFmlRvcmVsPFTkW3Do4MCmjH7T3a4+pgZcIIzVe7du1o184wc2P69evH22+/TXZ2Nq6urkD1ZUQHBweCg4MN8hwVV7cjs1K2+lKuzcbtIR7Ens/jx/0pPLv6GBtmD6S9o7VRnzMlr5Q5v51gb1IeACFeTrx3dw86t8AdMJqKtUrBkvt78UF0Aku2JbFkWxLJuSV8MDG01SU4hvLp1kTWH0tHIZfx6f09m+2e6o2h95zFIUOGoNFo+PXXX4mLq95jtGvXrowbNw6Fovn8Qoo5i02joFTNtG8PcvjiFSwUMrydbbiQV0pucSXbE3LYnpDDWxvOMCrIjccG+9PbV8y10VdKSgqXL18mJSUFjUbDsWPHAOjUqRN2dnZERkYSHBzMQw89xLvvvktmZiavvPIKM2fOrHfkUB8VVdV1c1QiWWxWXr0tmKMp+ZzJKOSRFYf4eUY/o5QE0WglVuy9wPt/J1Cm1mBlIef/IrswdYCfbtFha3H06FG2bdtG+/btCQ8PN8g55XIZz48OxM/Fjrm/nWDjyUwuXdnHVw/3Fn+QN9CfJ9L5IPosAG/c0ZX+HV1MHJFp6P0ukJiYyNixY7l06RJdunQBqifAe3l5sWHDBjp2bB41sMScRePLLirn4WUHiM8swsFKyfKpfQjzcaZcrSEuo5DDF6+w8WQGR1Ly2Xwmi81nshjWpR0vjQ1qkXtsGtu8efP49ttvdd/XrG7etm0bQ4cORaFQ8Oeff/LEE0/Qr18/bG1tmTx5cq2SV41VWVXdn0Sy2LxYWSj44qEw7vxsD2cyCnlq5RG+erg3Sj0vB9fnXFYRL/56giMp+QD09Xdm4YQeraL8SH1+/PFHPv74Y1QqlcGSxRp3h3ni1caax384zPG0AsYv2cPXk/sQrMc80NboeGo+z/18HIBpA/x4IMLHxBGZjt7vALNnz6Zjx46kpqZy5MgRjhw5QkpKCn5+fsyePduQMRqVGFk0royCMiZ9EUt8ZhHt7C35eUY/wnyqRw2tLBT09G7Do4P8+e3JAWyJGsyk3l4o5TK2JeRwy0e7eP3305RWGnZnkZZuxYoVSJJU52vo0KG6+/j4+LBx40ZKS0vJycnh/fffR6k03AhS5dXiwCoDJhlC0/BytuGrh3tjqZSzLSGHeb+fNsjmCsUVVSzYGMeYj3ZxJCUfO0sl79zZnZWP9m21iSJAly5dCAkJMdoAS4R/W9Y9OQD/drakF5QzceleYuKyjPJcLUl6fhmPfneIiiotwwNdefnWoAafo6KigkOHDtU6duTIEdavX8/hw4fJz883ULTGp/enw44dO4iNja1VJqdt27YsXLiQAQMGGCS4piAXdRaNJvVyKfd/HUvq5TI6OFmzcnrEf9b+6uRqz//u7sHjQ/xZ+Fc8m89ksWLvBbYnZPPBPSG6JFMwf5VX5yxaipHFZqmndxs+ujeUJ348wsr9KShkMt64o6tei9EkSeLPExm8vSGOzMLq+psjg1x5445ueDgZd05kczB9+nQ6dOjA2LFjjfYcvi62rH1iAE/8eJi9SXk8+t0hXh4bxCMD/cQCw3oUlat59NtD5BRVEOhuz8f39Wzw9Ij8/Hw8PDwoLy8nNzcXe/vqq2TLly/niy++0N3Pw8OD4OBgunbtSp8+fYiIiKBjx45m93PRO1m0tLSkqKiozvHi4mJd3ajmoGbgQ+zgYljJuSU88FUs6QXl+LS1YeX0vnS4yQ8G/3Z2fPlwb3aczeHFX05wIa+UiUv38VxkF54can6dSKhLN7IoksVm65Zu7fnfXT148dcTfB97kYoqDW/f2b1BK5T3JuXy3t8JHL16ydnb2YbXxwUzPNDtvx8oGJyjjQXfTgtn3vpT/HQglbc2xHE+t4T547rqveq8Jaqo0jDjh8OcySjExU7F15NvvJVfTk4OP/30E3l5ebpatE5OTvj4+HD58mWSkpIIDQ0FwNPTkz59+pCWlkZGRgbp6emkp6ezZcsW3fnatm1LREQE/fr1Y+jQoYSHh5s8r9I7Wbztttt47LHHWLZsmW6exf79+5kxYwbjxo0zWIDGppRXd5IqjUgWDWX/+Txm/HCYK6VqOrazZeX0vrjpMal6SOd2/P3sYF7//TRrj17ivb8TOJ6azwf3hGBv1bxX4bd0NSOL4jJ083ZPby8A5vx6gp8PpZGeX86S+3vhaHP9/idJEvuTL7NkWyK7zlXXTLSykPPEkE48PsS/xWzT1xxZKOS8c2d3Oraz4+2Ncazcn0JKXilLHuiFo7V4T9VqJZ77+Th7EvOwVSlYPiUczzb1r3zWarVs376dL7/8kt9++w21Wo2VlRXPP/88dnZ2QPUV2Hbt2iGTyXS7Cr344ou88sorQHU90DNnznDmzBlOnDjB/v37OXLkCHl5eWzcuJGNGzcC8PDDD+vmoUuShEajMei0oZuh97N9/PHHTJ48mX79+unK51RVVTFu3Dg++ugjgwVobNYW1R9mZWqNiSNp/iRJ4rt9F3lrwxnUGokQT0e+ntyHdvb6r7B1tLZg0T0hhPs589r602w+k8WEz/ayYlr4TY9UCk2vpnSOGFls/u7p7UVbWxVP/XSU3Ym5jP14F4vvDaXPvyoWFJSp+ftUJt/uu8Dp9Oqi2BYKGfeHezNzWCexCvc6li9fzrPPPsvtt9/OqlWrjP58NVsE+rS15elV1T/TOz7dzaf396JbB8cbn6CFkiSJNzec4c8TGVgoZCx9KIzunnVfj6ysLFasWMHXX39NYmKi7nhYWBgPPvhgrfm9NaXJrsfBwYG+ffvSt29f3bGKigqOHz9ObGwsu3fvZvv27QwePFh3++nTpxkwYABjxoxpkt+XGnoni05OTqxfv55z584RFxeHTCYjKCiITp06GTI+o6upOyWSxcZJu1LKK+tOsT0hB4Cx3d0NVtdLJpNxX7g3Qe0dePz7Q5zLLubOJdX7n7bmNzdzVimSxRZlRJAbPz/ej5krj3Axr5RJX+zjgQgfbuvuxu5MGX/8eJSd5/J00w+sLORM6OXJE0M6tsqadA3h4OBAaWkpFy9ebNLnHXV1i8DHvjvMhbxSJny+l1dvC+bBCO9WOdXns+1JLN9zAYD3J4YwKOCfurZarZaYmBi+/PJL1q1bR1VV9aJLe3t7HnzwQaZPn66rOtFYlpaWhIeHEx4ezuzZs5EkSfd8UD1aWVhYyOXLl2s9btasWXTu3JmhQ4fSrVs35HLDvvc2ehwzICBAlyA2x18wG4vql6C0UiSL+sgrruCbPcl8vSuZiiotKqWcl8YEMrm/r8F/H0K9nFj75ACmLj9IQlYRk77Yx5IHejG0y3//9SY0vZqkQSxwaTm6dXBkw+xBvLb+NL8eSeP72It8H3sRUADVfyQGuNpxZ68O3NfHmza2zWfuuin5+FSXY0lJSWny5+7q4ciG2QP5vzXH2RKXzavrThF7Po+FE7q3qqk+X+xI4r2/EwB45dYg7gjtAEBGRgbLly/n66+/Jjk5WXf/vn37Mn36dCZNmoStrXFX8stkslqbn8yYMYO+ffvWSiAzMjJYsmSJ7nsXFxfCw8MJCAhg7NixREZGNjqORiWL3333He+99x7nzp0DoHPnzjz//PM89NBDjQ6sqehGFlthsphbXMHvx9Kp0mrxdrYl1MsJd8cbXyqqrNKyNymXP09k8MfxdN0lx77+zrxxRzej7r7g4WTNmif68cQPh9mTmMf07w7x8b09GdO9vdGeU2g4MWexZbKzVPLBPSHcFdaBT7cmkphdjKOsjLG9AxjTw4MubvbNctDAlGqSxYyMDCorK5t8IYOTjYqvHu7Nst3JLPwrng0nMjiZVsAH94TUmWrQEn296zwL/ooHIGpUZx4d9M+2qVOmTGHz5s0AODo68tBDDzF9+nR69OhhklgBFAoFYWFhtY5ZWFiwYMECtm/fzu7du8nNzdXNd/zoo4/47rvvGp2X6Z0sLlq0iFdffZVZs2bpSuXs3r2bGTNmkJuby7PPPtuowJpKTbJY2oouQ2eWwsvrTrPueIbuQ72Gu4MVPTwd8XK2oa2dCluVErVGS1mlhvSCMhKzizmeVlDrcT08HXlyaCdGd3Vrkg8KBysLlk8JJ+rnY/x5IoNZPx3lgyot43t2MPpzCzdHrIZu2fp3dKF/RxfUajUbN25k7LCOzX7rV1NxcXFBpVJRWVlJ586dSU9Px9PTk9DQUMLDw4mIiKBPnz66RRPGUDOPsZdPG55aeZSUy6Xc88U+Hh3ox3ORXVrsoqTle5J5a0P1DnT3dVGSseUbLgXOokOH6s+SRx99lJKSEh577DHuvvtubGzMc0qFi4sLc+bMYc6cOajVag4ePMjJkyf55Zdf2LJlC4sWLTJdsvjJJ5/w+eef8/DDD+uOjRs3jq5du/L6668bNFlcsmQJ7733HpmZmYSEhPDJJ58YrNK9jUXrGFmUJIm9SXl8uSOJHeeUwCUAQjwd8XWx5WxWMQmZhWQWlpN5pvyG53Oxs2RMN3fuCPUgzKdNk48mqJRyPrq3J1YWCn45nMazPx+jTK3hvnDvJo1DqJ8YWRSEmyOTyXB1dSUtLU03bzE5OZnk5GTWrl0LwIMPPsj3338PgEajIT4+nqCgIIPPS+vl3Ya/nhnEm3+cYc3hNL7alczW+GzevTuEMJ82Bn0uU/tqZxJvb6weUZw5rCPRH8wmOjoae3t7XnrpJQDuvvtuJk6caMowG8zCwoL+/fvTv39/Jk6cyOOPP86UKVOQJKlRn9N6J4sZGRn079+/zvH+/fuTkZGhd0D/tnr1aqKioli6dCkREREsXryY0aNHk5CQcMOVRjejvgUu5WoNaVfKSL1SSk5RBVdKKrlSqqZcraneDYPqEgQOVhY4Witpa2eJl7MN3s42tLGxMKvLMGqNlo0nM/hy53ndCkUZEiOD3HhsSEd6X5PolVZWcepSIScvFZBdWE5OcQXlag0qhRyVUk57R2u8nW0I9XbC38XW5O1UyGW8e1cPrC0UfB97kbm/naSsUsO0gX4mjUsQq6EFoSHuueceNm3aRNeuXZk7dy75+fkcOXKE/fv3ExsbS0REhO6+cXFxdO/enQ4dOpCamvrP+3dpqUFGvhysLHhvYgi3dHNnzm8nScop4a7P9zIxzJMXxwTiYmeY/eNNpbS8knuj3uSvn77G7f6FPDOuL89FdqZN6j1YWFjQp08f3X1N/RnXWM7OzqxZs8Yg59I7WezUqRM///yzLgOvsXr1agICAhodWI1FixYxffp0pk6dCsDSpUvZsGED33zzDXPmzGn0+W1qLkNXatgan8U7G+NJzC7W+3x2lko6utoR3N6BYA8Hgts7EOhuj+0NinoaWlG5mtUHU/lmdzLpBdUjhVYWcu7q2QHfymSm3BVa57KRjUpJuJ8z4X7NZ56KXF69s4S1SsGXO8/zxp9nqKjS8sTQ5rE3eUslVkMLws0bPHgwCxcurPWePGzYMN3/NZp/BjMuXLiAra0tAQEBtZKZXr16UVlZSd++fYmIiKBv376EhoZiaalfcjciyI3oZ9vw9oY41hxOY83hNP4+ncnsEQE82NenWV6a/mnDNh5//HGKLlWvs+irOM9zkQ9XX4Z/9FEeffRRE0dovvTOYObPn8+kSZPYuXOnbs7inj17iImJ4eeffzZIcJWVlRw+fJi5c+fqjsnlckaOHMm+ffvqfUxFRQUVFRW67wsLq0fT1Gq1rijmtVRXP8uOpRaw6XQW6qvFuW1VCjzbWOPmYEkbGxVtbCywVimQIUMmq/4wLCyvorBMTU5xBalXysgqrKC4oorjqfkcT83XPYdMBv4utnTzcKCrhwPdOzgQZIQEsqJKy/7ky6w/lkF0XBZl6uoP7La2Kh7q68394Z7YWciIjk6u97Vozv5vZEdUcvh0+3n+tyme8ko1s4ZVJ4w1bW2qNheUqfl230W2xOXwYIQX9/T2rPd+Le1ncC0xZ1EQDEeh+Ccxu+2228jPzycvL093rLCwkHPnzqHVaklOTuann34CQKVS0b9/f0aNGsWoUaPo1atXrXPdiJONivcmhnBvuDevrjvFmYxC3toQx7LdyTw1PICJvT2bxe4vyWmZ3D/zBWL/+BEkLQprOx5/di7vvfxMsx89bCp6Zyt33XUX+/fv58MPP2TdunUABAUFceDAAYPVG8rNzUWj0eDmVntrKDc3N+Lj4+t9zIIFC3Tb7Vxr8+bN9Q7RJ+XIAAWpV8oACHDQMrmzFjtlFTJZRe07V/7rwRZXvxwAD6jUwOUKyCiVkVYq41IJXCqRUaiWkZRTQlJOCeuPV1+ilyHhag1ethJedhJethLu1mCjrE4ub0aFBtJL4WKxjIR8GYmFMiq1/zzYzVpiWHstvduVYlEaz77t/7xm0dHRN/ckzUgAcKuXjA2pCj7amkRcwjnGeml1r6cx21yshjNXZJy6IuP0FRlVUvWTvrz+DKUXT+BaT/3w0tJSo8VjamLOoiAYj1KprPW56ODgwOXLlzl48CCxsbG6y9e5ubls376d7du38/LLL+Ps7Mzw4cMZNWoUkZGR+Pr63tTzhfm04Y+nBvLzoVQ+jjlHRkE5L609yadbz/FQP1/uC/fCycb8SiUlpWTwxNy3iPllBdrK6vfbzv1vYd0PXxLk52Xi6JqXBiWLUVFRvPnmm9ja2rJz50769+/PDz/8YKzY9DJ37lyioqJ03xcWFuLl5UVkZCQODg517i87mc73iad0378yoQ/9O7Y1aEw5RRWcSi/kVHohp6/+m1VYQVYZZJXJOJT7z31tVQo6OFnT3skKByslNiol1hZyqrQS5erqVclZReVkFpRzqaAc6V+7FLrYqbilqxt3hLQnxNOxzl9NarWa6OhoRo0a1SJXL44Fuu+5wMJNZ9l8SY63nz/PDvNly5YtBm2zJEmcyy5ma3wO287mcjQ1v9bPItDNjvis6ukMVt49GNun7uhizah3SyRGFgWhaTk6OjJy5EhGjhwJXH2POneOLVu2EB0dzdatW7l8+TK//PILv/zyCwBnzpwhKChId///GmVTyKs3R7izZwdW7k/hs+2JpBeU879N8XwUc5Zbu3twR6gH/Tu2RWnCPxLLKyr5YvWffP7l15yNjUbSXC2g7dGJV+a/yQuP3muy2JqzBiWLn3zyCS+++CK2trYMGzaMjIwMgywyuR4XFxcUCgVZWVm1jmdlZeHu7l7vYywtLeudo2FhYVFvomBv/c997SyVDOzshkJu2GFpD2cLPJztiOzmoTuWXVTOqUsFnEyrXlByOr2AjIJySio1nM0u5uxNzpt0tbck2MOBfv5tGdy5HYHuN1fn7HqvR0swY2gAVhZKXv/jDF/vvoBao6Wn1Pg25xVXEHv+MnuTctl5LofUy2W1bg9u78DIIFciu7rT1cOBxVvO8VHMOQ5ezOeh/nUX3bTU1x+uHVkUl3gEwRRkMhmdO3emc+fOPPnkk1RVVXHw4EE2b95MdHQ0qampBAYG6u4/depUkpOTmT9/PkOHDr3uea0sFEwb6Mf9Ed78cTyd5XsucCajkF+PpPHrkTScbVUMCnBhYCcXfJ2tSDt/Fq0k0SW4O1VaieLyKnbu2MbOnTtYvmE3OTk5yGQyQkN6MLx/OLcM6o2N1c3Ps5QkifO5JRxKvswbLzxFwv6taMr/+fx08Axg1rMvMH/2VJTK5jfP0lw0KFn09fXl448/JjIyEkmS2LdvH23a1L+c/tq9DPWlUqkICwsjJiaG8ePHA/9suzNr1qxGnx+qR/Jq9PZtY/BE8Xpc7a0YHmjF8MB/LiWUqzWk55eRdqWMjIIyiis0lFRUUVqpQaWQYWmhwFIpx83BCg8nK7ydbRu173JLNmWAHyqlgpfWnuTbfSlssVGQZJ1IqLczwR4OuNlbIb/Oz1qSJC6XVHLxcmn1SHBaAcfT8onPLKp1P5VSzoCObRkR5MbwQFc8/rVXdV//tnwUc47sohuXImppxAIXoaUxZgm3pqBUKunXrx/9+vXjtddeo7KyUjewoNVq2bBhA7m5ubXK8Rw6dIgTJ07Qt29fOnfujFL5T8pgZaHg7jBPhvpY8ceuI/y2NZYDR05Q4tKR9SVDWH8sHU1JPmmfPgiAz4t/6h6b/dsiys7F1opvz1pYAsgUFjh4+NPepxPt3Nxwc3PDxtqajoFd8e3ai6LyKi5dSueXz96hqLQc53FzKLla+i4j/jSa8mKUNo50GzCKF55+kkljhhi8xFBr1KBk8b333mPGjBksWLAAmUzGnXfeWe/9ZDJZrdVbjREVFcXkyZPp3bs34eHhLF68mJKSEt3q6MZytP5ndGd01/pHK5uKlYUC/3Z2+LczXvHV1uT+CG9USjkvrz3JpVItn2w7D5wHqufSeThZ4WBtgZWFAhnV5ZOKK6rIyC+/7l7hge729OvYlv4dXRjQqS02qut3oTCfNhx4eQSu9jfeFaelqUkWLcVf8kILYOwSbqZw7U4xcrmc/fv3Ex0dTd++fXXHv/32Wz799FPd/f39/Wnbti1yuZyioiIuXrzIlStXap131G13EjnsEfYm5ZKaXkGWfXV1DXcHKxRyGXaWSuyCQshRaHB2aYeLqxuVFRWcP3uGyyln0VaUUpCaQEFqAteuTLDvfQfOI6oHR6oKsrm072+QK1FFVmKlsiDE0wnrGc/RP8ibqRNGo7Jo2gokLV2DXs3x48czfvx4iouLcXBwaJKOMmnSJHJycpg3bx6ZmZmEhoayadOmOote9OXnYsM4bw0Devfgnj5iwmtLc3eYJ0M6OfPe6i2oHb04damQpJxiKjVaLuT99wITNwdLAt0d6N7BkW4dHAnzadOgkVyVUt4qE0W4ds6iuAwtNH/GLuFmDvz9/Xn88cdrHQsODmbgwIEcO3aM4uLi6y4s9fT0JDAwkK5duzJkyBDuHN0F6FJ941sT6txfPatf9c4/Y8fWmo5TVaVh77EzbNoRS/y5RDIyMriSl4u6sgLPkBC6dnfH3tICS9w5zYuEdA1m4p2D6OjmePUqRj9DvRzCv+iVetvZ2bFt2zb8/PxqDUvXZ+HChcyYMQMnJyd9ngqAWbNmGeyy87/JZDJGdJAY27ODWELfQjnZWDDATWLs2G5YWFig1mjJLCgnPb+Mksoqyiq1aCUJG5UCG5WS9o5WtHeyEqNijTB3TBd27DtERxdbU4ciCI3S0BJuDS3f1tSlvRqipvagVqvlwoULupFErVaLnZ0dHTp0oGPHjnUqjdyoLf/V5n4hgfQLCaxzvI47rtmfWdKgNvMte83153yz8eg9TjtkyJCbut8777zDPffc06hkURAMyUIhx8vZBi9n89znsyUY2rkdpYkSbZv5bg+C0NASbg0t31ajuZQzs7Kqvlqi1WpJTU0lNTVV73M1lzYbkrm1+WZLuBn9or7079ouTazm+a9XpkStVlNaWkphYWGLXp1ao7W1F8y3zTW/k6buI/r6r75lrq+5MYk2m0+bTdm3/l2+raCgAG9vb/r164e9vX2d+6vVarZt28awYcPM6jU0JtFm82lzUVH1ws0b9ZUWPwO05oXw8hLzEQXzVFRUhKOjo6nDaDDRtwRzZ4i+1dASbv8u31aTuPr5iT3rBfN1o77S4pNFDw8PUlNTsbevv/5gTdHu1NTUeot2tzStrb1gvm2WJImioiI8PDxufGcz9F99y1xfc2MSbTafNhuybzW2hJv4DKpLtNl82nyzfaXFJ4tyuRxPz/r35r2Wg4ODWf0Aja21tRfMs83NcUSxxs30LXN8zY1NtNk8GLJvNaaEm/gMuj7RZvNwM32lxSeLgiAIgtAYxi7hJgjmzuBlzUtLS9m7d6/u+0GDBmFtbf0fjxAEQRAE8zZr1iwuXrxIRUUF+/fvJyIiwtQhCUKTMfjI4rlz5xg0aJBuB5eNGzca+ikMytLSktdee63e/aRbotbWXmidbTa11viaizYL+miNr6Foc/MjkwxcW+D48eP06tXLYNv9CYIgCIIgCKYjdtcWBEEQBEEQrkski4IgCIIgCMJ1NXjO4u+///6ftycnJ+sdjCAIgiAIgmBeGjxnUS6/ucFIrVarV0CCIAiCIAiC+WjwZWitVnvDr+LiYmPEanBLlizB19cXKysrIiIiOHDggKlDMpoFCxbQp08f7O3tcXV1Zfz48SQkJJg6rCa1cOFCZDIZzzzzjKlDafFE32o9fUv0q8ZpLX2ltfcTaN59xaBzFisqKli0aBH+/v6GPK1RrF69mqioKF577TWOHDlCSEgIo0ePJjs729ShGcWOHTuYOXMmsbGxREdHo1ariYyMpKSkxNShNYmDBw/yxRdf0KNHD1OH0uKJvtV6+pboV43TmvpKa+4n0AL6itRA5eXl0pw5c6SwsDCpX79+0tq1ayVJkqRly5ZJ7du3lzw9PaWFCxc29LRNLjw8XJo5c6bue41GI3l4eEgLFiwwYVRNJzs7WwKkHTt2mDoUoysqKpICAgKk6OhoaciQIdLTTz9t6pBaNNG3WkffEv2q8VpzX2kt/USSWkZfafDI4rx58/j888/x9fXlwoULTJw4kccee4zFixezaNEiLly4wIsvvmjwpNaQKisrOXz4MCNHjtQdk8vljBw5kn379pkwsqZTUFAAgLOzs4kjMb6ZM2dy66231vp5C8Yh+lbr6VuiXzVOa+8rraWfQMvoKw1eDb1mzRq+++47xo0bx6lTp+jRowdVVVUcP34cmUxmjBgNLjc3F41GU2dfTzc3N+Lj400UVdPRarU888wzDBgwgG7dupk6HKNatWoVR44c4eDBg6YOpVUQfat19C3RrxqvNfeV1tJPoOX0lQaPLKalpREWFsYbb7yBv78/lpaWPPvss7pEsaysjDfeeMPggQqGM3PmTE6dOsWqVatMHYpRpaam8vTTT/Pjjz9iZWVl6nCEVqA19C3Rr4TGag39BFpWX2lwsqjRaFCpVMyfP5/i4mKUSiV2dna620tLS5k/f75BgzQ0FxcXFAoFWVlZtY5nZWXh7u5uoqiaxqxZs/jzzz/Ztm0bnp6epg7HqA4fPkx2dja9evVCqVSiVCrZsWMHH3/8MUqlUmxJaQSib7X8viX6lWG01r7SWvoJtKy+0uDL0JIkMWXKFLRaLVOnTqW8vJwZM2Zga2sLQE5ODkplg0/bpFQqFWFhYcTExDB+/Higelg8JiaGWbNmmTY4I5Ekiaeeeoq1a9eyfft2/Pz8TB2S0Y0YMYKTJ0/WOjZ16lQCAwN58cUXUSgUJoqs5RJ9q+X3LdGvDKO19ZXW1k+gZfWVBmd1FhYWbNmyBZlMxpYtW5DL5Wzfvh2o/mWoqqqiS5cuho7T4KKiopg8eTK9e/cmPDycxYsXU1JSwtSpU00dmlHMnDmTlStXsn79euzt7cnMzATA0dERa2trE0dnHPb29nXmw9ja2tK2bdsWP0/GlETfatl9S/Qrw2lNfaW19RNoWX2lwcnil19+iSRJTJs2jffeew9HR0fdbSqVCl9fX/r162fQII1h0qRJ5OTkMG/ePDIzMwkNDWXTpk11Jhu3FJ9//jkAQ4cOrXV8+fLlTJkypekDElos0beqib4l3Ehr6iuinzRvDd7ur8aOHTsYMGCA2V9yFgRBEARBEPSn9w4uJSUlxMTE1Dn+999/89dffzUqKEEQBEEQBME86J0szpkzp96VPJIkMWfOnEYFJQiCIAiCIJgHvZPFc+fOERwcXOd4YGAgiYmJjQpKEARBEARBMA96J4uOjo6cP3++zvHExERdGR1BEARBEAShedM7Wbzjjjt45plnSEpK0h1LTEzkueeeY9y4cQYJThAEQRAEQTAtvVdDFxQUcMstt3Do0CFdFfa0tDQGDRrEb7/9hpOTkyHjFARBEARBEExA72QRqhezREdHc/z4caytrenRoweDBw82ZHyCIAiCIAiCCTUqWRQEQRAEQRBatkZV1C4pKWHHjh2kpKRQWVlZ67bZs2c3KjBBEARBEATB9PQeWTx69Chjx46ltLSUkpISnJ2dyc3NxcbGBldX13pXSpuCVqslPT0de3t7ZDKZqcMRBB1JkigqKsLDwwO5XO+1ZiYj+pZgrsypb4l+Ipizm+0reieLQ4cOpXPnzixduhRHR0eOHz+OhYUFDz74IE8//TQTJkzQO3hDSktLw8vLy9RhCMJ1paam6haJNSeibwnmzhz6lugnQnNwo76i92XoY8eO8cUXXyCXy1EoFFRUVODv78+7777L5MmTzSZZtLe3B6pfCAcHhzq3q9VqNm/eTGRkJBYWFk0dXpNrbe0F821zYWEhXl5eut/R5ua/+lbNaz5q1ChUKpUpwmty5vp7Zkzm2mZz6lviM6gu0WbzafPN9hW9k0ULCwvdkKWrqyspKSkEBQXh6OhIamqqvqc1uJphfwcHhzod9acDKcxbf4pgRzvudnAwqx+gsajVamxsbHBoJe0F829zc7009V9965YPd3A2yx6/Plr6dqr7AdkSmfvvmTGYe5vNoW/9Vz8B838NjaGp2yxJEifSCtiblMfhi1c4n1NMdlEFnm2s6exmT4CrHQFu9gS1t8enrXE2FTH3n/ON+oreyWLPnj05ePAgAQEBDBkyhHnz5pGbm8v3339Pt27d9D1tk1NrJDRiPbggGJRWAi0yKjVaU4ciCEIrdbmkku/3XeTXI2mkXC6tc3t8ZhHxmUW1jnV2s+PW7h5M6NUBL2ebpgrV7OmdLL7zzjsUFVW/yG+//TYPP/wwTzzxBAEBASxbtsxgARqTQl6dSYtkURAMy9Ki+qpDRZVIFgVBaFrZheV8tj2JVQdTKFdXvwfZqBQM7ORChH9bgtztaWdvScrlUs5mFXMuq4hz2cXEZxZyNquYs1ln+SjmLGO6tWf6YH9CvZxM2yAzoHey2Lt3b93/XV1d2bRpU4PPsWDBAn777Tfi4+Oxtramf//+/O9//6NLly66+5SXl/Pcc8+xatUqKioqGD16NJ999hlubm76hq5joahOFrUiWRQEg7JUXk0W1SJZFAShaZSrNSzbncySbYmUVmoA6N7BkUcG+hHZ1Q0bVe2UJ8DNnhFB/+QSBWVqos9kse7oJXYn5rLhZAYbTmYwpps7c8cE4d229Y406l1TYPjw4eTn59c5XlhYyPDhw2/qHDt27GDmzJnExsYSHR2NWq0mMjKSkpIS3X2effZZ/vjjD9asWcOOHTtIT0832OIZxdU5lyJZFATDUinEyKIgCE0n9nweoxfv5L2/Eyit1NDT24kfH43g91kDGN+zQ51EsT6O1hbcHebJD49G8NfTg5jQqwNyGfx1KpORi3bwweYEKlvpe5reI4vbt2+vU4gbqkcCd+3adVPn+Pdo5IoVK3B1deXw4cMMHjyYgoICli1bxsqVK3UJ6PLlywkKCiI2Npa+ffvqGz4ASnnNyKLpJ0ELQkuiUopkURAE4yupqOLdTfF8u+8iAO4OVswdG8i4EI9GLXAKau/AontCeWywP29viGPXuVw+2ZpI9Jks3p8YQrcOjoZqQrPQ4GTxxIkTuv+fOXOGzMxM3fcajYZNmzbRoUMHvYIpKCgAwNnZGYDDhw+jVqsZOXKk7j6BgYF4e3uzb9++epPFiooKKioqdN8XFhYC1SuR1Gp17Ttrqz/INBJ1b2uhatrZWtoL5ttmc4vHkGouQ1dWaUwciSAILdWpSwXMXHmEi3nVi1fuC/fmpbGB2FsZbrVxoLsD300L569Tmby67hTxmUWMX7KHl28NYkp/X7NYcd8UGpwshoaGIpPJkMlk9V5utra25pNPPmlwIFqtlmeeeYYBAwboVlNnZmaiUqlwcnKqdV83N7daSeq1FixYwPz58+sc37x5MzY2tecbnLoiAxRoJYiOjm5wzM1Za2svmF+bS0vrrs5rKSyVCkCMLAqCYHiSJLHyQArz/zhDZZUWD0cr/nd3DwYFtDPK88lkMsZ2b0+EnzMvrz3FptOZzP/jDIcuXuF/d/XAzrJROyc3Cw1uYXJyMpIk4e/vz4EDB2jX7p8fjkqlwtXVFYVC0eBAZs6cyalTp9i9e3eDH3utuXPnEhUVpfu+puBkZGRknRpXdudy+Sr+CFpg1KhRZln7yNDUajXR0dGtpr1gvm2uGfVuicRqaEEQjKGkooqX155k3bF0AEYEuvLBPSE42Ri/+H9bO0s+f7AXK/Ze4O0NcWw4kcH5nBK+mdKb9o7WRn9+U2pwsujj4wNUjwQayqxZs/jzzz/ZuXNnre1m3N3dqaysJD8/v9boYlZWFu7u7vWey9LSEktLyzrHLSws6iQKlle/10j1396Stbb2gvm12ZxiMbR/LkOLZFEQBMO4lF/GIysOEp9ZhEIu44XRXZg+yB+5vOkuBctkMqYO8KOHpxOPf3+YuIxC7lyyl2+m9CHYo+VuQNCosdNz586xbds2srOz6ySP8+bNu+HjJUniqaeeYu3atWzfvh0/P79at4eFhWFhYUFMTAx33XUXAAkJCaSkpNCvX7/GhA78U2dRrIYWBMOyFAtcBEEwoGOp+Tz67SFyiytwsbPkswd6Ee7nbLJ4wnzasG5mf6YuP8i57GImLt3L0ofCjHYp3NT0Tha/+uornnjiCVxcXHB3d681yVMmk91Usjhz5kxWrlzJ+vXrsbe3181DdHR0xNraGkdHRx555BGioqJwdnbGwcGBp556in79+jV6JTSAUtRZFASjEKuhBUEwlI0nM3h29TEqqrQEutuzbEofOjiZ/rKvZxsbfnmiP0/8cJi9SXk8suIQnz3Qi5HBja8DbW70Thbfeust3n77bV588UW9n/zzzz8HYOjQobWOL1++nClTpgDw4YcfIpfLueuuu2oV5TYEMbIoCMYh6iwKgtBYkiTx+Y4k3t2UAMDwQFc+vq+nWS0ocbS2YMXUcJ5edZS/TmUy44fDfHxfT8Z2b2/q0AxK76LcV65cYeLEiY16ckmS6v2qSRQBrKysWLJkCZcvX6akpITffvvtuvMVG0optvsTBKOoWeAiSucIgqAPSZJ4e0OcLlGcNsCPrx7ubVaJYg2VUs4n9/XkjlAPqrQSs1YeYf2xS6YOy6D0ThYnTpzI5s2bDRlLkxMji4JgHKJ0jiAI+tJoJeb8epKvdycD8Optwcy7PVj3mW2OlAo5i+4JZWKYJ1oJnl19jN+Pp5s6LIPRO0Xv1KkTr776KrGxsXTv3r3Oys7Zs2c3OjhjU4rt/gTBKMQCF0EQ9FFZpeXZ1cfYcDIDuQz+d1cPJvb2MnVYN0Uhl/G/u3qgkMtYdTCVZ1YdRS6D23p4mDq0RtM7Wfzyyy+xs7Njx44d7Nixo9ZtMpmseSSLYoGLIBiFSBYF4cbK1RpeWXua8xfljBqtpQVX07opZZUaZvxwmB1nc7BQyPjkvp7c0q15zf2Ty2W8c2d3NFqJNYfTeHrVMeQyGaMCXUwdWqPonSwmJycbMg6T0M1ZNHEcgtDSiGRREG5MJoNfjlwC5JSrNdhYmToi0yksV/PIioMcvHAFawsFXzwUxuDOzbMMjVwuY+FdPdBIEr8ducTsn46y+J4epg6rUfSes3itmoUpzY1uzqL4PBNamJ07d3L77bfj4eGBTCZj3bp1tW6XJIl58+bRvn17rK2tGTlyJOfOnTPY86tEUW5BuCGVQk7NNLwydevtK3nFFdz3ZSwHL1zB3krJD4+GN9tEsYZCLuO9u0O4s2cHqrQSz/x8gr1ZsmaZK0Ejk8XvvvuO7t27Y21tjbW1NT169OD77783VGxGVzNnUYwsCi1NSUkJISEhLFmypN7b3333XT7++GOWLl3K/v37sbW1ZfTo0ZSXlxvk+cUCF0G4MZlMhrVFdV8pU7fOT6KzWUWM/2wPp9MLcbFTseqxvoT5mK7YtiEp5DLenxiiWyW9+ryCR747Qnp+malDazC9L0MvWrSIV199lVmzZjFgwAAAdu/ezYwZM8jNzeXZZ581WJDG8s9q6Oab7QtCfcaMGcOYMWPqvU2SJBYvXswrr7zCHXfcAVT/4efm5sa6deu49957631cRUUFFRUVuu9r9rZWq9Wo1epa91VQnSSWq6vq3NZS1bSztbQXbr7NJRVVpOeXc7m0ksoqLQq5DGdbFR6OVjhYG36iXnP6GVhZKCip1FBe2bqSRUmC9cczeP2POIorqvB2tmH51D50bGdn6tAMSiGXseieUALd7PhgcwK7EvMY/eFOXrktiHt6e9Xa0MSc6Z0sfvLJJ3z++ec8/PDDumPjxo2ja9euvP76680iWVReswxfLHIRWovk5GQyMzMZOXKk7pijoyMRERHs27fvusniggULmD9/fp3jmzdvxsbGptax1GIAJVeKStm4caMhwzd70dHRpg6hyf27zZUaOJMv48wVGUlFMnLLr/+BaKuU8LGT8LOXCHKS8LStnsvXGKWlpY07QROyvlqTtDWNLGYUlPNlvJwzsScBiPBz5vMHw3C2VZk4MuNQyGU8OtAXRdYZNua15VhqAS/+epINJzNZOKE7HmawG82N6J0sZmRk0L9//zrH+/fvT0ZGRqOCaioKxT/vSFUiWxRaiZptNd3cam9J5ebmprutPnPnziUqKkr3fWFhIV5eXkRGRuLg4FDrvucyC3j/5H6qUDJ27GgDRm++1Go10dHRjBo1qk4psZbq321OuVzKN3susv54BsUVVbXu62RtgbOtCkulnCqtltziSq6UqimpklUnlvmwIRU6OFlxS1c3JvX2xM/FVq+4aka9mwMri9YzZUOrlVh5IIUFf8VRUiHHQiHj6REBPD6kIxYKgyyhMGtu1rDq0XC+25/K+5vPsvNsTrMZZWxUncWff/6Zl156qdbx1atXExAQ0OjAmsK1I4sascpFEP6TpaUllpaWdY5bWFjUSY6cbKuXdZaqNSiVSrN+EzS0+l6Plq6wQsuHG+P45Ugamqt/eHs5WzM62J1BndvRzcOBtnZ1f3dKK6s4m1XMkYtX2J+cx86zuVzKL2fZnoss23ORAZ3a8lBfH0YFuzeoIHNzev2tVa1jzuKZ9EJe+/0UBy9cAcDXTuLzqf0J6tDGxJE1LYVcxmODOzI80I3nfznO0ZR8Xvz1JBtPZrLwru60dzTPUUa9k8X58+czadIkdu7cqZuzuGfPHmJiYvj5558NFqAxKWoli2JkUWgdarbLzMrKon37f2qYZWVlERoaapDnsLWs/gCUJCit1GBrhlt0CY0nSRKHcmS8/slerpRWzxMc0rkd0wf5079jW+Q3SPBsVEpCvZwI9XJi2kA/yio17DibzZpDaWxNyGZPYh57EvPwaWvDo4P8mRjmqRuJM4TXX3+9ztSKLl26EB8fD0B5eTnPPfccq1atoqKigtGjR/PZZ5/VGZVvjJr2lLXQOYsFZWo+jD7Ld/suoJXARqUgamQn2l4+TSfXljU/sSE6udrxy4z+fL3rPB9En2XH2RwiF+3k1duCmdjb0+z+wNZ73Peuu+5i//79uLi4sG7dOtatW4eLiwsHDhzgzjvvNGSMRlOzGhrEZWih9fDz88Pd3Z2YmBjdscLCQvbv30+/fv0M8hzWFgpkVPepf1+OFFqG9Pwypv9wlO8TFVwpVRPobs+vT/Tj22nhDAxwuWGiWB9rlYJburVn2ZQ+7HphGDOHdcTJxoKLeaW8uu4U/Rdu5dV1p9iXlGewdnTt2pWMjAzd1+7du3W3Pfvss/zxxx+sWbOGHTt2kJ6ezoQJEwz23ABWV8tMlbew0jmSJPHr4TRGfLCdFXurE8Vbe7Qn5rkhTO7ngxnv3NdkFHIZjw/pyMbZgwj1cqKooooXfj3BlOUHySgwrxXTjfpzPywsjB9++MFQsTS5a39Zxcii0JIUFxeTmJio+z45OZljx47h7OyMt7c3zzzzDG+99RYBAQH4+fnx6quv4uHhwfjx4w3y/DKZDCsFlGmqk0XDjcMI5mDLmSyifj5GYXkVCpnE7OEBPDk8wKDzzjzb2PD86EBmDuvEzwdT+Xp3MmlXyvg+9iI/7L/Issm9GR7Y+N8spVKpG22/VkFBAcuWLWPlypUMHz4cgOXLlxMUFERsbCx9+/at93wNqRoAYKms/iAqLq9sVqu4/8ul/DJeWX+G3YnVSb2/iy3zbgtkQMe2gKgc8G8+bSxZ9Wgfvtl7gcUxSdWjjB/u5KUxXbirp4dRRxlv9megd7K4ceNGFAoFo0fXnrz+999/o9Vqr1u2w5zIZDKUchlVWkmMLAotyqFDhxg2bJju+5qFKZMnT2bFihW88MILlJSU8Nhjj5Gfn8/AgQPZtGkTVlaG20LCsiZZLBcjiy2FRivxweYEPtueBEAPTwduc7nM1KH+RlugYKNSMmWAHw/29WFrfDZf70rmwIXLLN9zwSDJ4rlz5/Dw8MDKyop+/fqxYMECvL29OXz4MGq1ulbVgMDAQLy9vdm3b991k8WGVA0AuJIrB+ScOB3HxitnGt0eU9JKsDdLxu8X5VRoZShlErd4aRnWvoCChP1sTKh9f1E5oLYOwHNdYWWSgovFVcxde5rvtp3kXn8tTnWn/BrEzVYO0DtZnDNnDgsXLqxzXJIk5syZ0yySRageBq7SSmJkUWhRhg4d+p+1Q2UyGW+88QZvvPGG0WKwujq1rERchm4RytUanll1jE2nq1fMT+nvy/OjOrFl86YmeX6lQk5kV3fa2qm46/N9JGYXN/qcERERrFixgi5dupCRkcH8+fMZNGgQp06dIjMzE5VKhZOTU63HGLJqAMDutSc5nJuBt18nxo5oHotD65N6pZSX1p4mNrl6AUuYtxPvjO+Kf7u6K9pF5YD/bvNkrcSyPRf4aGsScfnw/hmV0UYZb7ZygN7J4rlz5wgODq5zPDAwsNblL3OnVMioqBJzFgXB0K6uceHghSv8cSId37a2PNDXBzux2KXZKa2s4pEVh9h3Pg+VQs57E3twR2gHk1xG7NTOHqiu1VdUrsbeSv9k49pBjR49ehAREYGPjw8///wz1tb6rUptSNUAABvL6mNqbfNaxV1Dq5X48UAKCzbGUVqpwdpCwQu3dGFyP98bzlttjZUDbqbNFsDM4Z0Z3a09z605wfHUfOauPc3mM9ksmNADd0fDXQG62ddf7+sGjo6OnD9/vs7xxMREbG31q41lCjXlczQakSwKgiFZKar71IdbzvLTgVQW/BXP4He3sXJ/ihjJb0bK1Roe++4w+87nYWepZMXUPtwR2sFk8TjaWOBytQxPUk6JQc/t5ORE586dSUxMxN3dncrKSvLz82vdJysrq945jvpqztv9pV4u5cFl+3l13SlKKzWE+zqz6ZlBTB3gp9cCJ6G2Tq72/DqjH3PGBKJSytmWkMOoD3ew5lBqk+86p3eyeMcdd/DMM8+QlJSkO5aYmMhzzz3HuHHjDBJcU6gpnyM+vATBsCyvqXBio1Lg29aGyyWVvLT2JLd9stugK1oF49BoJWb/dJTdibnYqBR890g4/Tu5mDosOrlWD0gY4lL0tYqLi0lKSqJ9+/aEhYVhYWFRq2pAQkICKSkpBqsaANeUzmlGq6E1WokVe5K5ZfFO9iblYWUh57Xbg1n1WF982jafwaLmQKmQM2NIRzY8NZAQLyeKyqt4/pcTTFtxkMyC8qaLQ98Hvvvuu9xyyy0EBgbi6ekJQFpaGoMGDeL99983WIDGVlM+R1yGFgTDsr/m6saCCd0Z2709P8Re5MPos8RlFHLfV7GM7urG86MDW3W9NXP2v03xbD6ThUop5+uHe9PL2zwKKM8f1w1LpRwv57oLRhri//7v/7j99tvx8fEhPT2d1157DYVCwX333YejoyOPPPIIUVFRODs74+DgwFNPPUW/fv2uu7hFHzXb/ZU3k5HF46n5vLzuJKcuVc91C/d15t27e+Cr5247ws0JcKseZfxqVzIfRp/VjTK+dntX7urVweh1GfVOFh0dHdm7dy/R0dEcP34ca2trevToweDBgw0Zn9GJkUVBMI6h7bVkaOxQKRVEBrtjoZAzdYAfd4R2YFF0Aiv3p/D36Sy2xGVzT29Pnh7R2aBzcYTGWXMolS93Vk81+mBiiFmMKNbo4m5vkPOkpaVx3333kZeXR7t27Rg4cCCxsbG0a9cOgA8//BC5XM5dd91Vqyi3IdXs4GLuC8EKStW8tzmeH/enIEngYKXkhVsCuT/cW1xybiJKhZwnhnZkZJAr//dL9VzG/1tznDWHUnn1tmC6dXA03nM35sEymYzIyEgiIyOve5/u3buzceNGvLy8GvNURlOTLFaJ7f4EwaBcreHvpweiUChrfZg426p4a3x3Jvfz5d2/E4g+k8VPB1JZe/QSUwf4MWNIRxytW9ekd3Nz+OIVXl57CoDZwztxe4iHiSMyjlWrVv3n7VZWVixZsoQlS5YYLQanq7/rBWZaYqqySsuP+y/yccw53S49E3p2YO7YINrZG6mei/Cfrh1lXLzlLPuTL3P7p7uZGObJ/0V2wdXB8H90G31Z4oULF8y68KZSjCwKglFdb9QhwM2erx7uzaELl1n4VzyHLl7h8+1JrNyfwhNDO/JwPx9sVGLldFPLL61k9k9HqdRoGdPNnWdGdjZ1SC2aQ02yWGpen5OSJPH36UwW/hXPhbzqWnwBrna8cUc3+l0tri2YTs0o47hQD/73Vzy/H0/n50Np/Hkig0cH+jG5v2+9+7Hr/XwGO1Mz9c/IokgWBcEUevs6s2ZGP7bEZfPupnjOZRez8K94vtp5numD/Xmor4/YW7qJSJLEC7+c4FJ+Gb5tbXhvYoi4xGhkupHFMvNIFrXa6iTx022JnE6vnpfoYmfJs6MCmNTbC6WRiq8L+ungZM3H9/Vkcn9f3vzzDMdS8/l4ayJf7jpPX/+23NvHm1u6NX71fqt/B1aKZFEQTE4mkzEq2I3hga6sPXqJT7ae42JeKQv/iufLneeZPsifh/uJpNHYvo+9yOYzWVgoZHxyXy9RE7MJ1Ey5yDdxslhRpeHP4xl8viNJt8rcRqXg0YF+PDako/hdMHNhPm347Yn+bDqdyefbkzh5qYDtCTlsT8hh+dQ+DOvi2qjzt/qfvljgIgjmQyGXcXeYJ+NDPVh3LJ1Pt57jQl4p/9sUz5c7k5g+2J+H+/mKDy4jSMop5u0NcQDMHRNEd0/jTZYX/uFoXf27XFGlpVyt0ZXSaSoX80pYuT+FNYfTuFxSCVQvXpnS35epA/xoY6tq0ngE/cnlMsZ2b8+Ybu6cTi/knY1x7E3KY/PpTJEsNpZSUZ0sqqvEAhdBMBdKhVyXNK4/ls6n2xJJzi3h3U0JfLXzPI9eHWlszO4dwj80Wonn1xynokrLoAAXpg7wNXVIrYIkSaQlJ6LOSkTZzo+lO5KIPZ+Hb1tbhgW6MijAxSjzdi/ll/HXyQz+OJHB8dR83fH2jlY81M+Hh/qKvtWcyWQyunVw5P4Ib/Ym5XEmo6jR52z1yaLd1Y5YXNk8alwJQmuiVMi5K8yTO0I9+P14Op9srU4a3/s7ga92neeRAX5MGeArPtgaafmeZI6k5GNnqWThXT2MXrNNqCZJEiEhIQB4PvUji7ecAyD2/GVWHUzFUimnf8e29PFzppd3G3p4OjY4eZQkibQrZZy6VMC+83nsScyttfONXAYDA9rxYIQ3wwNdxZzEFiSoffVe5AmZhWi0ku5Kqj70Tha/++47Jk2aVGcPzMrKSlatWsXDDz8MwBdffIGbm5veARqbndXVZLHcPCYXC4JQl1IhZ0IvT+4I7cAfx9P5eOs5zueU8EH02eqkcaA/Uwf64iCSxgZLyinmvb8TAHj51iA6OOm3J7LQcHK5HJVKRWVlJVJV9SXgMd3ccXOwYktcFmlXytiWkMO2hBwAZDLwcLTG18UGb2cb2tiocLC2wNZSiSRJqDUSFVUacosqySoqJyO/jLNZxRT/q4ajTAZ9fJy5LaQ9t3Rzx9Ve1DdtiXzb2mJlIadcreVCXgkd2+m/+YHeyeLUqVO55ZZbcHWtfR28qKiIqVOn6pLF+++/X+/gmoL91WSxyExrXAmC8A+FXMb4nh24PcSDP09UjzQmZhfz4ZazfL37PNMG+DFtoJ+o03iTtFqJF385obv8fG8f86yH25JZW1vrkkUHKyXvTQzBzlLJa7cHczarmF3ncjiScoUjF/PJLCznUn4Zl/LL2MPNb5epUsjp5GpHb9829O/oQj//tjjaiD7S0inkMl6+NZi2tqpG18TUO1mUJKneSxVpaWk4Ohp2YvSSJUt47733yMzMJCQkhE8++YTw8HCDnNv+6kT5IjOvni8Iwj8Uchl3hHbgth4ebDyZwccx5ziXXcxHMef4Zncy0wf7M32Qv253DKF+Px9K5dDFK9iqFOLys4lYW1tTUFDAM0O8GDO0r27xlkwmo4u7fa3danKLK7iQW8KFvFJSL5dSWK6msKyK4go1CrkMpVyOhUKOi70KN3sr3Bys6ORqh387WyzE5eVW6aG+PgY5T4OTxZ49eyKTyZDJZIwYMQKl8p9TaDQakpOTueWWWwwSHMDq1auJiopi6dKlREREsHjxYkaPHk1CQkKdUU191Iws/nuYXhAE86eQy7g9xINbu7fnr1OZfBxzjoSsIhZFn+XH/Rf5v8guTOjl2ai5Oi3V5ZJKFm6KB+DZUZ3F5WcTsbauft37+djfcLs2FztLXOws6e3r3BShCYJOg5PF8ePHA3Ds2DFGjx6Nnd0/18BVKhW+vr7cddddBgtw0aJFTJ8+nalTpwKwdOlSNmzYwDfffMOcOXMaff6aifFF5VX8EHuRH2IvculKGeqr2/9JEtQU1VEp5NhZKrG3UmJnpcTOUomDtQWOV7+crvm/o7UFDtYWONlU/9/OUtngv9olSaJSo6W8UkuZWkNpZRVlag3lag1lV4+VqTWUV2qo0kpYKuVYWsixVCpwtlXR3tEKV3tLMWHZBMoqNSTlFNPZzR6VUrz+xiaXy7i1R3XJiD9PZvDupnjSrpTx/C8nWL7nAq/cGmRWexubg4V/xZFfqibQ3Z4p/X1NHU6rZWVVPV+wrKzMxJEIwvU1OFl87bXXAPD19WXSpEm6X3RjqKys5PDhw8ydO1d3TC6XM3LkSPbt21fvYyoqKqioqNB9X1hYXYFerVbXu+3g1RJX/HEikz9OZP53PFVaiiuqyCxsaEuqR0AcrJQ4WFmgUsqQy65+yUGGDLVGS7laS0WVhooqra7mVmPLP1ooZPi2tSHA1Y5OrnZ0bGtNQSVmvQWjodW01dhtrlBr2J2Ux5a4HP4+k0VReRWB7vaseSy83tppreln0FTkchnjQjyIDHbju30X+GRrImcyCrn/6/2MD/XglduCcTHgFljN1aELl/n5UBoAb9/ZTfxBaUI1I4siWRTMmd5zFidPngzA4cOHiYurLuTatWtXevbsaZjIgNzcXDQaTZ3V1G5ubsTHx9f7mAULFjB//vw6xzdv3oyNjU2d4+fzZMA/H+T9XbUM9dCivDoIeO1gYJUWKjRQppFRroHyKijVQFmVjNIqKKuCkqrq22u+L62CKkmGRitxpVSt24i9oeRIqBSgkld/Wej+L2Ehry5/UKWtfq5KDRRXQX4lqDVwLruEc9klQNbVsyn56NRW/B0k/O0lXKxAKZPQSqBBhlYCOeCoknBSgVULKbAUHR1t8HNWaeH0FRnH8mScviKjQlt79Dg+s4gPV20mpG3drL+0tNTg8QjVrCwUPDa4I3eHebF4y1m+j73IumPpbI3PZu7YICb19mq129hVabS8su4UAJN6exHmIy5pmpJIFoXmQO80IDs7m3vvvZft27fj5OQEQH5+PsOGDWPVqlW0a9fOUDE2yNy5c4mKitJ9X1hYiJeXF5GRkTg4ONS5v218FsvPHgfA2kLOkseGG3x3iHK1hoKy6onIBeVqqjQSGklCK0lIEmglCZVCXn0ZWam4eim5+stGpcDKQqHX5GStViKjsJzE7OKrCWMxZzIKScgsIq9CRl6OjIM5Nz5Pe0crenRwYEjndowIbIdzM6vor1ariY6OZtSoUVhYGGYF4MXLpaw+mMYvxy/V+gPA3cGSUcFujA52ZUtcNiv2pXDZ2pOxY7vXOUfNqLdgPM62Kt64oxt39fLkpbUnOZ1eyNzfTrL+2CXenxiCZ5u6f0C2dCv2XiA+swgnGwteHBNo6nBaPZEsCs2B3lnRU089RVFREadPnyYoKAiAM2fOMHnyZGbPns1PP/3U6OBcXFxQKBRkZWXVOp6VlYW7e/0bY1taWtap/QhgYWFRb6LgZPfPZfThQW60sTP8JG8LCwvsbUxTx8q3nQrfdg6M7Fr9vVqt5tffN9IuKJwjqQUcTcknu6hCV7BTKZehkMuorNKSVVhOYXkVGQXlZBSU8/eZbBRXtxN6dKAfIV5OJmmTvq73O9AQx1Lz+XRrIlvi/vmddHew4vaQ9ozp3p5QTyfdiJXKwoIV+1JIL6yo93kNlbgKNxbi5cT6mQNYsfcCH2w+S+z5y4xZvIv5d3Tlzp4dWs0q4IyCMj6MPgvAnFsCm90ffi1RzVSu8vJyE0ciCNend7K4adMmtmzZoksUAYKDg1myZAmRkZEGCU6lUhEWFkZMTIxuYY1WqyUmJoZZs2YZ5Dn8XWywU0rY2Vjx9IgAg5zT3FkrYXCACyOC29/wvkXlak6nF7L//GX+Pp3JmYxC/jiezh/H07m1e3vmjAnEy7nlj87sP5/Hp9sS2XUuF6ienjA4oB0P9vVhWJd29c75CvNpw47nh+LT1rapwxXqoVTIeXSQPyOD3Hj252McTckn6ufjbInLYsGdPVpF3bm3/oyjpFJDL28n7uktaiqaAzGyKDQHes9q1mq11x0t0WoNt89yVFQUX331Fd9++y1xcXE88cQTlJSU6FZHN5a9lQXzwzTseG4wnd3sb/yAVsbeyoK+/m15emQAG58exJ9PDWRCzw7IZbDhZAaRH+5k5f4UJKmRK3HM1PmcYh5ZcZBJX8ay61wuCrmMu3p5siVqCN9OC2dUsNt1Fwco5DKzTxSXLFmCr68vVlZWREREcODAAVOHZHS+Lrasebwf/xfZGaVcxsaTmdz26S5OXSowdWhGteNsDhtOZiCXwVvju7faOZvmRiSLQnOgd7I4fPhwnn76adLTFZ7xWwAAHOhJREFU03XHLl26xLPPPsuIESMMEhzApEmTeP/995k3bx6hoaEcO3aMTZs2GXQLQaUc8cZ5k7p1cGTRpFA2zB5EhJ8zZWoNL609yRM/HKGkBdWqLChT89afZxi9eCcx8dko5TLuj/Bm+/8N5YN7Qhq1bZK5qKlh+tprr3HkyBFCQkIYPXo02dnZpg7N6JQKObOGB7D2yQF4O9uQermMCZ/vbbF/+JSrNby2vnpRy5T+fgR71J2/LZiGSBaF5kDvZPHTTz+lsLAQX19fOnbsSMeOHfHz86OwsJBPPvnEkDEya9YsLl68SEVFBfv37yciIsKg5xcaLqi9Az9N78srtwahUsjZdDqTu5fuIz2/eb/habQSP+6/yLD3t/P17mTUGolhXdrx97ODeefO7i3qkvu1NUyDg4NZunQpNjY2fPPNN6YOrcl093Tkj1kDGRnkRmWVlpfWnuT/1pygXK0xdWgG9cWO81zIK8XV3pJnR7WO6TbNxdy5c1myZAlPPfWUqUMRhOvSe86il5cXR44cYcuWLboyNkFBQYwcOdJgwQnmTS6X8eggf3p6t+Hx7w8Rl1HIxKX7+Gl6X7zbNr+kal9SHm/8eYa4jOpVyh3b2fLqbcEM7dL4nYLMjbFrmDZVbUtDsLGAz+7rwVe7L7BoSyK/HkkjKaeIz+4LbdB+quba5ouXS1myPRGAl8Z0wUphuBjNtc3mFs9/8fDwoEOHDrRp08bUoQjCdTWqRoxMJmPUqFGMGjXKUPEIzVCYTxvWzRzAw98c4HxOCZO+3MfK6X3xczHv+Xo1UvJKeWdjHJtOVxdld7BS8uyozjzY16fF7qfaFDVMwTi1LY3FE3g8UMaKBDnHUgsYu3g70wM1eDbw19ic2ixJ8GW8nMoqOZ0dtZByhI2phn8ec2oziBqmgvGdPn2a8+fPU1xcTHFxMWq1GrlcjkwmQy6Xo1QqsbW11X1ZWlqSmfnfG3+Ys0Ylizt27OD999/XFeUODg7m+eefZ9CgQQYJTmg+PNvYsGp6X+7/ej+J2cXc++U+fpnR36wv2xZXVPHZtkS+3pVMpUaLXAYPRPjw7KjOoqRIPRpSw9QYtS2bwljgzrwSHvv+KMl5pXwap+KDu3swKvjGo8vm2ObNZ7I4E3scC4WMT6cMMvgfcObYZmheNUwPHDjAjz/+SH5+vm6zC6HpSJJEQUEB6enpZGRkkJGRgaurq66qS2lpKb169dLdVvOH8UcffcRXX33VoOcKDg5m2rRpuu89PDwoLi5m//79usoy3377Lb/88gvt27enffv2eHh46P7v5eWFm5ubSUp96Z0s/vDDD0ydOpUJEyYwe/ZsAHbv3s2IESNYsWIF999/v8GCFJoHVwcrfprelwe+juVsVjEPf3OAX2b0o62Zba+m1Ur8eiSNd/9OIKeo+rLqwE4uvHpbMF3cW8eK+KaoYXqj28xVgLsT62YOZObKI+xOzOXJn47x/OguPDm04029SZtLm0srq3h7YwIAjw/uSOf2TkZ7LnNpcw1ziuVG4uLiWLNmDVeuXBHJYhM4duwYa9euZfv27aSlpZGRkVFncdG4ceN0yaK1tTUpKSmUlZWRmZmJv78/AJ06dSI8PBw7OztsbW2xsLBAkiQkSUKr1VJVVUVJSYnuq7i4uM5Ug4KCAkpLS2u9r8bFxfHnn39eN35ra2v8/Pzw8/PD398ff39/unbtavQrvHoni2+//Tbvvvsuzz77rO7Y7NmzWbRoEW+++aZIFlupdvaWfP9IBBM+20tybgnTVhxk5fS+2Bp4Vxx97U3M5a0NcZy5Oi/Rt60NL98azMgg11ZTmBmapoZpc+ZoY8GKqX14888zfLvvIu/9nUBSTjELJnTHUll3n29z9HFMIukF5Xi2sWbmsE6mDke4jl69ejFq1CjuvvtuU4fSou3evZt58+axbdu2em93dHTUjeKFhobqjstkMmJiYmjTpg1eXv/UJn3hhRd44YUXbvr51Wo1GzdurHUsMTGR4uLiWue999578ff3141kZmRk1Br1LCsr48yZM5w5c0b3mIEDB9ZKFqdNm4aDgwMvvvgi7dvfuJ7yzdD7E/z8+fPcfvvtdY6PGzeOl156qVFBCc2bm4MV304LZ+LSvRxPK+DJH4/w9eTeJp3/l1UGM348Skx89f6G9lZKZg3rxJQBvs3mw9/QoqKimDx5Mr179yY8PJzFixcbtIZpc6dUyJl/Rzc6udrx+h9n+O3IJVIvl7L0wTCzGy3/t7NZRXy96zwA88d1xVrVOn/Hm4Pu3bszc+ZMxo4dy/nz5zl+/DgeHh4EBQXVu0Wt0DCnTp3iueeeY/PmzUD1H8q33nort912G507d9YliDUljOrTr18/o8RWXyIXGhpaK1m9VmVlJSkpKSQnJ3P+/Hndv8HBwbr7VFRU8O2336LVapkzZ47BYm3UauiYmBg6dar9F+uWLVtqZclC69TJ1Y5lU/pw/1ex7Dibw4u/nOD9iSFNXs+ypKKKxdFnWXZcgVbKQSGX8WCEN0+PFPMSJ02aRE5ODvPmzSMzM5PQ0FCD1zBtCR7q54tPW1tmrjzCwQtXGP/ZHpbc34senk6mDq1eGq3EC7+coEorMSrYjRFB4ufZHPz0009MnTq11qYWnp6eBAcHExwcTFBQkO7/zs7OJoy0eVGr1WzevBmlUskjjzzCSy+9hLe3t6nD0otKpaJTp0518q5raTQaPv/8c86fP2/YetT6PvC5555j9uzZHDt2jP79+wOwZ88eVqxYwUcffWSwAIXmq5d3Gz57oBfTvzvMb0cv0c7ekrljg278QAOQJIlNpzJ5488zZBSUAzKGdnbhldu60sm1+RfUNpRZs2aJy843YXDndqx9sj/TVhwi5XIpdyzZwwMR3vxfZBecbBr+R0e5WsP2hGwOJF/hQl4JReVqrFVKfJxtCPdzZligK3Z6Tt1YvieZY6n52FsqefOObnqdQ2h6w4cPx8rKioCAAHJyckhPTyctLY20tDTdqFgNV1dXXeL44YcfolK17j98r3Xs2DEOHDjAY489BkDPnj1ZsmQJY8aMwc/Pz8TRGZ+NjY2u7Yakd7L4xBNP4O7uzgcffMDPP/8MVNdZXL16NXfccYfBAhSat+GBbiyc0J3nfznBFzvP087ekkcH+Rv1Oc9lFfHmhjh2nq2+5OzZxpqxbsU8/0CvZjXxXTAvnVztWTdzAPP/OM36Y+n8EJvCxpOZzLklkLvDPG/qHNlF5Xy2LYlfj6RRVF7/jkffx15EpZQzPtSDJ4d2wrcBK5hT8kp5f3P1opaXbg3C3dHqph8rmJabmxuJiYm6S5NXrlwhPj5eNz/tzJkzxMXFcfHiRbKzs8nOzubEiRN8+umnunM88MADJCUl8c477zB8+HCg+rKkQqFAqTSPeePGlJCQQM+ePbGwsGD06NH4+PgA8OSTT5o4suavQb89H3/8MY899hhWVlakpKQwfvx47rzzTmPFJrQQE3t7kVNcwbubEnhrQxw2KiX3Rxj+MsCVkkoWbznLD/tT0GglVAo5M4b4M32gD1uj/zb48wmtj7Otio/u7cm9fbyZt/4U57KLeeHXE6w6mMK8WwOv+ziNVuKLnUl8EpNI2dXdYTo4WTMyyJXA9g44WFlQUlnF2cwiYuKzSc4t4edDafx65BJT+vsSNarzDReJSZLEnN9OUK7W0s+/Lff2EdOBmptr57C1adOGfv361ZkvV1xcTHx8PHFxcRQXF9damLd//36SkpKQy/+ZH/7TTz/x2GOP0alTJwIDAwkKCiIwMFD3ZW9vmgoQWVlZfPfdd3Tq1IkhQ4bojp85c4aAgIAb/mEvSRKJiYkcOXKESZMmAdClSxeGDx9usvIyLVmDksWoqCjuvfderKys8PPz09UjEoQbeWJIR/KKK1m2O5mX1p7kUn4p0wb4GWShQE5RBct2J/ND7EWKr+5PPbqrGy+NDcKnrW2z2s1BaB76dWzLxqcH8e3eC3wYfZYjKflMWBrLYHc5I9SaWh90WYXlPL3qKLHnLwMQ6uXEc5GdGdDRpd45vC/fGsSRlHw+2XqO7Qk5LNudzF8nM3hzfLf/nH+4Yu8F9iblYWUhZ+Fd3cWHpYEtWbKE9957j8zMTEJCQvjkk08IDw9v8jjs7Ozo3bs3vXv3rnPb+vXriYuLo2fPnrpjZ8+eRa1WExcXR1xcHGvXrq31mA4dOtRJIoOCgvDw8DBIvJWVlZw5c4ajR49y22230a5dOwC2bt3K6tWreeihh3TJYlFREd26dcPS0pLQ0FB69OiBm5sbLi4uSJJERUUFubm5nDt3jgMHDpCeno6FhQWjRo3SzePctGmTuIJkBA1KFj08PPj1118ZO3YskiSRlpZGeXl5vfdtrhNIBeOQyWS8cmsQchl8tSuZJduS+HLneSKD3bkv3Jv+Hds2aPGLRiuxNymXNYfS2HQ6k8qq6knhQe0dePXWIPp3cjFWUwQBAAuFnEcH+XN7iAdvb4jj9+PpbM+Qc+fSWD6c1JNuHRw5kHyZJ388Qm5xBTYqBfPHdeXuMM//TORkMhlhPm1YMTWc7QnZvLr+FKmXy3jk20Pc1qM9r4/risu//sjal5TH2xuqN0eYO6b6jyTBcFavXk1UVBRLly4lIiKCxYsXM3r0aBISEsxqwKRr16507dq11rG33nqLGTNmEBcXR3x8vO4rLi6OrKwsLl26xKVLl4iJidE9JjQ0lKNHj+q+37lzJ506dbqpBDI/P5+9e/eya9cudu/ezcGDB3XbhK5bt043TS0oKIiBAwcSEhKie2xycjKOjo7k5+cTGxtLbGzsfz6XUqlkyJAh5Obm6pJFkSgaR4OSxVdeeYWnnnqKWbNmIZPJ6NOnT537SJKETCZDo9EYLEihZZDJZLx8azChXm34ctd5jqfms+FkBhtOZuBsq6J/x7ZE+LclwNUOfxdb2tiqsFDIUWu0XCmp5HxuCeeyi4k9n8fexFyulP4zYhjq5cSsYZ0YHuja5CuuhdbNzcGKj+/ryW3d3Xhu9RHOZZcwfske+nVsy76kPKq0EoHu9nz+YFiDd1AZ2sWVzc8MYfGWs3y9O5k/T2Sw61wujw32586eHWhjo+KPE+m8su4UVVqJ23q05+F+PkZqaeu1aNEipk+frisrtXTpUjZs2MA333xj0PIkxiCXy/H29sbb25vRo0fXuu3KlSskJCTUSiTj4uLo1u2fhVFVVVXccsstlJWVER8fT5cuXYDqy8iOjo7k5uayZ88edu3axa5duzh58iSSJNV6HkdHR0JDQ2sVnw4NDeWll16qldz16NGDvLw8kpKSOHjwIAkJCeTk5JCbm4tCocDS0hInJyc6duxIt27diIiIuO5Wo4JhNShZfOyxx7jvvvu4ePEiPXr0YMuWLbRt29ZYsQkt1K092nNrj/acSS9k1cEU1h69xOWSSv48kcGfJzJq3Vchl6HRSvWex8FKyR2hHZjY25PuHRzFZTfBpIZ1acecEA3bSzyIjstm17lcAG7r0Z537+6BjUq/BQbWKgVzxwZxe4gHL/xygjMZhbz3dwLv/Z1Q634jg1x57+4Q0Q8MrLKyksOHDzN37lzdMblczsiRI9m3b1+d+1dUVOhG0uCfrQfVanW9U2JqjpliuoydnR1hYWGEhYXVOi5Jki6e9PR0OnXqRFpaGr6+vrrjzzzzDKtXr66TGEL17iYDBgxgwIAB9O/fn4CAAN3v5bWvw/Xa7Ovri6+v7021oblMMzLlz/m/3Gw8DX73sre3p1u3bixfvpwBAwbUu/3XtX766SfGjRuHra24LCLUFuzhwBt3dOPV24I5lprPrnO5nEjL53xOCWlXStFK6BJFuax6/2k/F1t6ejsxsJMLIV5OJi30LQj/ZmcBS+4L4UhaEfEZhQS2dyDCz9kgCVy3Do78PmsAf5xI57t9Fzmemo9WAhc7S6YO8GXGkI4oxKi6weXm5qLRaOrUrHNzcyM+Pr7O/RcsWMD8+fPrHN+8efN/joJFR0c3PlgjefPNN1Gr1WzatEl37PDhw0iShFwux8/PT1cHMjAwsFYdyMTERBITE+s9rzm32VjMrc2lpaU3dT+919Lf7B6Wjz/+OBEREbr9FAXh3ywUcvr4OtPH9583GLVGS2mFhjK1BmsLBTaWCpEYCs2CTCajr39b+vob/qqLUiHnzp6e3NnTk9LKKjRaCTtLpRhNNCNz584lKipK931hYSFeXl5ERkbWuyOLWq0mOjqaUaNGNav5dmPGjCEnJwdbW9sGDwY11zY3hrm2uWbk+0aMXnipviHqplTz/Nd7QdRqNaWlpRQWFprVD9BYmlN7ZYCNDKiCsioou9EDrsNc21zzO2nqPqKv/+pb5vqaG5Op2lxU2WRPVYe5/pwN2bdcXFxQKBRkZWXVOp6VlYW7u3ud+1taWta64lYTQ1lZWb2vUc1rWFZWRlVV/bU3zVVN2Z2ysoa9OzfnNuvLXNtc87O7UV9p8VU6i4qKAMQWhILZKioqwtHR0dRhNJjoW4K5M0TfUqlUhIWFERMTw/jx4wHQarXExMTc1O5Hop8IzcGN+kqLTxY9PDxITU3F3t6+3ks1NZcIUlNTW8Wm7a2tvWC+bZYkiaKiIoPVM2tq/9W3zPU1NybRZvNps6H7VlRUFJMnT6Z3796Eh4ezePFiSkpKdKuj/4v4DKpLtNl82nyzfaXFJ4tyuRxPzxtvxeXg4GBWP0Bja23tBfNsc3McUaxxM33LHF9zYxNtNg+G7FuTJk0iJyeHefPmkZmZSWhoKJs2baqz6KU+4jPo+kSbzcPN9JUWnywKgiAIQmPNmjXrpi47C0JLZPTlpT4+PmY18VkQBEEQBEG4eQZPFjMyMmr99XXq1CmznthraWnJa6+9dsN6kS1Fa2svtM42m1prfM1FmwV9tMbXULS5+ZFJetQWOH36NNu2bUOlUnHPPffg5OREbm4ub7/9NkuXLsXf35/Tp08bI15BEARBEAShCTU4Wfz999+5++67dXWC/P39+eqrr7jnnnsICwvjmWee4ZZbbjFKsIIgCIIgCELTanCyGB4ezoABA3jzzTf5+uuviYqKomvXrnzzzTf06dPHWHEKgiAIgiAIJtDgZNHR0ZHDhw/TqVMnNBoNlpaWbNq0iZEjRxorRkEQBEEQBMFEGrzApaioSFcjSKFQYG1tLfZ9FgRBEARBaKH0qrP4999/64o41mx7dOrUqVr3GTduXOOjEwRBEARBEExKr9I5kydPZvz/t3c3IVH1fRjHr3HMl1RuelOLooSiFmaWZpSogZJRkUZIkEFZUMEYZbsWKUmgm9JFJbaoaCGJUQkFgVQoYZY6GUkUUUQvoBZRVKjVdJ7FTYLcnszHmTkzc74fOIvzn0GuzcX58Z9zPIWFKiws1ODgoPbt2zdyXlhYqC1btng7p0+cPn1aCxYsUFRUlFatWqUHDx5YHclnqqqqtHLlSsXFxSk+Pl6FhYV69uyZ1bH8qrq6Wg6HQ4cOHbI6SsijW/bpFr2aHLt0xe49kYK7KxMeFn/9+jXu8fvF6YGssbFRhw8fVkVFhdxut5YtW6b8/HwNDAxYHc0nWltb5XK51NHRoZaWFv348UPr1q3Tt2/frI7mF52dnaqvr1dKSorVUUIe3bJPt+jV5NipK3buiRQCXTG8aGhoyDhx4oSRkJDgzT/rExkZGYbL5Ro593g8xpw5c4yqqioLU/nPwMCAIclobW21OorPffnyxVi0aJHR0tJi5OTkGAcPHrQ6UkijW/boFr2aPDt3xS49MYzQ6MqEdxaHh4d15MgRpaena82aNbp27Zok6dy5c0pKSlJNTY3Kysq8OtB62/fv39Xd3T3qCe6wsDDl5eXp3r17Fibzn8+fP0uSpk+fbnES33O5XNq4cSNP7PsB3bJPt+jV5Ni9K3bpiRQaXZnwAy7l5eWqr69XXl6e2tvbVVRUpJKSEnV0dOjkyZMqKiqS0+n0RVav+fDhgzwejxISEkatJyQk6OnTpxal8p9fv37p0KFDyszMVHJystVxfOrSpUtyu93q7Oy0Ooot0C17dIteTZ6du2KXnkih05UJD4tNTU26ePGiNm/erN7eXqWkpOjnz5969OiRHA6HLzLCy1wul3p7e3X37l2ro/jUmzdvdPDgQbW0tCgqKsrqOLABO3SLXmGy7NATKbS6MuFh8e3bt0pLS5MkJScnKzIyUmVlZUE1KM6cOVNOp1P9/f2j1vv7+5WYmGhRKv8oLS3V9evX1dbWprlz51odx6e6u7s1MDCgFStWjKx5PB61tbXp1KlTGh4eDvhd8GBDt0K/W/TKO+zaFbv0RAqtrkz4nkWPx6OIiIiR8/DwcMXGxno1lK9FREQoLS1Nt27dGln7/f8iV69ebWEy3zEMQ6Wlpbp69apu376tpKQkqyP5XG5urh4/fqyenp6RIz09XcXFxerp6QmakgYTuhX63aJX3mG3rtitJ1JodWXCO4uGYWjXrl2KjIyUJA0NDWn//v2KiYkZ9b0rV654J6GPHD58WDt37lR6eroyMjJUW1urb9++qaSkxOpoPuFyudTQ0KDm5mbFxcWpr69P0r+vb4yOjrY4nW/ExcX9536YmJgYzZgxI+Tvk7ES3QrtbtEr77FTV+zWEym0ujLhYXHnzp2jznfs2OG1MP60bds2vX//XuXl5err61Nqaqpu3rz5n5uNQ0VdXZ0kae3ataPWz58/r127dvk/EEIW3foX3cJ47NQVehLcHIZhGFaHAAAAQGD6v173BwAAAHtgWAQAAIAphkUAAACYYlgEAACAKYZFAAAAmGJYBAAAgCmGRQAAAJhiWAQAAIAphkUAAACYYljEH+Xk5MjhcIw6nE6nvn79anU0IGjRK+Dv0JXAwOv+YMowDP3zzz+qqKhQcXHxyHpYWJji4+MtTAYEL3oF/B26EjjCrQ6AwPX8+XN9+fJF2dnZSkxMtDoOEBLoFfB36Erg4GdomOru7lZ4eLhSUlKsjgKEDHoF/B26EjgYFmHK7XbL4/FoxowZio2NVWxsrDIzM62OBQQ1egX8HboSOLhnEaZyc3OVmJioY8eOjazFxMRo9uzZFqYCghu9Av4OXQkc7CzClNvtVlZWlhYuXDhy/C5pZmam7t+/L0nas2ePampqrIwKBA2zXj18+FD5+fkj32tubtbevXstTApY60/XoJycHKWmpio1NVVOp1NdXV0Wpw1tPOCCMb18+VKfPn3S8uXLx/z86NGjqq6uVlZWlsLCwlRWVubnhEDw+VOvli5dqidPnkiSfv78qcrKSl2/ft3fEYGAMN41qLW1VZJUUVGhnJwcpaen+zOe7bCziDF1d3fL6XSa3li8fv16vX79Wjdu3NCZM2f8nA4ITn/qVXh4uObNm6dXr17p7Nmz2rhxIz+3wbbGuwZJUm1trV69eqXa2lr/BbMpdhYxJrfbrSVLlig6OnrMzzs7O/Xx40fNnz9fU6ZM8XM6IDiN16uMjAzduXNHdXV1am9v93M6IHCM15ULFy6ora1NTU1Ncjgcfk5nPzzgggl79+6dNmzYoGvXrmnr1q26ePGikpOTrY4FBL2GhgYdOHBAlZWVcrlcVscBAtLVq1dVX1+v5uZmRUZGWh3HFhgWMSGDg4PKzc1VdXW1srOz1dTUpMuXL6uxsdHqaEDQ6+rq0vbt2/XkyROFh/PDDzCWadOmadasWZo6daok6fjx49q0aZPFqUIbwyIABIjdu3eroKBABQUFVkcBgBE84AIAFnvx4oUWL16smJgYBkUAAYedRQAAAJhiZxEAAACmGBYBAABgimERAAAAphgWAQAAYIphEQAAAKYYFgEAAGCKYREAAACmGBYBAABgimERAAAAphgWAQAAYIphEQAAAKb+B7CqP/vuqfGpAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 12 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+/klEQVR4nO3dd3gU5d7G8e/spvfeSCChJnSkhiIt0hURC4gF5IB6QI+CHkE99iPHXrBiwwKIoC8KIkrvNVLT6C2VENLLbnaf949INAIhQJLJJr/Pde0FmbJ7zxCyd2Zmn9GUUgohhBBCCHFRBr0DCCGEEELUZVKWhBBCCCEqIWVJCCGEEKISUpaEEEIIISohZUkIIYQQohJSloQQQgghKiFlSQghhBCiElKWhBBCCCEqIWVJCCGEEKISUpaEEOIq9evXj379+ukdQwhRw6QsCSGu2JEjR7j//vtp2rQpTk5OeHh40KtXL9555x2KiooqLGs2m3n33Xfp2rUr7u7uuLm50bVrV959913MZvMFzx0eHo6macTExFz0tT/55BM0TUPTNHbt2lVpzvj4eJ577jmOHz9+1duqpw8++IC5c+fqHUOIBk+Te8MJIa7Ezz//zG233YajoyP33HMPbdu2xWQysWnTJr7//nvGjx/PnDlzACgoKGD48OGsX7+eESNGMGTIEAwGAytWrOCnn36ib9++/Pzzz7i6upY/f3h4OOnp6ZhMJpKTkwkKCqrw+v369WP79u0UFxezc+dOunTpcsmsixcv5rbbbmPt2rU1cgTIZDIB4ODgUO3PDdC2bVv8/PxYt25djTy/EKJq5MiSEKLKjh07xpgxY2jSpAnx8fG88847TJo0iSlTprBgwQLi4+Np06ZN+fLTpk1j/fr1zJ49m6VLlzJlyhQefPBBfvzxR9577z3Wr1/PY489dsHr9OrVCzc3NxYuXFhh+unTp9m4cSPDhw+v9m1TSl1wVOxyHBwcaqwo1ZTi4mKsVqveMYSwLUoIIarogQceUIDavHnzZZc9deqUMhqNasCAAZdcpn///srOzk6dOnWqfFqTJk3U8OHD1fjx41W3bt0qLP/qq68qX19fNWfOHAWonTt3XvK5v/jiCwVc8Fi7dm2F11mxYoXq3LmzcnR0VG+99ZZSSqnPP/9c9e/fX/n7+ysHBwcVFRWlPvjggwteo2/fvqpv374VphUXF6tnnnlGNWvWTDk4OKjQ0FD1+OOPq+Li4gvW//rrr1XXrl2Vs7Oz8vLyUn369FG//vpreb6/Z//rax05ckTdeuutytvbWzk7O6vu3burZcuWVXj+tWvXKkAtWLBAPfXUUyokJERpmqZiY2MVoN58880LMm3evFkBav78+Zfct0I0NHZ6FDQhhG1aunQpTZs2pWfPnpdd9pdffsFisXDPPfdccpl77rmHtWvXsmLFCv7xj39UmHfnnXcyaNAgjhw5QrNmzQCYP38+t956K/b29pd9/euvv56HH36Yd999lyeffJKoqCiA8j8BkpKSGDt2LPfffz+TJk2iVatWAHz44Ye0adOGm266CTs7O5YuXco///lPrFYrU6ZMueRrWq1WbrrpJjZt2sTkyZOJiopi//79vPXWWxw8eJAlS5aUL/v888/z3HPP0bNnT1544QUcHBzYvn07a9asYdCgQbz99ts89NBDuLm58dRTTwEQGBgIQHp6Oj179qSwsJCHH34YX19fvvzyS2666SYWL17MqFGjKuR68cUXcXBw4LHHHqOkpITIyEh69erFvHnzePTRRyssO2/ePNzd3Rk5cuRl97EQDYbebU0IYRtycnIUoEaOHFml5R955BEFqN27d19ymd9//10Batq0aeXTzh/xKS0tVUFBQerFF19USikVHx+vALV+/fryo0aVHVlSSqlFixZVOJr0V+eP3KxYseKCeYWFhRdMGzx4sGratGmFaX8/svT1118rg8GgNm7cWGG5jz76qMIRuUOHDimDwaBGjRqlLBZLhWWtVmv539u0aXPBkSul/ty3f32dvLw8FRERocLDw8uf8/yRpaZNm16wTR9//LECVEJCQvk0k8mk/Pz81L333nvBawrRkMk1S0KIKsnNzQXA3d29Ssvn5eVddvnz884/918ZjUZuv/12FixYAJQd8QgLC6NPnz5XlLsyERERDB48+ILpzs7O5X/PyckhMzOTvn37cvToUXJyci75fIsWLSIqKorIyEgyMzPLHwMGDABg7dq1ACxZsgSr1cozzzyDwVDxx7CmaZfNvXz5crp160bv3r3Lp7m5uTF58mSOHz9OfHx8heXvvffeCtsEcPvtt+Pk5MS8efPKp/36669kZmZy1113XTaDEA2JlCUhRJV4eHgAf5agyzlfhCpb/nKF6s477yQ+Pp69e/cyf/58xowZU6UyUVUREREXnb5582ZiYmJwdXXFy8sLf39/nnzySYBKy9KhQ4eIi4vD39+/wqNly5YAZGRkAGVDLxgMBlq3bn1VuU+cOFF+yvCvzp9iPHHiRIXpF9tOLy8vbrzxRubPn18+bd68eTRq1Ki83Akhysg1S0KIKvHw8CAkJIQDBw5Uafnzb9z79u2jY8eOF11m3759AJcsDd27d6dZs2Y88sgjHDt2jDvvvPPKg1fi70dboKzIDBw4kMjISN58803CwsJwcHBg+fLlvPXWW5V+ksxqtdKuXTvefPPNi84PCwurtuxX4mLbCWXXjC1atIgtW7bQrl07fvrpJ/75z39ecLRLiIZOypIQospGjBjBnDlz2Lp1K9HR0ZUuO3ToUIxGI19//fUlL/L+6quvsLOzY8iQIZd8nrFjx/LSSy8RFRV1ydJ1KVdzFGrp0qWUlJTw008/0bhx4/Lp50+hVaZZs2bs3buXgQMHVvrazZo1w2q1Eh8fX+k2Xeo5mjRpQlJS0gXTExMTy+dXxZAhQ/D392fevHl0796dwsJC7r777iqtK0RDIr8+CCGq7N///jeurq784x//ID09/YL5R44c4Z133gHKjqJMmDCBVatW8eGHH16w7EcffcSaNWuYOHEioaGhl3zNf/zjHzz77LO88cYbV5z3/GCX2dnZVV7HaDQCZeMunZeTk8MXX3xx2XVvv/12kpOT+eSTTy6YV1RUREFBAQA333wzBoOBF1544YIjVX99XVdX14tmHzZsGDt27GDr1q3l0woKCpgzZw7h4eFVPr1nZ2fH2LFj+e6775g7dy7t2rWjffv2VVpXiIZEjiwJIaqsWbNmzJ8/nzvuuIOoqKgKI3hv2bKFRYsWMX78+PLl33rrLRITE/nnP//JihUryo8g/frrr/z444/07dv3siWoSZMmPPfcc1eVt2PHjhiNRl555RVycnJwdHRkwIABBAQEXHKdQYMG4eDgwI033sj9999Pfn4+n3zyCQEBAaSmplb6enfffTffffcdDzzwAGvXrqVXr15YLBYSExP57rvv+PXXX+nSpQvNmzfnqaee4sUXX6RPnz7ccsstODo6snPnTkJCQpg1axYAnTt35sMPP+Sll16iefPmBAQEMGDAAGbMmMGCBQsYOnQoDz/8MD4+Pnz55ZccO3aM77///opOo91zzz28++67rF27lldeeaXK6wnRoOj9cTwhhO05ePCgmjRpkgoPD1cODg7K3d1d9erVS82ePfuCwRdLSkrUW2+9pTp37qxcXV2Vi4uLuu6669Tbb7+tTCbTBc99fuiAylR16ACllPrkk09U06ZNldFovOiglBfz008/qfbt2ysnJycVHh6uXnnlFfX5558rQB07dqx8uYsNSmkymdQrr7yi2rRpoxwdHZW3t7fq3Lmzev7551VOTk6FZT///HPVqVOn8uX69u2rVq5cWT4/LS1NDR8+XLm7u19yUEovLy/l5OSkunXrdslBKRctWlTpPmrTpo0yGAzq9OnTlS4nREMl94YTQoir1KdPHxwdHVm1apXeUa5Jp06d8PHxYfXq1XpHEaJOkmuWhBDiKqWmpuLn56d3jGuya9cu9uzZU+lI60I0dHLNkhBCXKEtW7bwww8/cOTIEZ544gm941yVAwcOEBsbyxtvvEFwcDB33HGH3pGEqLPkyJIQQlyhTz75hG+++YZHHnmECRMm6B3nqixevJgJEyZgNptZsGABTk5OekcSos6Sa5aEEEIIISohR5aEEEIIISohZUkIIYQQohJygXc1sFqtpKSk4O7uXq03+RRCCCFEzVFKkZeXR0hISKWDuUpZqgYpKSm63SBTCCGEENfm1KlTld52ScpSNXB3dwfKdraHh4fOaYQQQghRFbm5uYSFhZW/j1+KlKVqcP7Um4eHh5QlIYQQwsZc7hIaucBbCCGEEKISUpaEEEIIISohZUkIIYQQohJSloQQQgghKiFlSQghhBCiElKWhBBCCCEqIWVJCCGEEKISUpaEEEIIISohZUkIIYQQohJSloQQQgghKmFzZen9998nPDwcJycnunfvzo4dOypdftGiRURGRuLk5ES7du1Yvnx5hflKKZ555hmCg4NxdnYmJiaGQ4cO1eQmCCGEEMKG2FRZWrhwIdOmTePZZ5/l999/p0OHDgwePJiMjIyLLr9lyxbGjh3LxIkT2b17NzfffDM333wzBw4cKF/m1Vdf5d133+Wjjz5i+/btuLq6MnjwYIqLi2trs4QQQghRh2lKKaV3iKrq3r07Xbt25b333gPAarUSFhbGQw89xIwZMy5Y/o477qCgoIBly5aVT+vRowcdO3bko48+QilFSEgI06dP57HHHgMgJyeHwMBA5s6dy5gxY6qUKzc3F09PT3JycuRGukLYKKvFijnrGBaLFYvFitliwWq1YLVYUI7uGDxCsLczYjRo2BsN2Bk0jAbtsjfgFELUXVV9/7arxUzXxGQyERsby8yZM8unGQwGYmJi2Lp160XX2bp1K9OmTaswbfDgwSxZsgSAY8eOkZaWRkxMTPl8T09PunfvztatWy9ZlkpKSigpKSn/Ojc392o3SwhxDQpLTJw9k0bumdMU5WRiLsymta8BT60ISvI4lZbB8ZQ07Ex52JXm42ApwMlSgJMqwh4zfk7gQClYzBjMBThe5vUsSqMUI6UYMWHEjBFXJ0ecHJ3AzoF8qwPHc6yYDU5YjE5Y7JxRdk4oe1esjh40aRRMaFAQOHqQr7lyNM8ed98gvP2D8fT0kuIlRB1lM2UpMzMTi8VCYGBghemBgYEkJiZedJ20tLSLLp+WllY+//y0Sy1zMbNmzeL555+/4m0QQlRNXkEhqacOk3/mNMXnUmnnVYK7+Szkp5GafJLczNN4Wc7hSw5hmvWSzxP2x+OSrvBsu1FTGCnFkdI/J5bkwR+/O7kBbQEsfzxMf3uClD//6ga0/8usQuVIjuZBvp0XBQ5++IU0JbRJc/AMpcApkGNmbwIahePv6S6lSohaZjNlqS6ZOXNmhSNWubm5hIVV+iNZCPEXpaUWKDqHXe4JOHec44fiST6WgFvRafzMKQSqs7S8RAkK/uPBX/pCNh7kGT0oMboR4OePh6c3OHqQZXHkeJ4BzckDo7MHds4e2Lt64eDigcHeGV9PN1ycnMFoTwlGSpQ9dvaOZQ87ewwaYDWDtRRlMVNaasZSaqLUbMZiNlNaWoKrnYaTwQIWEwWF+WRknsNUnI+pqABzcQEWUwGqOB/NlEtzdwvexmIozqEg9ywF2WfwVLk4YsZFK8GFM1B6BkoPweGtcLhs+1wpK2FWpXEGT7KM/uQ7BWF2C0HzakzjFu0IadYevBqDwVij/3ZCNEQ2U5b8/PwwGo2kp6dXmJ6enk5QUNBF1wkKCqp0+fN/pqenExwcXGGZjh07XjKLo6Mjjo6XO2AvhMgvLOLk4QOcO76H0tR4nLMP4l2STJAlDXetqHy58D8e5TQoxoGzBl/y7X0JCA7DOyAM3ALINfqQavXEzbcRXgGNcPEKwsvOAa+LvL7PH4+qcPzjcSGH85Gw/+NxKa5ARBVfz/WPB0pRUpjDuTOp5J5NpTArDVN2Ci2csvE2n4HcZAozT2DMT8VRMxNANgHWbCg8BIVABnDwjyc1OlLk3oS9Rf4UukdgDGiBZ1hrGjVrj59/oByREuIq2UxZcnBwoHPnzqxevZqbb74ZKLvAe/Xq1UydOvWi60RHR7N69WoeeeSR8mkrV64kOjoagIiICIKCgli9enV5OcrNzWX79u08+OCDNbk5QtQrxSYzJ48mEFR8DI/cQ5CRQM6JfTjlHqW1VnrhCuffs92DwTucPOdQDpp8sfePwCO4Bf5hLXH1aUQjw4Uf2PX441FvaBqOrl4EuXoRFB510UVcAJTClJtBZvJRstOOUXjmOKXZp3HMPUmUQzpOucfBUoJz9kF6cBBKNkMmEF/2HFl4kObQBO+mnQlu1Q2C26P8WqHZOdTShgphu2ymLAFMmzaNe++9ly5dutCtWzfefvttCgoKmDBhAgD33HMPjRo1YtasWQD861//om/fvrzxxhsMHz6cb7/9ll27djFnzhwANE3jkUce4aWXXqJFixZERETwn//8h5CQkPJCJoSoqNhk5mjiHs4mbYHk3/HPjaOx5SQttZIKy3kCaFCAE6kO4eR5tAD/SFxCIvFp1BLfRs0xOLoA4A50rvUtsTGahoNnICGegYS0jr5wvtUC2SfJOhVPyuH9WM4cxDHnKL7FJ/FXZ/EhFx/TfkjcD4lzy1Yx2HPQGsYZt1ZYAtrh2bQzEW264+3tXbvbJkQdZ1Nl6Y477uDMmTM888wzpKWl0bFjR1asWFF+gfbJkycx/OU30Z49ezJ//nyefvppnnzySVq0aMGSJUto27Zt+TL//ve/KSgoYPLkyWRnZ9O7d29WrFiBk5NTrW+fEHWN1aooOZeMc8YeSN5F7pHtaCm7af2XU2gAaFCCPfnuTfGN6AgBUZh9Iyn0bIlnUATNL3KESFQzgxF8IvDxicCnw/AKs4oLckg+sp9zx/bSzngCxzNxkLYfY0kOURwlKv8o5P8CR8G6UuOEIYQzblFEXNcf36i+ENBaroUSDZpNjbNUV8k4S6K+KCwqInH3RnIT1uFyZg9NihII1LIuWK4IR046tiTfrwNOTboQ1LIrPmGt0IyVXdEj6hSlKEg/QlrSDvKPx2KfcYCAwiT81LkLl3X0IM2jLQeMrXFq2pMWnfsR6Otb+5mFqGZVff+WslQNpCwJm2UppfjU72xf8yPuadtoWXIAN63i5+mtGDAEtoZG10GjzmR4tMW/aQcpRvVU7plkTsRtpeTETjobDqKd2gmmvArLlCoDR4wRZPpch2PTnoRfF4NfUGOdEgtx9aQs1SIpS8JWFJeYSNqzGcfkLUQW7YWTW6Gk4qCqubhxwr0TpY264d0imtDWPbBzdtcpsdCd1QLpcRzctQrzsS34Z+8hwHrmwsUC2mBoPgCaDaQ4pBtOzq46hBXiykhZqkVSlkRdpZTixIkjnNq2BKfjq2lZtBdPraDiQo6enHDvSFZAD4I7xBDUogvINUaiErnpxzixew1FRzbjm/U7zSzHKswvwYH9dm3JDulNQIehtO7QHTs7ueZJ1D1SlmqRlCVRp1itkLKbnSsX4HFqNa2sRyvMzseZE64daNljGPbN+kJQO7l4V1yT0twM7E5sgCNrsR5ehSG/4h0QMvDmmEc3jC0G0jz6Zrz8Ai/xTELULilLtUjKktDbmcwzHNryEz0suzAcXgkFFU+THHFoRU7oAAKvG05IVA+53kjUHKXIPnmA07uWYTi6loiC3Tj/5b4vFgwYI3pD1E2oVsPAI0QGyxS6kbJUi6QsCT2cPnWCIxvm4XV8BVGmAzholj9nOriTG9qHEz59aNrzZlx9QvQLKho0i6mII7GrObf/VwLSNhBhPV5hfpzWgtTggQR2v5U27bpgMEhxErVHylItkrIkasvZjBTiVs/D4+hS2pn2YdT+/O+bbGyEaj6I0O43Q+OeICMzizpIZR1DS1wGCctQp7aj8ef38DEtlOTAgfh1G02rjn3Q5No5UcOkLNUiKUuiJlkLz2FI+hkO/IA6ug5N/XkE6Yh9K3KbjaBxz1vxbdxax5RCXLmirBRObF4Eictolh+L/V+Ojqbij+N1Y/CJvgf8W+qYUtRnUpZqkZQlUd0yz54lYd0CXA7+RAdTLHbqz/urnXJszpkmwwm/fhw+oa10TClE9SnJP8fBjd9TGv8TrXK34fLX2+eEdOJw0HCsbUfTsmlT/UKKekfKUi2SsiSqQ4nZzN4NSyn9fR4d8zdWeLNQ/lFobUdDm1Hg11zHlELUvOLCfNJ3LaHJ6aVweBVYy35ZKFUGdtt3Ij/yVtoNHIuf3MNOXCMpS7VIypK4JllH2bnkPRqd/JEQMssnJxsbkd54OKG9xxHQrKN++YTQU0EmxXsWkbphLhElieWT85UT+9yvx77znXTscyP2djZ1q1NRR0hZqkVSlsSVysvPx+XoCoy7v4RjG8qn5+LK4YDB+PcZT1jb60E+Ui1EuZxT8ZxY+zmBx38i0JpePj3LIQSfPpOg4zhwlzGcRNVJWapFUpZEVSUc+J0zaz+mbebP+Gjn77elUdykH0dDb6ZV3zswOjjrmlGIOk8pTu1dQ+bmr2hx5jfcKCybbrCjIHwQccGj6NT/FjnaJC5LylItkrIkKlNiMhG7aiHOuz+nk/n38uk59v549rwPOt0FXnITUiGuhrkoD7vEH9Fiv4TTO8qnnySYY03vpPXQ+/H3l6NN4uKkLNUiKUviYkx5Z9my+C2an1hIKBkAWJVGglt37LtPpEWvUTKSthDVKT2efT+9Q9Pkn8qPNhUqR373GoR3/6m07tBdRgsXFUhZqkVSlkQFZ4/Atg9Qe+ajmct+YOfixuHQWwgf8hA+oTJmjBA1qaQwh4RfP8P7wFyaWE6UTz/gdB1tRz8FzQfK9YACkLJUq6QsCavFyq6Ny7Hb/j6diraWj0qc7xXJsWZ3E3XDeOyc3HROKUQDoxRHY38jf8P7tMnZ8OeI9/6RqB7/pCByNG6u8v+yIZOyVIukLDVcJnMpO379Bt/f3yPKeujPGS0GQ8+pEN5HfoMVog44e/oQrrs/wWn/PDDlA5CJJwfC7qLdzdPw9fXTOaHQg5SlWiRlqeEpLCpi57JPCYv/mKbqFADF2JMQMJxGQ6cTENFe54RCiIsqzoHfvyJ77bt4mcuuJcxVLuwJupXmNz1OSCP5sEVDImWpFklZakBKTRTt/JKsX1+l0R8XbefjwqHGd9Bi5OO4+TbSOaAQoiqsZhMHfvsc79/fI8xS9gtPkXJgl++NhN/0FGHhzXROKGqDlKVaJGWp/jObirHfNx82vgk5ZT9Ys/DkRMvxRN34KE7uctsFIWyRslpIXL8Q+y1v09ycBIAJe+y73YfW+1HwCNY5oahJUpZqkZSl+qugsJCd/zebyENzCDp/KxK3IAq7P4RD1wnYObnqG1AIUT2U4vC2ZVjXzaJlSVzZNKMjpZ3uJa39g4Q2lhv41kdSlmqRlKX6p8RkYttPc2h24F1CKbutQp69P+4x/4br7gF7J50TCiFqhFKoo+vR1s2CU9uAstNzOwJuI+q2ZwgICNI5oKhOUpZqkZSl+sNisbJ1xTyCd71KM3USgLOaF6fa/JO2Nz6EnaOLzgmFELVCKTi2nhOLnqRJUdmRplzlwu9h99Dx1hl4ecmp9/pAylItkrJUP1hP7iTxq4dpXRoPlN3U9kiLibS95d/YO7vrnE4IoQulSNywCKcN/yXcchyAM3gR32oq3W95GCdHR33ziWsiZakWSVmyceeOw6rnIe4HAIpwILHxOCJH/wdnT199swkh6gRlKSXuty/w2fk6IdY0AFIdIwi+9TVoHiPjqdkoKUu1SMqSbTqTkU78wv/Q59z/YbCaAI3S9mMp7DUTj0AZa0UIcSGLuYR9//cGTePfx5OywS1p2h816CW0oLb6hhNXTMpSLZKyZFtKzGa2Ln6Xdolv46vlAqCa9kMb9BIEtdM5nRDCFpjzs7Df/AbsmAMWE1YMbPYeSasxswgIlOEGbIWUpVokZcl2xG76Fdc1TxJpPQzAKWMYJQNeoHnPUXIYXQhx5bKOUbLiPzgeXApAtnJjX8uH6H7bNBwdHHQOJy5HylItkrJU9yWfPsnxBdPpVfAbUDbq9pHWU2k36nEM9vIDTQhxbY7s+Bn7X2fS2HICgMOGcPJiXqNTz0E6JxOVkbJUi6Qs1WFWK+z+CtOK/+BgLjvltsfvRpqPfUVuTSKEqFbWUjP7fnyTpvvfwYMCrEpji9dwIse9gZ+Mz1QnSVmqRVKW6qb8k3tw++1xOL0DgHTnFpiGvk5Y+376BhNC1Gv5WakcmjeNTmeXA2Bx9sU4+L/QYYyc7q9jpCzVIilLdUtufh6xX82kT8Y87LCCgxv0fwq6TQajnd7xhBANxNFdv+K/fibueUfKJjTtR2a/V/BrHKlvMFFOylItkrJUd+zasBy/NY8RTjIAqcExBI95FzzllJsQQgelJtg6G9a/CqXFFCpHdjadQvTYJ3FwsNc7XYMnZakWSVnSX9a5LPZ/OY0+55Zg0BRnNW8yr/8vrfqP0zuaEELA2SMc+3wiEQW7AUgwtkIb+R6R7bvpHKxhq+r7t6EWMwlRI3auX0bhOz3om/1/GDTFXv8bcX00VoqSEKLu8G1G+PTV7Ov4HPk4E2VJIuL7Yaz/4j+YTGa904nLkCNL1UCOLOnEXAxrX8K65T0MKNI1fwoGv0XTHjfqnUwIIS7pXNpxUr6eTJuC7QAcsGuN820f06xVe52TNTxyZEnUa9bk3TCnL2yZjQHFgYAb8Zy2U4qSEKLO8w4Kp81jv7Kv04sU4ETb0niafDcYdn0OcvyiTpIjS9VAjizVHpO5lE1fP8f1Jz/EjlJwDYCb3oVWQ/WOJoQQVyzzdBLmxQ8SnB1bNqHVcKw3vovBzU/fYA2EHFkS9c6J44eJe3UgA07Oxo5SzjUeDP/cJkVJCGGz/EJbEfzwKhj0XzA6QNLPnHujKztW/6B3NPEXNlOWsrKyGDduHB4eHnh5eTFx4kTy8/MrXae4uJgpU6bg6+uLm5sbo0ePJj09vXz+3r17GTt2LGFhYTg7OxMVFcU777xT05sirsKmn7/G44t+dDLvoQhHDlz3It4TFoKrr97RhBDi2hgM0HMq/GM1mU5N8FVZdNlwH+vff5Di4mK90wlsqCyNGzeOuLg4Vq5cybJly9iwYQOTJ0+udJ1HH32UpUuXsmjRItavX09KSgq33HJL+fzY2FgCAgL45ptviIuL46mnnmLmzJm89957Nb05oooKi4pYO/t+eu+cireWx3G7ZuTdu4q2Nz0sI+EKIeqX4PZ4/GsLuwNGYdAUfc/M58hr/ThxNEnvZA2eTVyzlJCQQOvWrdm5cyddunQBYMWKFQwbNozTp08TEhJywTo5OTn4+/szf/58br31VgASExOJiopi69at9OjR46KvNWXKFBISElizZk2V88k1SzUk5zQH37+NlqZ4APaEjKXd+LcxOjjpHEwIIWpWwpp5hG54DHcKOafcSer5Oj0Gj9E7Vr1Tr65Z2rp1K15eXuVFCSAmJgaDwcD27dsvuk5sbCxms5mYmJjyaZGRkTRu3JitW7de8rVycnLw8fGpvvDi6hxeBR/1oaUpnnxcSLr+fTpO/kiKkhCiQYgaMI6S+9ZyxL4F3loePbbeT8I308Fq0Ttag2QTZSktLY2AgIAK0+zs7PDx8SEtLe2S6zg4OODl5VVhemBg4CXX2bJlCwsXLrzs6b2SkhJyc3MrPET1MJdaSP/5v/DNrVCUBcEdsP/nRloNuEvvaEIIUav8GkfS5LGN7A68DYCow5/CN6OhMEvnZA2PrmVpxowZaJpW6SMxMbFWshw4cICRI0fy7LPPMmjQoEqXnTVrFp6enuWPsLCwWslY32WePcvu10YQuPNVQMF198J9v+EY0FzvaEIIoQs7R2c6PfgpppGfgL0LHF2LmtOXk/Hb9I7WoOh6C/bp06czfvz4Spdp2rQpQUFBZGRkVJheWlpKVlYWQUFBF10vKCgIk8lEdnZ2haNL6enpF6wTHx/PwIEDmTx5Mk8//fRlc8+cOZNp06aVf52bmyuF6RolHPgd5+/voptKxqTsON79OVoOe0jvWEIIUSc4dLodglvDwnFo547jv/BGNrZ/jt63/BNNPuxS43QtS/7+/vj7+192uejoaLKzs4mNjaVz584ArFmzBqvVSvfu3S+6TufOnbG3t2f16tWMHj0agKSkJE6ePEl0dHT5cnFxcQwYMIB7772X//73v1XK7ejoiKOjY5WWFZe3deUiWm/6F55aAWc0X4pHz6Vlu+v1jiWEEHVLUFvUpHUkvn8HUQXb6bP/SdalJ9Br8tvY2+n6dl7v2cSn4QCGDh1Keno6H330EWazmQkTJtClSxfmz58PQHJyMgMHDuSrr76iW7eyuzg/+OCDLF++nLlz5+Lh4cFDD5UdqdiyZQtQduptwIABDB48mNdee638tYxGY5VK3HnyabirY7Uq1n7zMn2PvI6dZuWQYxuCJy/CzbeR3tGEEKLOUpZS9nz5GJ1OfgHATqeetHhgHl5e8uGkK1WvPg0HMG/ePCIjIxk4cCDDhg2jd+/ezJkzp3y+2WwmKSmJwsLC8mlvvfUWI0aMYPTo0Vx//fUEBQXxww9/joq6ePFizpw5wzfffENwcHD5o2vXrrW6bQ2SpZTDXz7AwKOvYqdZ2ec7jKbT10hREkKIy9CMdnS6720OdHsVk7Kja/EWMt/tL+Mx1SCbObJUl8mRpStUkg+LxsPhlVjR2B/5KB3ueEYGmRRCiCt0Ys8a3JeMx4cczuCN0/gfcA+/Tu9YNqPeHVkS9UNa8gnU3GFweCXYOaPd8TUdxjwrRUkIIa5Ck44DYNIaThqb4M853OffWDZOnahWUpZErYnftxPrJwPRUveiXPxg/M9oUTfqHUsIIWyaT6PmBE9bD+F9wJQP826naMeXyImj6iNlSdSK2E2/EvL9SEI4Q7IhhOJ7V0BoZ71jCSFEvWDv6g13/QDt7wBlwXn5w6z75AmU1ap3tHpBypKocVt+XUjUyrvx0go47BCF98PrcA5soXcsIYSoX+wcYNTHHGpZdheK/ikfs+H9+yktLdU5mO2TsiRq1LrvP6LLlgdx0UpIcO1Gk0dX4uIVqHcsIYSonzSNFne+xp42TwDQ9+x37Hh7LMUlJToHs21SlkSNWTv/Va7fNwMHzcJ+7xhaPbIMe2d3vWMJIUS91/G2JznQ7RVKlYGe+b+x/62RFBQU6B3LZklZEjVj+xz6H/wvBk2xL+hW2k5diMFeRj0XQoja0nbYAxwe8DHFyp6uxVtJeucmcvPkxu9XQ8qSqH5bZsMvjwOQ3fEB2t//KZpRhuIXQojaFtn3dk4Pm0sRDlxn2oXDd3eCSY4wXSkpS6LaKKXY/MWT8NsfNyPu8xheI/8nYygJIYSOmncfQeqIeVjtXXE6tRHm3VY2OLCoMilLoloopVj96Ux6nXgfAPP1M2Hgf6QoCSFEHdC0yyAM9ywBRw84sZmcz0aRk52tdyybIWVJXDOlFKu/eJaY5A8B2N/qYewHzNA5lRBCiArCusHdSyi1d8MzYwfH3x9JnlzDVCVSlsQ1W/PVf4k5+Q4A+5o/QLuxL+qcSAghxEWFdiZ5+NcU4EQH8x4OzR4ln5KrAilL4pqsXvAmA4+9BsC+8PtoP+5/OicSQghRmSYdB5A+4muKcOQ60y7iZ4+WcZguQ8qSuGrbln9Jv8QXANgXOo72974p1ygJIYQNaNplEClDv6Dkj2EFYmffLSN9V0LKkrg6xzbSPfZxjJpiv/8I2k98X4qSEELYkGbdh3Os//uUKgO98n9l84cPyr3kLkHKkrhyKXtgwVg0SwmlLYfR9oG5UpSEEMIGRfa7g8RuLwNlt0axbnxT50R1k5QlcUUOJcVR/OVoMOVBeB/sbvsCzWivdywhhBBXqe3wB0nu/h8AjGtfhL0LdU5U90hZElWWlp6K/YLbcCrJJNezFYyZD/ZOescSQghxjRoNfQx6/QsA9eMUju9crnOiukXKkqiS3Px8MuaMJpxkMjQ/GLcYnDz0jiWEEKK6DHwOS+tRaFYzvsvuI27PNr0T1RlSlsRllZZa2P/B3bS3xJGPC2rcIjwCGusdSwghRHUyGFAjPyDJsR3uWhE+S8aRfOq43qnqBClL4rLWff4kvQrXYFZGzgz7hMDm1+kdSQghRA2wc3Qh9MH/47ShEcFkkjP3dvIL5D5yUpZEpdb/NJeYlI8AOHjdf4joNkLnREIIIWqSq5c/Dvd8Ry6utLYkse/D8VgsDXtIASlL4tLSDhC9p+web/tCbqPNyEd1DiSEEKI2BIS3JWPwR5QqAz3zV7Lhy//oHUlXUpbExRWdg2/vxMFaRHZQT9rd94HeiYQQQtSi5tE3Ed9hJgB9T7zPmT0N9xNyUpbEBUzmUqzfT4LsE+DVBK975qHZOegdSwghRC1rP+pxEoJvxqAp/H+dAtkn9Y6kCylL4gIbPv03hsMrUXZOcMfX4OKjdyQhhBB60DSi7vsYgjtCURYsvBvMxXqnqnVSlkQFm1Z8y4C0zwFI6vICBHfQOZEQQghd2f/xi7OzD6TuIfbjySil9E5Vq6QsiXLHjh0mauvjGDTFvqDRRA65X+9IQggh6gKvxhTcOAer0uic+SOb/u8jvRPVKilLAoDiEhM58ybgq+Vy3L4Zbe57X+9IQggh6hDX1jewJ+IfAHTa+zyHEvbqnKj2SFkSAGz+YgYdS/dRiBPud32N0cFZ70hCCCHqmE53z+KgYzvctCKsiyZQUFCgd6RaIWVJsH39z/RLLbtO6WT0i/g2aaNzIiGEEHWRZrTHf8I35OBGK+sRdn3eMMbfk7LU0JXk0WnXDIyaYr/fUCIHT9Y7kRBCiDrMOyictP5vAtAn8zt2rl2ib6BaIGWpofv1SRzyTqI8w2g5/kO90wghhLABrfrewW7/kRg0RbPNj0Nxjt6RapSUpQascP9P8PtXgIY26iMc3bz1jiSEEMJGtJ4wm3yXUHxKM+CXJ/SOU6OkLDVQyanJFH4/FQBr9FQI761zIiGEELbE0cUTtzGfg2aAvQsg8We9I9UYKUsNkFKKo18/jB85nDaGQf+n9I4khBDCFjXuDj0fBiDv+4c5cyZd50A1Q8pSA7Txl2/pU7gKq9Lg5vcwyDABQgghrla/GaTZh+JuzuTgV//SO02NkLLUwJw5m0nzHU8DsD9sLKHt+ukbSAghhG2zd6Zo6DtYlUavvF/YsWqx3omqnZSlBubANzMIIZM0QyBtxr2qdxwhhBD1QMR1MewNvhWA4E1PkZeXq3Oi6iVlqQHZvWMjfbK+B6B40OvYObvrnEgIIUR9EXXX65zRfAgjjdj5z+odp1pJWWoorFZCtzyFnWYlzmsA4T1u0juREEKIesTJzYszvZ4DIDrlaw7G79E1T3WymbKUlZXFuHHj8PDwwMvLi4kTJ5Kfn1/pOsXFxUyZMgVfX1/c3NwYPXo06ekXv1L/7NmzhIaGomka2dnZNbAFOtvzDf7Ze7Hau9J43Dt6pxFCCFEPtR54D/EuXXHUzBT/OA2U0jtStbCZsjRu3Dji4uJYuXIly5YtY8OGDUyeXPmtOR599FGWLl3KokWLWL9+PSkpKdxyyy0XXXbixIm0b9++JqLrrzgHVj0PgKH/k7j7N9Y5kBBCiHpJ0wi4YzZmzYH2JbFwcIXeiaqFTZSlhIQEVqxYwaeffkr37t3p3bs3s2fP5ttvvyUlJeWi6+Tk5PDZZ5/x5ptvMmDAADp37swXX3zBli1b2LZtW4VlP/zwQ7Kzs3nsscdqY3Nq3e/fPAWFmeDbArrfr3ccIYQQ9Zhfkyjse00p++LXp6DUpG+gamATZWnr1q14eXnRpUuX8mkxMTEYDAa2b99+0XViY2Mxm83ExMSUT4uMjKRx48Zs3bq1fFp8fDwvvPACX331FQZD1XZHSUkJubm5FR51VXzcHtqemg9ARs9nwWivcyIhhBD1Xu9p4BoAWUfI3fiB3mmumU2UpbS0NAICAipMs7Ozw8fHh7S0tEuu4+DggJeXV4XpgYGB5euUlJQwduxYXnvtNRo3rvqpqVmzZuHp6Vn+CAsLu7INqiVKKXJ/momDZiHRrTsBnW/UO5IQQoiGwMmDkr5/3B1i3SukpZ7WN8810rUszZgxA03TKn0kJibW2OvPnDmTqKgo7rrrriteLycnp/xx6tSpGkp4bbZvXEGPki1YlIbf6Nf0jiOEEKIBceh8F8ftmuKhFXJw8fN6x7kmdnq++PTp0xk/fnylyzRt2pSgoCAyMjIqTC8tLSUrK4ugoKCLrhcUFITJZCI7O7vC0aX09PTyddasWcP+/ftZvLhstFH1x1X7fn5+PPXUUzz//MX/cR0dHXF0dKzKJurGYrHivP5FAOICb6R9RAedEwkhhGhINKMdpQOegd/G0z3z/zh+ZDrhzSL1jnVVdC1L/v7++Pv7X3a56OhosrOziY2NpXPnzkBZ0bFarXTv3v2i63Tu3Bl7e3tWr17N6NGjAUhKSuLkyZNER0cD8P3331NUVFS+zs6dO7nvvvvYuHEjzZo1u9bN09XmXxdyvSWOEuyJuPVFveMIIYRogJpH30zShg60Kt5L8pLnCJ/+rd6RropNXLMUFRXFkCFDmDRpEjt27GDz5s1MnTqVMWPGEBISAkBycjKRkZHs2LEDAE9PTyZOnMi0adNYu3YtsbGxTJgwgejoaHr06AFAs2bNaNu2bfkjIiKi/PX+fo2ULSkxmwna+QoAiWFjcA8I1zeQEEKIhknTcB76AgA9cleQsH+XzoGujk2UJYB58+YRGRnJwIEDGTZsGL1792bOnDnl881mM0lJSRQWFpZPe+uttxgxYgSjR4/m+uuvJygoiB9++EGP+LXKeOhXWqpjFGrOtLr1Gb3jCCGEaMAad+jHAbdeGDVF9oqX9Y5zVTSl6snwmjrKzc3F09OTnJwcPDw89A2jFMzpC6l7oc90GChlSQghhL6S47fS6LshWDBQ8I8teIRG6R0JqPr7t80cWRJVdOi3sqJk7wo9puidRgghhKBR62gyGw3AiBWPnbZ3yy0pS/VIaamFw4vLjiRZukwEV1+dEwkhhBBl/IY9XfaXfd9B1lF9w1whKUv1yI71S2luSqQYe0q6/VPvOEIIIcSfGnWG5jGgLJxd9bbeaa6IlKV6QimF3bb3AUgKugkX72CdEwkhhBAVFXQp+0XeJW4BqanJOqepOilL9cTe3TvoZt6BVWk0Hv643nGEEEKIC7i2GsBR++Y4ayaSlr2td5wqk7JUT+SueQuABK8+eIfVjU8ZCCGEEBVoGkV/HF1qd3ohefl5OgeqGilL9UBySjLd8lYB4DXgUZ3TCCGEEJfWOuYeMjQ/fLUc9qyYq3ecKpGyVA8k/vIhTpqZE/ZNadS+v95xhBBCiEvSjPacbjYWAN/4r7CF4R6lLNk6q5Ve2T8BUNhhAmiazoGEEEKIyrUc+iBmZaS19SB7d6zTO85lSVmydUfW4JR3Apw8iRo0Ue80QgghxGW5+TYi3mcAANbtn+ic5vKkLNm6378s+7PDneDgqm8WIYQQooqCBpbdZaJT3looqdsXektZsmEnT53Ekri87Ivr7tY3jBBCCHEFAtv0A9/maOZCiFuid5xKSVmyYYdWf45RlXLUoSUEttE7jhBCCFF1mgYdxwFg/f3rOn2ht5QlG2WxKhqf+AGAwtZjdE4jhBBCXIUOY7FiwHB6O4lxu/VOc0lSlmzU/t+30EKdwIQdLQaO1zuOEEIIceU8gklw7QpA+uZ5Ooe5NClLNiprx0IADnn0wNHdV+c0QgghxNVRbUYDEJ66HIvFqnOai5OyZINMZgvNM34FwK79rTqnEUIIIa5ei763U4w94aQQt3uz3nEuSsqSDdq7cz2NSaMIR5r3vk3vOEIIIcRVc3T15qBHTwDObZ+vc5qLk7Jkg1yO/AzAEa9eGJ3cdE4jhBBCXBu79mWn4iLOrMFaB0/FSVmyQW1yNwHQtPftOicRQgghrl3z6JsxKTsak0bCgV16x7mAlCVbc/YInEkEgx0ubYbqnUYIIYS4Zg6unpz2LvtUXKO01TqnuZCUJRtTsK/sprk06QXOXrpmEUIIIapL0953AOB1cqXOSS4kZcnGHNxUNhBlanB/nZMIIYQQ1ajVH2dLkmOhIFPfLH8jZcmGpGVm0ro0HgDX1kN0TiOEEEJUI/cgLAFtATi8bZnOYSqSsmRDDu74DUetlHRDIB6NIvWOI4QQQlSrPQ6dAMjYs1znJBVJWbIhlkNlF72l+/csuwGhEEIIUY94ti07a9IsdwelpRad0/xJypKNUEoRem4HAM6RMTqnEUIIIapfxHUDKcaeQO0cB+N/1ztOOSlLNuL46dM0U6cAaHydlCUhhBD1j9HBmeNOrQHIjFurc5o/SVmyEaf2rMWgKZKNoTh6BukdRwghhKgRBUHdALA/vV3nJH+SsmQjWpkOAFAY3E3nJEIIIUTN8Wx1PQCNC/ZitSqd05SRsmQjArP3ANCiyw36BhFCCCFqUJOO/ShVBhpxhuPHDukdB5CyZBsspZC6r+zvoV31zSKEEELUIHtnD4q9WwIQbjqoc5oyUpZsQNqRvVBahHJwA59mescRQgghapRbRNmBAUPKbp2TlJGyZAPiYtcDcMjYHAzyTyaEEKKeCykbnJI6Upbs9A4gLs+YugeAIv92+gYR4iIsFgtms1nvGOIa2NvbYzQa9Y4hRDlTYAccgPzju3AqtWBnp+/3p5QlG+CdX3aBm1NoJ52TCPEnpRRpaWlkZ2frHUVUAy8vL4KCgtDk7gCiDrALaoNFabhZcjh2+gQR4U31zaPrq4vLKjaV0thyEjTwb9ZB7zhClDtflAICAnBxcZE3WRullKKwsJCMjAwAgoODdU4kBBgcnDltF0KoJZkzh3dLWRKVO37iGJFaPhY0vBu30TuOEEDZqbfzRcnX11fvOOIaOTs7A5CRkUFAQICckhN1wjmXpoTmJVOUHAeM1jWLXC1cx2Ue3QNAujEEzd5Z3zBC/OH8NUouLi46JxHV5fy/pVx/JuoKs28rAOzOJuqcRMpSnVecXna9UrZLuL5BhLgIOfVWf8i/pahrHAIjAXAvPKFzEilLdV4nt3MAeDVqqXMSIYQQovZ4NmoBQIA5FaX0ve2JzZSlrKwsxo0bh4eHB15eXkycOJH8/PxK1ykuLmbKlCn4+vri5ubG6NGjSU9Pv2C5uXPn0r59e5ycnAgICGDKlCk1tRlXzNeUAkBIRGudkwjRcCmlmDx5Mj4+Pmiaxp49e/SOJES959+47MhSAFlk5+bpmsVmytK4ceOIi4tj5cqVLFu2jA0bNjB58uRK13n00UdZunQpixYtYv369aSkpHDLLbdUWObNN9/kqaeeYsaMGcTFxbFq1SoGDx5ck5tyZc4dL/vTO1zPFEI0aCtWrGDu3LksW7aM1NRU2rZtq3ckIeo9J89ArPauGDSFtylN1yw28Wm4hIQEVqxYwc6dO+nSpQsAs2fPZtiwYbz++uuEhIRcsE5OTg6fffYZ8+fPZ8CAAQB88cUXREVFsW3bNnr06MG5c+d4+umnWbp0KQMHDixft3379rWzYZdRUmrBkHUCe8DqGWY7zVYIG2IymXBwcKh0mSNHjhAcHEzPnj2v+nWUUlgsFuzsbOLHrhD60zQM3uGQEQc5J8Ffv8tRbOL9d+vWrXh5eZUXJYCYmBgMBgPbt2+/6DqxsbGYzWZiYmLKp0VGRtK4cWO2bt0KwMqVK7FarSQnJxMVFUVoaCi33347p06dqjRPSUkJubm5FR41ISPzHPbmskOPmoeMfSJEdejXrx9Tp07lkUcewc/Pj8GDB3PgwAGGDh2Km5sbgYGB3H333WRmZgIwfvx4HnroIU6ePImmaYSHhwNgtVqZNWsWERERODs706FDBxYvXlz+OuvWrUPTNH755Rc6d+6Mo6MjmzZtqvJ6q1evpkuXLri4uNCzZ0+SkpIqbMfSpUvp2rUrTk5O+Pn5MWrUqPJ5JSUlPPbYYzRq1AhXV1e6d+/OunXram6nClFT3IPK/sy78BKa2mQTZSktLY2AgIAK0+zs7PDx8SEt7eKH5tLS0nBwcMDLy6vC9MDAwPJ1jh49itVq5eWXX+btt99m8eLFZGVlccMNN2AymS6ZZ9asWXh6epY/wsLCrm0DL+FcxkkACnFCc/KskdcQoroVmkov+Sg2W6p92avx5Zdf4uDgwObNm/nf//7HgAED6NSpE7t27WLFihWkp6dz++23A/DOO+/wwgsvEBoaSmpqKjt37gTKfg589dVXfPTRR8TFxfHoo49y1113sX79+gqvNWPGDP73v/+RkJBA+/btq7zeU089xRtvvMGuXbuws7PjvvvuK5/3888/M2rUKIYNG8bu3btZvXo13bp1K58/depUtm7dyrfffsu+ffu47bbbGDJkCIcOHbqq/SWEXlKtXgDsT9R3+ABdjwfPmDGDV155pdJlEhISauz1rVYrZrOZd999l0GDBgGwYMECgoKCWLt27SWvXZo5cybTpk0r/zo3N7dGClN+5mkAso2+uMjHeoWNaP3Mr5ec17+VP19M+PNNvfOLqyj6Wyk6r3uEDwvvjy7/uvcra8kquPCXmOP/G37FGVu0aMGrr74KwEsvvUSnTp14+eWXy+d//vnnhIWFcfDgQVq2bIm7uztGo5GgoLLfcktKSnj55ZdZtWoV0dFlGZs2bcqmTZv4+OOP6du3b/lzvfDCC9xwww1XvN5///vf8q9nzJjB8OHDKS4uxsnJif/+97+MGTOG559/vnz5Dh3KRvg/efIkX3zxBSdPniy/ROGxxx5jxYoVfPHFFxW2U4i6LtXqRTCQnVH5GZ+apmtZmj59OuPHj690maZNmxIUFFQ+FP95paWlZGVllf/w+rugoCBMJhPZ2dkVji6lp6eXr3N+WP/Wrf/8pJm/vz9+fn6cPHnykpkcHR1xdHSsNHd1KMlOBaDQXkZIFqI6de7cufzve/fuZe3atbi5uV2w3JEjR2jZ8sLrJA4fPkxhYWF5CTrPZDLRqVPFezj+9fKBK1nvr9dOnv9ZlZGRQePGjdmzZw+TJk266Lbt378fi8VyQe6SkhIZbV3YHINH2fu1Y3HGZZasWbqWJX9/f/z9/S+7XHR0NNnZ2cTGxpb/kFuzZg1Wq5Xu3btfdJ3OnTtjb2/P6tWrGT26bJj0pKQkTp48Wf4bXa9evcqnh4aGAmVDFGRmZtKkSZNr3r5rZSkoG2PJ5CCn4ITtiH/h0p8mNfztCGnsf2IuseSFy256ov+1BfsLV1fX8r/n5+dz4403XvQo96Xuk3Z+2JKff/6ZRo0aVZj391+k/v5aVV3P3t6+/O/nB4y0Wq3An7cnuVQ2o9FIbGzsBbctuVghFKIus3crK/iOZn2HDrCJj2VERUUxZMgQJk2axEcffYTZbGbq1KmMGTOm/DBzcnIyAwcO5KuvvqJbt254enoyceJEpk2bho+PDx4eHjz00ENER0fTo0cPAFq2bMnIkSP517/+xZw5c/Dw8GDmzJlERkbSv3/1/WC+akVlZcni6KFzECGqzsWh6j9WamrZK3Hdddfx/fffEx4eXuVPqrVu3RpHR0dOnjxZ4dRZTa33d+3bt2f16tVMmDDhgnmdOnXCYrGQkZFBnz59rvo1hKgLHNx8AHC2SFmqknnz5jF16lQGDhyIwWBg9OjRvPvuu+XzzWYzSUlJFBYWlk976623ypctKSlh8ODBfPDBBxWe96uvvuLRRx9l+PDhGAwG+vbty4oVKyr8VqcXQ0kOAFYnb52TCFF/TZkyhU8++YSxY8fy73//Gx8fHw4fPsy3337Lp59+etGbyrq7u/PYY4/x6KOPYrVa6d27Nzk5OWzevBkPDw/uvffei77W1a73d88++ywDBw6kWbNmjBkzhtLSUpYvX84TTzxBy5YtGTduHPfccw9vvPEGnTp14syZM6xevZr27dszfPiVX+MlhF6cPMqOLLkpKUtV4uPjw/z58y85Pzw8/ILh0J2cnHj//fd5//33L7meh4cHn332GZ999lm1Za0ubX2BsxAcGKh3FCHqrZCQEDZv3swTTzzBoEGDKCkpoUmTJgwZMgSD4dIfGH7xxRfx9/dn1qxZHD16FC8vL6677jqefPLJSl/vatf7q379+rFo0SJefPFF/ve//+Hh4cH1119fPv+LL77gpZdeYvr06SQnJ+Pn50ePHj0YMWJElV9DiLrA1cMPAHdVgNWqMBj0+bCTpvS+4Uo9kJubi6enJzk5OXh4VOMpsx8mw76FMOi/0HNq9T2vENeouLiYY8eOERERgZOTk95xRDWQf1NRFxVknsT1vXaYlRHL02dwsr/wSO+1qOr7t02Ms9RgmYvK/rSr+U/eCSGEEHWNi3PZByTsNQuOBqtuOaQs1WHn/hgZvFBVfisGIYQQoj7S7P/85KdWWqxbjisuS/feey8bNmyoiSzib46lZQFwOk+/Ni2EEELoxu4vp4TNNlSWcnJyiImJoUWLFrz88sskJyfXRC4BaJSVJMNFPo0jhBBC1HsGA4qyi7oz84v0i3GlKyxZsoTk5GQefPBBFi5cSHh4OEOHDmXx4sWYzeaayCiEEEKIBur8p9AKiq/uXpDV4aquWfL392fatGns3buX7du307x5c+6++25CQkJ49NFH5WaNQgghhKg3rukC79TUVFauXMnKlSsxGo0MGzaM/fv307p1a956663qyiiEEEIIoZsrLktms5nvv/+eESNG0KRJExYtWsQjjzxCSkoKX375JatWreK7777jhRdeqIm8DYqi7Folq0W/Q49CCCGEbqwWDH+ciDPa6XdnjSsewTs4OBir1crYsWPZsWMHHTt2vGCZ/v374+XlVQ3xGrZSgyNYwFqi30VtQgghhF6UuZDzY3Y7OLvoluOKjyy99dZbpKSk8P7771+0KAF4eXlx7Nixa83W4DXyL7snXKCLDLIuRF1w/PhxNE1jz5491/xcmqaxZMmSa34eIeqzUtOfwwU4OrrqluOKy9Ldd98tQ+HXkkZ+ZWXJ28GicxIhxNV67rnnLvqLZWpqKkOHDq39QELYkJKiAgBMyoijow2dhhO1yOGPQ46mAn1zCCGqXVBQkN4RhKjzXCgBwOjkhr2dfjcdkdud1GF5mhsAOefO6JxEiPpl8eLFtGvXDmdnZ3x9fYmJiaGgoACr1coLL7xAaGgojo6OdOzYkRUrVlzyeebOnXvB9ZlLlixB07Ty+c8//zx79+5F0zQ0TWPu3LnAhafh9u/fz4ABA8ozTZ48mfz8/PL548eP5+abb+b1118nODgYX19fpkyZIuPbiXrNUJIDgNHZq/z/lR7kyFIdti3Vyg3AqeQUPPUOI8TlKAXmQn1e294FqviDNDU1lbFjx/Lqq68yatQo8vLy2LhxI0op3nnnHd544w0+/vhjOnXqxOeff85NN91EXFwcLVq0uOJYd9xxBwcOHGDFihWsWrUKAE/PC/83FxQUMHjwYKKjo9m5cycZGRn84x//YOrUqeXlCmDt2rUEBwezdu1aDh8+zB133EHHjh2ZNGnSFWcTwiYUnSv709lL1xhSluow7Y9vDjtTjr5BhKgKcyG8HKLPaz+ZAg5Vu/gzNTWV0tJSbrnlFpo0aQJAu3btAHj99dd54oknGDNmDACvvPIKa9eu5e233+b999+/4ljOzs64ublhZ2dX6Wm3+fPnU1xczFdffYWra9l2vPfee9x444288sorBAYGAuDt7c17772H0WgkMjKS4cOHs3r1ailLot46lZJCGJBmckbPE9dyGq4OM7r6AOBgytY3iBD1SIcOHRg4cCDt2rXjtttu45NPPuHcuXPk5uaSkpJCr169Kizfq1cvEhISajRTQkICHTp0KC9K51/XarWSlJRUPq1NmzYY/3KvyODgYDIyMmo0mxB6ysxIBeBEkaOuOeTIUh3m5F32W7qb+azOSYSoAnuXsiM8er12FRmNRlauXMmWLVv47bffmD17Nk899RQrV6684pc1GAwoVXFoj5q8hsjevuKngTRNw2q11tjrCaE3a14aACVO/rrmkCNLdZibfxgA3tassutBhKjLNK3sVJgejyu88FPTNHr16sXzzz/P7t27cXBwYPXq1YSEhLB58+YKy27evJnWrVtf9Hn8/f3Jy8ujoODPT6z+fQwmBwcHLJbKh/+Iiopi7969FZ5n8+bNGAwGWrVqdUXbJkR9YsxPB0C56fvpUSlLdZhPYFlZsqcUVShHl4SoDtu3b+fll19m165dnDx5kh9++IEzZ84QFRXF448/ziuvvMLChQtJSkpixowZ7Nmzh3/9618Xfa7u3bvj4uLCk08+yZEjR5g/f36FC7IBwsPDOXbsGHv27CEzM5OSkpILnmfcuHE4OTlx7733cuDAAdauXctDDz3E3XffXX69khANkWNx2afBDZ7BuuaQslSH+Xu6k6k8AMhOP6FzGiHqBw8PDzZs2MCwYcNo2bIlTz/9NG+88QZDhw7l4YcfZtq0aUyfPp127dqxYsUKfvrpp0t+Es7Hx4dvvvmG5cuX065dOxYsWMBzzz1XYZnRo0czZMgQ+vfvj7+/PwsWLLjgeVxcXPj111/Jysqia9eu3HrrrQwcOJD33nuvJnaBEDbDzVR2TZ6jl04fHvmDpv5+wl1csdzcXDw9PcnJycHDw6Nanzv9jZ4E5sVRdMtXOLcfWa3PLcTVKi4u5tixY0RERMiI/vWE/JuKOsdqpfiFQJwwkXTHRlpFta/2l6jq+7ccWarjAptEAuCcf1LnJEIIIUTtKcw6jRMmSpWB4MbNdc0iZamu844o+zNLbkwshBCi4XDJPwWA1SMUD9eqf+K1JkhZquMKXcsu8s5OPqhzEiGEEKIWnSs7SODg31TnIFKW6rzdRX4AmNMTdU4ihBBC1KIzfwzI6qvvKTiQslTnBTXrCIC/9QyqKFvXLEL8nXw+pP6Qf0tR1xxPiAUgxSFC5yRSluq8xo1CSFNltz05c2yfzmmEKHN+JOnCQp1unCuq3fl/y7+PEi6EXpyzyy4/SXUM1zcIcruTOs/eaOC0fROCSrPIOraHgNbX6x1JCIxGI15eXuX3JXNxcUG7wlG0Rd2glKKwsJCMjAy8vLwq3HtOCL2UFuYQqMoGpAxq3knnNFKWbEKOR0vI2o3ptBxZEnVHUFDZ7QfkRq71g5eXV/m/qRB6O524g3AgTfkQHKTvgJQgZckmaCGdIGsh7ln79Y4iRDlN0wgODiYgIKBGbx4rap69vb0cURJ1SvahHQCcdI4kyKD/UWspSzbAt2U0HIBGJYeh1AR2DnpHEqKc0WiUN1ohRLXS0nYDUOjXTuckZeQCbxvQvGUbSuw8cKAUlR6ndxwhhBCiRvnlxgPg3KSLzknKSFmyAa5O9jg26QqAlrxL5zRCCCFEzbHkn6WRJRmA0NbROqcpI2XJVjT+4xvmxBZ9cwghhBA1yHh6GwClPi0JCQnVOU0ZKUs2oiC47MhS/qGNIIPHCSGEqK/+OChgF9GzzgxJImXJRmT7tMekjLiZzlCYfkTvOEIIIUSNUCe3lv2lcU99g/yFlCUb0cjPhwRDCwBO/b5C5zRCCCFE9SspOIclueyTcDkBdePibpCyZFMy/MquWyo9tEbnJEIIIUT1O7bzV+ywcoJg3AOb6h2nnJQlG+LS+gYAwrJ3gNWicxohhBCiehUm/AbASe8eGOrAYJTn2UxZysrKYty4cXh4eODl5cXEiRPJz8+vdJ3i4mKmTJmCr68vbm5ujB49mvT09ArL7Ny5k4EDB+Ll5YW3tzeDBw9m7969NbkpV611l/7kKmc8VB5nD+/QO44QQghRrYLOlF2vZGwxUOckFdlMWRo3bhxxcXGsXLmSZcuWsWHDBiZPnlzpOo8++ihLly5l0aJFrF+/npSUFG655Zby+fn5+QwZMoTGjRuzfft2Nm3ahLu7O4MHD66Tt2/wdnchzrEjAKk7f9I3jBBCCFGNzp5MIMSaglkZadFtqN5xKrCJspSQkMCKFSv49NNP6d69O71792b27Nl8++23pKSkXHSdnJwcPvvsM958800GDBhA586d+eKLL9iyZQvbtpWN4ZCYmEhWVhYvvPACrVq1ok2bNjz77LOkp6dz4sSJ2tzEKstvHAOAb/JqnZMIIYQQ1efklsUAxDm0xd/PT+c0FdlEWdq6dSteXl506fLnlfExMTEYDAa2b99+0XViY2Mxm83ExMSUT4uMjKRx48Zs3Vp2mK9Vq1b4+vry2WefYTKZKCoq4rPPPiMqKorw8PAa3aar1XnQWJRmILgwCbJP6R1HCCGEqBaux8o+6Z0TdoPOSS5kE2UpLS2NgICACtPs7Ozw8fEhLS3tkus4ODjg5eVVYXpgYGD5Ou7u7qxbt45vvvkGZ2dn3NzcWLFiBb/88gt2dpe+x3BJSQm5ubkVHrXFJ6ARWlj3si+Sfqm11xVCCCFqTEEmzUvK7gfXKPpWncNcSNeyNGPGDDRNq/SRmJhYY69fVFTExIkT6dWrF9u2bWPz5s20bduW4cOHU1RUdMn1Zs2ahaenZ/kjLCysxjJeVKthAFji5bolIYQQ9UDScgxYIag9zVtE6Z3mApc+fFILpk+fzvjx4ytdpmnTpgQFBZGRkVFhemlpKVlZWQQFBV10vaCgIEwmE9nZ2RWOLqWnp5evM3/+fI4fP87WrVsxGAzl07y9vfnxxx8ZM2bMRZ975syZTJs2rfzr3NzcWi1M55oMwZv/wIlNFJ9Lwck7pNZeWwghhKh2B34o+7P1SH1zXIKuZcnf3x9/f//LLhcdHU12djaxsbF07twZgDVr1mC1WunevftF1+ncuTP29vasXr2a0aNHA5CUlMTJkyeJji4b3LGwsBCDwVDh3jPnv7ZarZfM4+joiKOjY5W3s7p5hrTggNaCtuoQB9fPI+rmx3XLIoQQQlyLgqxUnI+uLzvV1faWyy2uC5u4ZikqKoohQ4YwadIkduzYwebNm5k6dSpjxowhJKTsqEpycjKRkZHs2FE2/pCnpycTJ05k2rRprF27ltjYWCZMmEB0dDQ9evQA4IYbbuDcuXNMmTKFhIQE4uLimDBhAnZ2dvTv31+37b0cg0EjJXQ4AA6J/6dzGiGEEOLqHV43DwNWEo0twKfujNr9VzZRlgDmzZtHZGQkAwcOZNiwYfTu3Zs5c+aUzzebzSQlJVFYWFg+7a233mLEiBGMHj2a66+/nqCgIH744Yfy+ZGRkSxdupR9+/YRHR1Nnz59SElJYcWKFQQHB9fq9l2p0N53YlUazYrjyE87rHccIYQQ4qo4J5W9L6eFDdc5yaVpSimldwhbl5ubi6enJzk5OXh4eNTKayql+P2lvnS27OVAiwdpO+5/tfK6QgghRHXJPBGH3xc9sSiNUxN2ER7evFZfv6rv3zZzZElUpGka51rdDkDAke+hkmushBBCiLroxOpPANjj2LXWi9KVkLJkw9oPHEeuciHAmkHynl/1jiOEEEJUmbKYaXLqRwCK21780+d1hZQlGxbg682RwCEABB76Tuc0QgghRNUd2vIjfiqLLOVOh5ixeseplJQlG9fp5n8BYJe0FPIzLrO0EEIIUTc47/kcgAN+Q3FzcdE5TeWkLNm6kI4Q2hWsZoj9Uu80QgghxOVlHSXs7BYAWt74qM5hLk/KUj1Q3Ok+AM5t/BgspTqnEUIIIS5j52eAguYxBIW31jvNZUlZqgfym43grPLAu/QMxzYv1DuOEEIIcUnmojwsv39T9kXXSfqGqSIpS/WAn5cHsf43A6C2vAcydJYQQog6Kn75BxhLssl0aAQtbtA7TpVIWaonwoc+Qomyo2lxPGkH1usdRwghhLiAspQSEPcZAHGN7wKDUedEVSNlqZ5o2awZW93KGnr2qtd1TiOEEEJcKHHtPIKt6ZxT7nS48Z96x6kyKUv1iHv/sk8UtMzeRPbJAzqnEUIIIf5CKRy3vwfA3uDb8PL00jfPFZCyVI9c17kbW+2jMWiKlJ9e1DuOEEIIUe7QliU0NR+kUDnSYkTdHy7gr6Qs1SOapqH1+zcAUWd/g8zD+gYSQgghAJRCW/8KALv8RtEotLHOga6MlKV6pkevAdByKJqywsY39I4jhBBCkBu/kuamBIqVPREjZ+gd54pJWaqP+j5e9ue+hXJ0SQghhL6UwmNb2QePMiPHEdY4QudAV07KUn3UqDMlTW8AZSFxge01eCGEEPXIwRVwajvYORM63Dbfk6Qs1VN7Wz6MVWlEnl1J5sEdescRQgjRAClLKfnLnyn7oscD4BGsb6CrJGWpnuravQ+bnPsDkPXTUzqnEUII0RDF//YZbjkHydfcsEb/S+84V03KUj2laRpew5/FpIy0zN9BcuzPekcSQgjRgJQWF+C7o+xapV2h92Jw9dY50dWTslSPtW/XkQ2eIwGwrngSLKU6JxJCCNFQ7P9+FkEqgzR86XTrE3rHuSZSluq5lre/yDnlRpj5OEm/vKd3HCGEEA1A7plTtDo0B4BD7R7D09NT50TXRspSPdc4NJQd4fcDEBT7BhRl6xtICCFEvXf02ydwoYR4YyuiR96vd5xrJmWpAYi+43HOOEfgqXJh7ct6xxFCCFGPndy3nvaZywEoGfgSdnZGnRNdOylLDYCHizP+t71d9sXOTyBlj55xhBBC1FeWUgI2PIlBU2xxu4FOPQfpnahaSFlqKJr2g7ajQVnJ/+FhsFr0TiSEEKK+2fkpTpkHUE5etJvwrt5pqo2UpQbEesN/KdJccMvcy8Hls/WOI4QQoh5Ruamw5iUAtJhncfcN0TlR9ZGy1IAYPINZH1p2oV3IrlcozDypcyIhhBD1glLEfzYZTHlYQ66D6+7VO1G1krLUwPS5cyZxWgvcKOTU1w+CUnpHEkIIYeMSVn9Fm5wNmJWRxK4vgcH2L+r+KylLDYyrsyNFQ9/BpIy0ytnE0bVf6h1JCCGEDSs4l0Hgpv8AsDn4blp36qVzouonZakB6tKtF2sDyg6R+mz8D8XZaTonEkIIYauOfDUFH3I4poXR9e76OTyNlKUGqsc9L3GQJnipXE7MnSSn44QQQlyxxNVf0/7cb1iURvYNb+Hq6qp3pBohZamB8nR3JXvwbMzY0Sp7A+z+Ru9IQgghbEhuximCN84AYGPgXXTqeYPOiWqOlKUGrFt0X7QBT5d9sWIGZB3TN5AQQgjboBSWH6fgST4HDU3pNuFVvRPVKClLDZxd74ehcU8w5VOyaBLKYtY7khBCiLpu56d4J69HGR0xjJ6Di7OL3olqlJSlhs5ghFEfYrJzwzF1JwnzZ+qdSAghRF2Wug9+fQoALeY5mrfpqnOgmidlSYB3OGtblH3jRx7+lNOxy3UOJIQQoi4qKcwh7bOxYCmBlkOgx4N6R6oVUpYEADfc9iBrXYdi0BQuyx6k+Fyq3pGEEELUMYmf3U9Q6WnS8aFg6LugaXpHqhVSlgQABoNG24kfcoQwfFQ2pz8dK9cvCSGEKLd/6Ww6nP0Fi9I41X82rt6BekeqNVKWRDl/H29ybvyUAuVI84LdJMx7XO9IQggh6oDTcZtpuet5ADY0mkyXviN0TlS7pCyJCq7r3INNbcr+Q7Q++gWpW77VOZEQQgg9FZxLx37xvThqZnY5dqf3ffVzlO7KSFkSFxh02wOs9LwNgKB10+FMks6JhBBC6EFZzJz45E4C1RlOEUT4P77B3s5O71i1zmbKUlZWFuPGjcPDwwMvLy8mTpxIfn5+pevMmTOHfv364eHhgaZpZGdnV8vz1neapjHwoQ+hSW80Uz4sGAOFWXrHEkIIUcusvz1D68JdFCkHckd+gZ9/gN6RdGEzZWncuHHExcWxcuVKli1bxoYNG5g8eXKl6xQWFjJkyBCefPLJan3ehsBgZw+3zQXPxpB1lLTPxqBKTXrHEkIIUVt+/wrj9g8AOHvDO7Tp1FPnQPrRlKr7d1BNSEigdevW7Ny5ky5dugCwYsUKhg0bxunTpwkJCal0/XXr1tG/f3/OnTuHl5dXtT3vebm5uXh6epKTk4OHh8fVbWQdVZqyD/OcG3CmmPjQO2j9jzl6RxJCCFHDMuPW4vv9bWhWM/SbCf1m6B2pRlT1/dsmjixt3boVLy+v8kIDEBMTg8FgYPv27bX+vCUlJeTm5lZ41Fd2Ie3Z2P5lrEqj9emFJP30ut6RhBBC1KDMk4kYF92DZjVjjhwJ1/9b70i6s4mylJaWRkBAxfOkdnZ2+Pj4kJaWVuvPO2vWLDw9PcsfYWFhV53BFtww6j5+DSo7Ndk89iWOb/5O50RCCCFqQv65dErmjsKbXA4amlE4dDYYbKIq1Chd98CMGTPQNK3SR2Jiop4RL2rmzJnk5OSUP06dOqV3pBqlaRoxk2axxnUYRk0RtHIK6fGb9I4lhBCiGpUWF5D64c00sqaQgj/O47/H09NT71h1gq6f/5s+fTrjx4+vdJmmTZsSFBRERkZGhemlpaVkZWURFBR01a9/tc/r6OiIo6PjVb+uLbK3M9J1yufseHME3Up3UbToTnL/sRKPRq30jiaEEOIaKUspCR+OpZ0pnhzlSs6tC4hqHKF3rDpD17Lk7++Pv7//ZZeLjo4mOzub2NhYOnfuDMCaNWuwWq107979ql+/pp63vnJ3cabJ/d+R+EEMkeoopoW3waTfwP3qC6sQQgidKcW+Of+gQ856SpQdBwfMoWu7rnqnqlNs4kRkVFQUQ4YMYdKkSezYsYPNmzczdepUxowZU/6JteTkZCIjI9mxY0f5emlpaezZs4fDhw8DsH//fvbs2UNWVlaVn1dUFOjvi/09izF7huOQewK+vgWKzukdSwghxFXK++U5OqT/H1alsaPTLLo2sFuZVIVNlCWAefPmERkZycCBAxk2bBi9e/dmzpw/P8ZuNptJSkqisLCwfNpHH31Ep06dmDRpEgDXX389nTp14qeffqry84oLNYtohv29S8AtCDLiKPryVizFDXsgTyGEsElb38d9x9sAbIl6ij43yziDF2MT4yzVdfV5nKVKpcdh/nQI9uZcDrp1pfnDSzE4OOudSgghRBWU7PwSx58fLvtiwH/g+sf0DaSDejXOkqijAtuwo+dHFChHWubv5NB7t6BKS/ROJYQQ4jIOLP8Y+5//VfZF9FToM13fQHWclCVxTXr1H86unh9RpBxolbuFpPdulduiCCFEHRb32xdEbX8CA4qtvqNg0EugaXrHqtOkLIlr1nfwLWzrNpsSZU9k9gaSPrhDCpMQQtRBCau/odXmaRg1xSaPYXR98FMpSlUgZUlUi/7Dx7Cp89uUKDsis9b8cYRJTskJIURdEf/b57TY8BB2mpXNboPo9tDX2NnpOoKQzZCyJKrNwJvu+qMw2ROZvR4W3g3mYr1jCSFEgxe3/ENabZ5WXpS6PDwPB3spSlUlZUlUq4E33U3SgDkoOye0Q7/Ct2PBVHj5FYUQQtQIFfslUTtm/nHqbTjdHlmAo4OD3rFsipQlUe3a970FbdwisHeBI2tI/3A45gIZuFIIIWrdlvfQlj6MAcW+kNvp8fBX2MuptysmZUnUjIjr4a4fKDa4Enjud1LfHkBRVqreqYQQomFQilOLZsBvT5V93fMh2k+aI9coXSUpS6LmNIlm/w3zOaM8aWw+Svb7A8hNPax3KiGEqNeUpZQ9H44nLO7Dsgkxz8ENL8qn3q6BlCVRo7pG9yN19BJO40+wJQXznBs4c2in3rGEEKJeMhcXcOCdW+iYsQSL0ljb8ino/agUpWskZUnUuPbtr6PoruUcojG+KguXeSM4tfOny68ohBCiyvLPpXP8zRja5a6nRNmxpdPr9L/z33rHqhekLIla0aJ5S5zv/43fje1xpZjgn+/FtPNLvWMJIUS9cPZkIjmz+9HCFE+OcmXfgC/pc/M/9I5Vb0hZErUmNDiYZo+sYKPzAOyw4vDzw7DmJbBa9Y4mhBA2y3x8G4YvBtHImkIK/qTc+iNd+47QO1a9ImVJ1CpPd1d6P/79nzdt3PAahfPuwlKcr28wIYSwRXsXYv/1jXirHA4ammG5byVR7brqnarekbIkap1mMMDAZ2DkByiDPS5Hfub0m/0oOHNC72hCCGETlNVC0S/PwP9NBosJIkcQNm0dYY0j9I5WL0lZEvrpNI7f+39JlnKniekQxR/0Iz1+k96phBCiTispyCburZE4b3+nbEKf6XD71zi7eegbrB6TsiR01bnPcFJvX84RwvBVWXh/N5KDy2frHUsIIeqkjGP7yXizN23zNlKi7NjT9dWyI/UGeTuvSbJ3he7atGmPy4Nr2OoQjQOltNzxNPEfj0fJTXiFEKJc0vqFuHw5iDDLKdLxIW7wAjoOv1/vWA2ClCVRJwQHBtDpsaWsCJiEVWm0Tv0/zrwXAzmn9Y4mhBC6UpZS9nz5GK3WTsaNQvbbtcE8cR3X9Rykd7QGQ8qSqDOcHOwZ/OBrrOv6PnmaGwE5++GjPnBopd7RhBBCH3nppLw3lI7HPgFgvfdomk9fQ2hYE52DNSxSlkSdomkaA0aMw2XqJgjuCEVZMO9Wji98HGUx6x1PCCFqz7EN8FFvGp3bQRFOrG/7X65/+DOcnZ30TtbgSFkSdZLRNwIm/gZdJwEQnjCHI68PlOEFhBD1nrKUcuz7Z1FfjYSCDAhojfGB9fS9dSqa3ONNF1KWRN1l5wjDX2dVm/+Rp5xpXrQXy/s9ObZxgd7JhBCiRmSnHuXQq/2I2P82mrJCx7vgH6txCIrUO1qDJmVJ1Hkxtz3IsdHLSdCa4UE+EasfIO7jCTLqtxCiXklY9RWGj3vTsmQ/+cqJjW1fgpvfBwcXvaM1eFKWhE1o3/46QqZt5FfvO7EqjTapP5D2eg8ykrbqHU0IIa5JScE59rx3F1GbHsKDAhIMLUgZ+xt9bn1I72jiD1KWhM3wdHdl0MMfsCH6U9KVN41KT+H/7XBYOwvk4m8hhA06vutXzr3ejY6ZS7EqjbUBdxP++CZaRnbQO5r4C00ppfQOYetyc3Px9PQkJycHDw8Zbr42nDx1CuOKx2iUvKJsQnBHSm78AMeQNvoGE0KIqjAXwarnYfuHACQTQEq/N+ja7yadgzUsVX3/lrJUDaQs6ejA9/DzdCg6Rwn2HG79EK1HP4lmtNc7mRBCXFT+oU24rXgEzh4C4Hj4bbjf9Aq+Pr76BmuApCzVIilLOstL48BH99C2YDsAJxxa4HL7R/g376JzMCGE+JOpMJe4rx+jQ8p3GDQFbkEw8j1ocYPe0Rqsqr5/yzVLwva5B9HykV/4rcVzZCtXmpgO4fX1IA58/ThWk9xfTgihv8NblnDutevolLoQg6bYH3AjTNkmRclGyJGlaiBHluqOI8eOkL7gIXqaNgOQbAxFDX+D0OuG6JxMCNEQ5Z1N5tg3j9D+3G9A2bVJp3rPovvA0TLAZB0gp+FqkZSlusViVaz7v09pv+8l/LXssontx8Cgl8DNX9dsQogGwmohbuk7NN79Gu4UYlUam3xuod09r+Pt7aN3OvEHKUu1SMpS3ZSclkra/z3Ndenfo6HAyZOCPk/jGj0RDEa94wkh6quUPfDzNEiOBSDJ0IyiQa/TsccAfXOJC0hZqkVSluq45FhY9iik7gXguEMLHG98jeB2/XUOJoSoTwrOpVO68gU84+cBCuXgzvaIKXS8ZTpOjg56xxMXIWWpFklZsgFWCweXvUlQ7Jt4aIUAHPAdQsTY13D1a6xzOCGELVMWM/uWvEXE/rfxoKBsYtvRMOi/4BGsbzhRKSlLtUjKku04euIEJ76bQd/8XzBoikKcONpqMq1vmYHB0VXveEIIG3N421LsVz1Nk9LjABzSwnEb9RbB7eWUmy2QslSLpCzZFqUUOzavwXXNTNpakwDI1HxxH/48jteNA4OMqCGEqFzaod/JWvIErQt2AJCt3NjT8iF63DpNTrnZEClLtUjKkm0qNpWyacnHRMW9RSPtTNnEoHZww4vQTK5nEkJcRF4aub88j2vcAoyawqSMbPG9hVa3v0BwUIje6cQVkrJUi6Qs2basnFzsd32C+453oCQHgEOuXfAY8SKBUT11TieEqAtU4Tm0Le/Ato+gtAiAbU598Lnpv7RsLTe9tVVSlmqRlKV6ouAsrH+F0h2fYUcpAAmefQka9RLe4e11DieE0IO5KI8DP7xCi0Of43b+4u3QrhT2ew7nZr1kYEkbJ2WpFklZql8OxO0ja9nz9C5cjUFTWJRGov8Qwm5+Fo/QKL3jCSFqQWlxAXHL3iU07iN8VTYAmS7N8LvpJWg1FKQk1Qv17t5wWVlZjBs3Dg8PD7y8vJg4cSL5+fmVrjNnzhz69euHh4cHmqaRnZ1dYf7x48eZOHEiERERODs706xZM5599llMJlMNbomo69q2aU+ffy9m94if2eoQjVFTtMn8BddPokn6cBycPaJ3RCFEDSktLmDvolnkvNKGDgf+h6/K5jQBbGj7X9wf2QaRw6QoNUB2egeoqnHjxpGamsrKlSsxm81MmDCByZMnM3/+/EuuU1hYyJAhQxgyZAgzZ868YH5iYiJWq5WPP/6Y5s2bc+DAASZNmkRBQQGvv/56TW6OqOM0TaNz116oLr+wZeNKjBtfpbt5J63Sl8F7y6Hd7dBnOvi31DuqEKI6mAqw7JpLzsrX6KDOAZCKH0kt76frzVO53sVF54BCTzZxGi4hIYHWrVuzc+dOunTpAsCKFSsYNmwYp0+fJiSk8k8grFu3jv79+3Pu3Dm8vLwqXfa1117jww8/5OjRo1XOJ6fh6j+rVbFt00q6Hp+D/dGVACg0Erz64j90Jv6teuicUAhxNUw56TjEfgo7P4GiiiWpy81TcZOSVK9V9f3bJo4sbd26FS8vr/KiBBATE4PBYGD79u2MGjWq2l4rJycHH5/Kb3JYUlJCSUlJ+de5ubnV9vqibjIYNHpePwiuH1R2+5QNr6MlLad19jpYsI6Drl1wi3mckI6D5RC9EDYgL/Ugx5e+QouUn4A/Lr3wjqCg61TcO95JPylJ4i9s4pqltLQ0AgICKkyzs7PDx8eHtLS0anudw4cPM3v2bO6///5Kl5s1axaenp7lj7CwsGrLIGxAo86oMfOJHb6cDc4DKVUGWhbsIuTHOzgxqyuHVn2GKpXr3oSoi9ISthD3zihcPupGu5TFOGHitEsU3P4VPBSLa89/yNEkcQFdy9KMGTPQNK3SR2JiYq1kSU5OZsiQIdx2221MmjSp0mVnzpxJTk5O+ePUqVO1klHUHeevabr+iR9IvH09a9xHUqQcaGI6RItN08j5X2vY9Fb5YX0hhI6U4vCW/yPplX4ELRxKm3NrMGqKHXad2dDzCwKnbYbWI8Fg1DupqKN0PQ03ffp0xo8fX+kyTZs2JSgoiIyMjArTS0tLycrKIigo6JpzpKSk0L9/f3r27MmcOXMuu7yjoyOOjo7X/Lqifmjbpj20+YqjJ05y+Jd36ZT6Hf6lZ2DVc7D+Vcxtbye//Xi8IzrpHVWIhqUkH/YtRO2YQ/MzZb94m5WR7a79cbz+X3Tt3kfGSRJVomtZ8vf3x9/f/7LLRUdHk52dTWxsLJ07dwZgzZo1WK1Wunfvfk0ZkpOT6d+/P507d+aLL77AIPcFE1epaZPGNH3gdbJynqX0yI/YbfsAMuKw3z0X791zOezSEWP3yUT0vh2M9nrHFaLeOnM8nuSVs+mQuQytJBcNMBud2eJ1IyGDp9G7pYyXJq6MTXwaDmDo0KGkp6fz0UcflQ8d0KVLl/KhA5KTkxk4cCBfffUV3bp1A8qudUpLS2PXrl1MmjSJDRs24O7uTuPGjfHx8SE5OZl+/frRpEkTvvzyS4zGPw/BXskRK/k0nLgopeD4JnZ//yrt8jZhp1kBOKv5ktL0VpoOfhDXgAidQwpRP1jNJhLWL0SLnUvrol1/zvBpCt0mQ4ex4OylWz5RN9W7EbyzsrKYOnUqS5cuxWAwMHr0aN59913c3NyAsgEmIyIiWLt2Lf369QPgueee4/nnn7/gub744gvGjx/P3LlzmTBhwkVf70p2i5QlcTnxCfEkr/6ATmd+wk8ru/+cVWkc8ehO86FT0FoNlaNNQlyFzBMJnFj1IRGnluDDn/+39jh1wbnXP4nqfTPIGQNxCfWuLNVlUpZEVWXl5LH7t3l4Jc6js2XfnzNcA6DdreS1vAX3iC4y/IAQlSnKhvgfMe3+FofTW8onn8GLxMCbaDRgMk1btdMvn7AZUpZqkZQlcaWUUuzdt5uw44vxPbgICv78AEOKfWPyW91KeL97cfAL1y+kEHWIKi3hxPYfMe7/jrAzG8BSNtadFY29Dp0p6XA3HQeOwcnJSeekwpZIWapFUpbENbGY4cgajqz6lEbpa3HSzOWzjrp2xNL2DiKuH4udq7eOIYXQgVKc2ruWrG3fEJ72G57k/TnPPwo63EFRq1E4+4frFlHYNilLtUjKkqguh08mk7R2HoHHf+Q6axwGrey/Zwn2mJoNxr3rndBsINjLb8+i/ko9vIdT678m7PRSglV6+fQM5c1+nxtoO3QygS3kdLW4dlKWapGUJVHdSi1W9hw4QObWb2iR9jPNOP3nTHtX0gKvp7DpEMJ73IzBxUu3nEJUC6sVlfI7WuIySFgGZw+Vz8pXTuxxux7V/nY69rkRdxf5RUFUHylLtUjKkqhJ5lILqYk7aHx6KcT9H+Sl/DkPO054dMHQ+kbCom/F3vPaB2kVojaoUhMpe1eR/fsPBKauwc969s95Bnv2OnSiKPJWWvcfg6enp45JRX0mZakWSVkStUYpCo7vYOuyL2mauY6mWnL5LCsax5zaYGk1nJZ9x4KPjOEk6paSwlyObFuK+cBPRGRtwoP88nlFmjPOrYdA5AhoMQic5GepqHlSlmqRlCWhh2KzhV27tpHz+w+En1lLG45UXMCvFZam/Un2jSasYwyao5s+QUXDpRRkxMORNVgOr8Z8dBNO/PkBhrPKg31uvbC2Gkb7PiPx95YjSKJ2SVmqRVKWhN4sVkVcQhwZO3+gW/EWPNJ3gLKUzzdjx0m39lgi+hPcaRju4dfJQH2iRpiy0zgdu5zixFWEntuKR2lWhfkpBHDEtx8O7UbStvsNuDrLfTaFfqQs1SIpS6LOKToHxzZwZNtSnE6spZGWWWF2jubBKe/uBHUail/7IeDZSKegwtaZSwo59vsa8uN/wydtE+Hmikc4lZ0zWnhvaNafnODeuIe1w2CUoi7qBilLtUjKkqjLik2l7Nn3O2d2/4JP+iY6mPfhphVXXMirCef8riPDqyNhHQfiEtJGjjyJiyrNO4Px9Ha0U9vh1HZKT/+OnTJXWCaBCE5598ChVQxd+gzBzVVOAYu6ScpSLZKyJGxJxrk8kmLXYD20muuNB9BSfgcq/hjI19xI9WhPaaNu+Eb2wT+yJ5qDiz6BhX6UIjc5kZT967Ac34LP2d0El566YLEMvDni3g1zeD9CrhtKs/BwNBkDSdgAKUu1SMqSsGnFuXB6J1vWLsMxdSeRloO4aiUVFjFjh7FRBwxh3SG4Ayb/NjgERoHRTqfQokbkpUPaflKTtnMmcQth+fvx/uPmtH91zrUp3q36QOMemEK6Y+cbIafWhE2SslSLpCyJ+iQ5K4+kPVsoPrIZjzOxNC+JI0g7d8FyJTiQ5tSUQp82OIR2xLdFF7yadAQ5AlX3Wa0UnTlCxsEdFJzYjTF9PxHmIzgUn7lg0RJlT5KxBRleHVFhPQht35eWEU0wGuTIkbB9UpZqkZQlUZ+VmEs5m3yEkNy9kByLSt1LwYk9uGlFFyxrwcAZhzCCWnWDwLbg14Jij6Y4BTYHo70O6Rs4pSA/A84eIvd0PIcO7MT9XAIhJUdwo/AiK2jg1wKzfxu2FzfGtXkvItr1xMvDvdajC1EbpCzVIilLoqHJKSjhYNI+Mg/tQqXuxTcviaalR/DXLjxlA1CKgUy7YPLcwin1bo5dQEs8GkXh06Q19h5Bco+va6RMBZw7lci5U/GUpCWhnT2Mc+4xQiyncSjNv+g6JcqOI1pj0lxaYvJvS0hUd9pf1wscXGs5vRD6kbJUi6QsCQFFJgvHjx/B+Wwc4ebDkJGAOeMgpvQLr4GqwNETfCJQnqEcyHfH4BWKm38TvIPCcQ9sguYe0rCvjVIKirMpPnuKsylHsc9PIUBlQk4y5nOnyDp9kEB14emzP2ng1Rjl14JtOT6UBrTDPeI6Qlt0xM9TPqUmGjYpS7VIypIQl5ZTaOL4scNknoijKDURx+yjeBSdINh8ilAtEwPWSte3YOCcwRuLWwiBoc3AoxFWF18Scuxw8fTHzTsAT99AHNz9wdkH7BxqacuugdUKJTlYCrLIzUpHFWbho+VDYRaW/Ez2JSbhVJSGR0k6PpYzOFN82afMVq6cNjTirFMTCj0isPNvQVDTdrRr1wns5eazQlyMlKVaJGVJiCtntSpMJUU45Z2ArGPkZRxnx979OBSk4FaSjp8lk0AtCwfNcvkn+4tCnDE7euPpEwAuPljsXYjPKAUHZzR7Z4wOLmiOLmDnDPbOeLh7EOLnDfYuWDU7TmQVYTCAnUHDaNAwaBpWpbBYwcnBgK9LWRmzWiwcSjmDMheCuRjMhVBajCopxGIqwtPOTJi7BuYirKYCjpw8jXNpLm7WXNxUHnaXKYl/l6XcSNf8sLiF0DaqNXg0As9Q4gs9cWsURVBQIxzsjVf0nEI0dFKWapGUJSGqX7HZwpncIrIykik8c4IQ7SxN7M5BXgoF2WeIO3wMJ3M2rtY8vMjDi3yMmm39OCtQjmTjTqmjF01Cw8DFB5x92HbGjhKXYOx9wnD2bYxHQBP8fLzwdJaL5IWoTlKWapGUJSH0o5Qiu9BMdmEJRTlZFOdm4G8sIMypGIqyKCrIY0viKazmIjCVHQXSSouwsxbjoEoIcYVwDwOYC7GUmjlyJh+lQKH++BM0yq5Bd3eyp5FX2SktpRmIyzBRojli1hwxG5woNThSanQCOyd8vDzp3CwE7F3A3ontaRaUkw/2bn44ePrj7OmHh6sbPq4O2MkYRULoQspSLZKyJIQQQtieqr5/y68zQgghhBCVkLIkhBBCCFEJKUtCCCGEEJWQsiSEEEIIUQkpS0IIIYQQlZCyJIQQQghRCSlLQgghhBCVkLIkhBBCCFEJKUtCCCGEEJWQsiSEEEIIUQkpS0IIIYQQlZCyJIQQQghRCSlLQgghhBCVkLIkhBBCCFEJO70D1AdKKQByc3N1TiKEEEKIqjr/vn3+ffxSpCxVg7y8PADCwsJ0TiKEEEKIK5WXl4enp+cl52vqcnVKXJbVaiUlJQV3d3c0TdM7DlDWlsPCwjh16hQeHh56x6kzZL9cSPbJxcl+uZDskwvJPrk4W9kvSiny8vIICQnBYLj0lUlyZKkaGAwGQkND9Y5xUR4eHnX6G1Uvsl8uJPvk4mS/XEj2yYVkn1ycLeyXyo4onScXeAshhBBCVELKkhBCCCFEJaQs1VOOjo48++yzODo66h2lTpH9ciHZJxcn++VCsk8uJPvk4urbfpELvIUQQgghKiFHloQQQgghKiFlSQghhBCiElKWhBBCCCEqIWVJCCGEEKISUpZsWFZWFuPGjcPDwwMvLy8mTpxIfn5+pesUFxczZcoUfH19cXNzY/To0aSnp1+w3Ny5c2nfvj1OTk4EBAQwZcqUmtqMalWT+wTg7NmzhIaGomka2dnZNbAFNaMm9svevXsZO3YsYWFhODs7ExUVxTvvvFPTm3LV3n//fcLDw3FycqJ79+7s2LGj0uUXLVpEZGQkTk5OtGvXjuXLl1eYr5TimWeeITg4GGdnZ2JiYjh06FBNbkK1q859YjabeeKJJ2jXrh2urq6EhIRwzz33kJKSUtObUe2q+3vlrx544AE0TePtt9+u5tQ1qyb2SUJCAjfddBOenp64urrStWtXTp48WVObcG2UsFlDhgxRHTp0UNu2bVMbN25UzZs3V2PHjq10nQceeECFhYWp1atXq127dqkePXqonj17VljmjTfeUCEhIWrevHnq8OHDau/everHH3+syU2pNjW1T84bOXKkGjp0qALUuXPnamALakZN7JfPPvtMPfzww2rdunXqyJEj6uuvv1bOzs5q9uzZNb05V+zbb79VDg4O6vPPP1dxcXFq0qRJysvLS6Wnp190+c2bNyuj0aheffVVFR8fr55++mllb2+v9u/fX77M//73P+Xp6amWLFmi9u7dq2666SYVERGhioqKamuzrkl175Ps7GwVExOjFi5cqBITE9XWrVtVt27dVOfOnWtzs65ZTXyvnPfDDz+oDh06qJCQEPXWW2/V8JZUn5rYJ4cPH1Y+Pj7q8ccfV7///rs6fPiw+vHHHy/5nHqTsmSj4uPjFaB27txZPu2XX35Rmqap5OTki66TnZ2t7O3t1aJFi8qnJSQkKEBt3bpVKaVUVlaWcnZ2VqtWrarZDagBNbVPzvvggw9U37591erVq22qLNX0fvmrf/7zn6p///7VF76adOvWTU2ZMqX8a4vFokJCQtSsWbMuuvztt9+uhg8fXmFa9+7d1f3336+UUspqtaqgoCD12muvlc/Pzs5Wjo6OasGCBTWwBdWvuvfJxezYsUMB6sSJE9UTuhbU1H45ffq0atSokTpw4IBq0qSJTZWlmtgnd9xxh7rrrrtqJnANkNNwNmrr1q14eXnRpUuX8mkxMTEYDAa2b99+0XViY2Mxm83ExMSUT4uMjKRx48Zs3boVgJUrV2K1WklOTiYqKorQ0FBuv/12Tp06VbMbVA1qap8AxMfH88ILL/DVV19VerPFuqgm98vf5eTk4OPjU33hq4HJZCI2NrbCthgMBmJiYi65LVu3bq2wPMDgwYPLlz927BhpaWkVlvH09KR79+6V7p+6oib2ycXk5OSgaRpeXl7Vkrum1dR+sVqt3H333Tz++OO0adOmZsLXkJrYJ1arlZ9//pmWLVsyePBgAgIC6N69O0uWLKmx7bhWtvVTX5RLS0sjICCgwjQ7Ozt8fHxIS0u75DoODg4X/OAKDAwsX+fo0aNYrVZefvll3n77bRYvXkxWVhY33HADJpOpRralutTUPikpKWHs2LG89tprNG7cuEay16Sa2i9/t2XLFhYuXMjkyZOrJXd1yczMxGKxEBgYWGF6ZduSlpZW6fLn/7yS56xLamKf/F1xcTFPPPEEY8eOrfM3Uj2vpvbLK6+8gp2dHQ8//HD1h65hNbFPMjIyyM/P53//+x9Dhgzht99+Y9SoUdxyyy2sX7++ZjbkGklZqmNmzJiBpmmVPhITE2vs9a1WK2azmXfffZfBgwfTo0cPFixYwKFDh1i7dm2NvW5l9N4nM2fOJCoqirvuuqvGXuNq6L1f/urAgQOMHDmSZ599lkGDBtXKa4q6y2w2c/vtt6OU4sMPP9Q7jq5iY2N55513mDt3Lpqm6R2nTrBarQCMHDmSRx99lI4dOzJjxgxGjBjBRx99pHO6i7PTO4CoaPr06YwfP77SZZo2bUpQUBAZGRkVppeWlpKVlUVQUNBF1wsKCsJkMpGdnV3hiEF6enr5OsHBwQC0bt26fL6/vz9+fn66fUpB732yZs0a9u/fz+LFi4GyT0EB+Pn58dRTT/H8889f5ZZdG733y3nx8fEMHDiQyZMn8/TTT1/VttQkPz8/jEbjBZ9wvNi2nBcUFFTp8uf/TE9PL/8/c/7rjh07VmP6mlET++S880XpxIkTrFmzxmaOKkHN7JeNGzeSkZFR4ai0xWJh+vTpvP322xw/frx6N6Ka1cQ+8fPzw87OrsL7DEBUVBSbNm2qxvTVSO+LpsTVOX/R7q5du8qn/frrr1W6aHfx4sXl0xITEytctJuUlKSAChd4nz17VhkMBvXrr7/W0NZUj5raJ4cPH1b79+8vf3z++ecKUFu2bKmzn9z4q5raL0opdeDAARUQEKAef/zxmtuAatCtWzc1derU8q8tFotq1KhRpReojhgxosK06OjoCy7wfv3118vn5+Tk2NwF3tW5T5RSymQyqZtvvlm1adNGZWRk1EzwGlbd+yUzM7PCz4/9+/erkJAQ9cQTT6jExMSa25BqVBPfK9HR0Rdc4H3zzTdf9lO6epGyZMOGDBmiOnXqpLZv3642bdqkWrRoUeEb7fTp06pVq1Zq+/bt5dMeeOAB1bhxY7VmzRq1a9cuFR0draKjoys878iRI1WbNm3U5s2b1f79+9WIESNU69atlclkqrVtu1o1tU/+au3atTb1aTilama/7N+/X/n7+6u77rpLpaamlj/q4pvkt99+qxwdHdXcuXNVfHy8mjx5svLy8lJpaWlKKaXuvvtuNWPGjPLlN2/erOzs7NTrr7+uEhIS1LPPPnvRoQO8vLzUjz/+qPbt26dGjhxpc0MHVOc+MZlM6qabblKhoaFqz549Fb4nSkpKdNnGq1ET3yt/Z2ufhquJffLDDz8oe3t7NWfOHHXo0CE1e/ZsZTQa1caNG2t9+6pCypINO3v2rBo7dqxyc3NTHh4easKECSovL698/rFjxxSg1q5dWz6tqKhI/fOf/1Te3t7KxcVFjRo1SqWmplZ43pycHHXfffcpLy8v5ePjo0aNGqVOnjxZW5t1TWpqn/yVLZalmtgvzz77rAIueDRp0qQWt6zqZs+erRo3bqwcHBxUt27d1LZt28rn9e3bV917770Vlv/uu+9Uy5YtlYODg2rTpo36+eefK8y3Wq3qP//5jwoMDFSOjo5q4MCBKikpqTY2pdpU5z45/z10scdfv69sQXV/r/ydrZUlpWpmn3z22WeqefPmysnJSXXo0EEtWbKkpjfjqmlK/XEBhhBCCCGEuIB8Gk4IIYQQohJSloQQQgghKiFlSQghhBCiElKWhBBCCCEqIWVJCCGEEKISUpaEEEIIISohZUkIIYQQohJSloQQQgghKiFlSQghhBCiElKWhBBCCCEqIWVJCCH+5syZMwQFBfHyyy+XT9uyZQsODg6sXr1ax2RCCD3IveGEEOIili9fzs0338yWLVto1aoVHTt2ZOTIkbz55pt6RxNC1DIpS0IIcQlTpkxh1apVdOnShf3797Nz504cHR31jiWEqGVSloQQ4hKKiopo27Ytp06dIjY2lnbt2ukdSQihA7lmSQghLuHIkSOkpKRgtVo5fvy43nGEEDqRI0tCCHERJpOJbt260bFjR1q1asXbb7/N/v37CQgI0DuaEKKWSVkSQoiLePzxx1m8eDF79+7Fzc2Nvn374unpybJly/SOJoSoZXIaTggh/mbdunW8/fbbfP3113h4eGAwGPj666/ZuHEjH374od7xhBC1TI4sCSGEEEJUQo4sCSGEEEJUQsqSEEIIIUQlpCwJIYQQQlRCypIQQgghRCWkLAkhhBBCVELKkhBCCCFEJaQsCSGEEEJUQsqSEEIIIUQlpCwJIYQQQlRCypIQQgghRCWkLAkhhBBCVELKkhBCCCFEJf4ffuYicoEt4OgAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"constrained_sol = sol\n",
|
||
"time_lin = np.linspace(0, T, solver.problem.T)\n",
|
||
"fig, axs = plt.subplots(4, 3, constrained_layout=True)\n",
|
||
"for i, frame_idx in enumerate(supportFeetIds):\n",
|
||
" ct_frame_name = rmodel.frames[frame_idx].name + \"_contact\"\n",
|
||
" forces = np.array(constrained_sol[ct_frame_name])\n",
|
||
" axs[i, 0].plot(time_lin, forces[:, 0], label=\"Fx\")\n",
|
||
" axs[i, 1].plot(time_lin, forces[:, 1], label=\"Fy\")\n",
|
||
" axs[i, 2].plot(time_lin, forces[:, 2], label=\"Fz\")\n",
|
||
" # Add friction cone constraints \n",
|
||
" Fz_lb = (1./MU)*np.sqrt(forces[:, 0]**2 + forces[:, 1]**2)\n",
|
||
" # Fz_ub = np.zeros(time_lin.shape)\n",
|
||
" # axs[i, 2].plot(time_lin, Fz_ub, 'k-.', label='ub')\n",
|
||
" axs[i, 2].plot(time_lin, Fz_lb, 'k-.', label='lb')\n",
|
||
" axs[i, 0].grid()\n",
|
||
" axs[i, 1].grid()\n",
|
||
" axs[i, 2].grid()\n",
|
||
" axs[i, 0].set_ylabel(ct_frame_name)\n",
|
||
"axs[0, 0].legend()\n",
|
||
"axs[0, 1].legend()\n",
|
||
"axs[0, 2].legend()\n",
|
||
"\n",
|
||
"axs[3, 0].set_xlabel(r\"$F_x$\")\n",
|
||
"axs[3, 1].set_xlabel(r\"$F_y$\")\n",
|
||
"axs[3, 2].set_xlabel(r\"$F_z$\")\n",
|
||
"fig.suptitle('Force', fontsize=16)\n",
|
||
"\n",
|
||
"\n",
|
||
"comDes = np.array(comDes)\n",
|
||
"centroidal_sol = np.array(constrained_sol['centroidal'])\n",
|
||
"plt.figure()\n",
|
||
"plt.plot(comDes[:, 0], comDes[:, 1], \"--\", label=\"reference\")\n",
|
||
"plt.plot(centroidal_sol[:, 0], centroidal_sol[:, 1], label=\"solution\")\n",
|
||
"plt.legend()\n",
|
||
"plt.xlabel(\"x\")\n",
|
||
"plt.ylabel(\"y\")\n",
|
||
"plt.title(\"COM trajectory\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Animate The Motion"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from Go2Py.sim.mujoco import Go2Sim\n",
|
||
"robot_sim = Go2Sim()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 70,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import mujoco\n",
|
||
"import time\n",
|
||
"for i in range(len(xs)):\n",
|
||
" q0 = xs[i][:19]\n",
|
||
" qx = q0[3]\n",
|
||
" qy = q0[4]\n",
|
||
" qz = q0[5]\n",
|
||
" qw = q0[6]\n",
|
||
" q0[3:7] = [qw, qx, qy, qz]\n",
|
||
" robot_sim.reset(q0)\n",
|
||
" time.sleep(0.01)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 71,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from Go2Py.robot.model import Go2Model\n",
|
||
"model = Go2Model()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## With Arm"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 63,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pinocchio as pin\n",
|
||
"import crocoddyl\n",
|
||
"import pinocchio\n",
|
||
"import numpy as np\n",
|
||
"urdf_root_path = '/home/Go2py/Go2Py/assets'\n",
|
||
"urdf_path = '/home/Go2py/Go2Py/assets/urdf/go2_with_arm.urdf'\n",
|
||
"robot = pin.RobotWrapper.BuildFromURDF(\n",
|
||
"urdf_path, urdf_root_path, pin.JointModelFreeFlyer())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 64,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"import mim_solvers\n",
|
||
"pinRef = pin.LOCAL_WORLD_ALIGNED\n",
|
||
"FRICTION_CSTR = True\n",
|
||
"MU = 0.8 # friction coefficient"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 65,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ee_frame_names = ['FL_FOOT', 'FR_FOOT', 'HL_FOOT', 'HR_FOOT', 'Link6']\n",
|
||
"rmodel = robot.model\n",
|
||
"rdata = robot.data\n",
|
||
"# # set contact frame_names and_indices\n",
|
||
"lfFootId = rmodel.getFrameId(ee_frame_names[0])\n",
|
||
"rfFootId = rmodel.getFrameId(ee_frame_names[1])\n",
|
||
"lhFootId = rmodel.getFrameId(ee_frame_names[2])\n",
|
||
"rhFootId = rmodel.getFrameId(ee_frame_names[3])\n",
|
||
"efId = rmodel.getFrameId(ee_frame_names[4])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 66,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"q0 = np.array([0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 1.0] \n",
|
||
" +4*[0.0, 0.77832842, -1.56065452] + 8*[0.0]\n",
|
||
" )\n",
|
||
"x0 = np.concatenate([q0, np.zeros(rmodel.nv)])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 69,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"pinocchio.forwardKinematics(rmodel, rdata, q0)\n",
|
||
"pinocchio.updateFramePlacements(rmodel, rdata)\n",
|
||
"rfFootPos0 = rdata.oMf[rfFootId].translation\n",
|
||
"rhFootPos0 = rdata.oMf[rhFootId].translation\n",
|
||
"lfFootPos0 = rdata.oMf[lfFootId].translation\n",
|
||
"lhFootPos0 = rdata.oMf[lhFootId].translation \n",
|
||
"efPos0 = rdata.oMf[efId].translation"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 70,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"The desired CoM position is: [0.00060515 0. 0.29477433]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"comRef = (rfFootPos0 + rhFootPos0 + lfFootPos0 + lhFootPos0) / 4\n",
|
||
"comRef[2] = pinocchio.centerOfMass(rmodel, rdata, q0)[2].item() \n",
|
||
"print(f'The desired CoM position is: {comRef}')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 71,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"supportFeetIds = [lfFootId, rfFootId, lhFootId, rhFootId]\n",
|
||
"supportFeePos = [lfFootPos0, rfFootPos0, lhFootPos0, rhFootPos0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 72,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"state = crocoddyl.StateMultibody(rmodel)\n",
|
||
"actuation = crocoddyl.ActuationModelFloatingBase(state)\n",
|
||
"nu = actuation.nu"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 73,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"comDes = []\n",
|
||
"\n",
|
||
"N_ocp = 250 #100\n",
|
||
"dt = 0.02\n",
|
||
"T = N_ocp * dt\n",
|
||
"radius = 0.065\n",
|
||
"for t in range(N_ocp+1):\n",
|
||
" comDes_t = comRef.copy()\n",
|
||
" w = (2 * np.pi) * 0.2 # / T\n",
|
||
" comDes_t[0] += radius * np.sin(w * t * dt) \n",
|
||
" comDes_t[1] += radius * (np.cos(w * t * dt) - 1)\n",
|
||
" comDes += [comDes_t]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 74,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import friction_utils\n",
|
||
"running_models = []\n",
|
||
"constraintModels = []\n",
|
||
"\n",
|
||
"for t in range(N_ocp+1):\n",
|
||
" contactModel = crocoddyl.ContactModelMultiple(state, nu)\n",
|
||
" costModel = crocoddyl.CostModelSum(state, nu)\n",
|
||
"\n",
|
||
" # Add contact\n",
|
||
" for frame_idx in supportFeetIds:\n",
|
||
" support_contact = crocoddyl.ContactModel3D(state, frame_idx, np.array([0., 0., 0.]), pinRef, nu, np.array([0., 0.]))\n",
|
||
" # print(\"contact name = \", rmodel.frames[frame_idx].name + \"_contact\")\n",
|
||
" contactModel.addContact(rmodel.frames[frame_idx].name + \"_contact\", support_contact) \n",
|
||
"\n",
|
||
" # Add state/control reg costs\n",
|
||
"\n",
|
||
" state_reg_weight, control_reg_weight = 1e-1, 1e-3\n",
|
||
"\n",
|
||
" freeFlyerQWeight = [0.]*3 + [500.]*3\n",
|
||
" freeFlyerVWeight = [10.]*6\n",
|
||
" legsQWeight = [0.01]*(rmodel.nv - 6)\n",
|
||
" legsWWeights = [1.]*(rmodel.nv - 6)\n",
|
||
" stateWeights = np.array(freeFlyerQWeight + legsQWeight + freeFlyerVWeight + legsWWeights) \n",
|
||
"\n",
|
||
"\n",
|
||
" stateResidual = crocoddyl.ResidualModelState(state, x0, nu)\n",
|
||
" stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2)\n",
|
||
" stateReg = crocoddyl.CostModelResidual(state, stateActivation, stateResidual)\n",
|
||
"\n",
|
||
" if t == N_ocp:\n",
|
||
" costModel.addCost(\"stateReg\", stateReg, state_reg_weight*dt)\n",
|
||
" else:\n",
|
||
" costModel.addCost(\"stateReg\", stateReg, state_reg_weight)\n",
|
||
"\n",
|
||
" if t != N_ocp:\n",
|
||
" ctrlResidual = crocoddyl.ResidualModelControl(state, nu)\n",
|
||
" ctrlReg = crocoddyl.CostModelResidual(state, ctrlResidual)\n",
|
||
" costModel.addCost(\"ctrlReg\", ctrlReg, control_reg_weight) \n",
|
||
"\n",
|
||
"\n",
|
||
" # Add COM task\n",
|
||
" com_residual = crocoddyl.ResidualModelCoMPosition(state, comDes[t], nu)\n",
|
||
" com_activation = crocoddyl.ActivationModelWeightedQuad(np.array([1., 1., 1.]))\n",
|
||
" com_track = crocoddyl.CostModelResidual(state, com_activation, com_residual) # What does it correspond to exactly?\n",
|
||
" if t == N_ocp:\n",
|
||
" costModel.addCost(\"comTrack\", com_track, 1e5)\n",
|
||
" else:\n",
|
||
" costModel.addCost(\"comTrack\", com_track, 1e5)\n",
|
||
"\n",
|
||
" # End Effecor Position Task\n",
|
||
" ef_residual = crocoddyl.ResidualModelFrameTranslation(state, efId, efPos0, nu)\n",
|
||
" ef_activation = crocoddyl.ActivationModelWeightedQuad(np.array([1., 1., 1.]))\n",
|
||
" ef_track = crocoddyl.CostModelResidual(state, ef_activation, ef_residual)\n",
|
||
" if t == N_ocp:\n",
|
||
" costModel.addCost(\"efTrack\", ef_track, 1e5)\n",
|
||
" else:\n",
|
||
" costModel.addCost(\"efTrack\", ef_track, 1e5)\n",
|
||
" \n",
|
||
"\n",
|
||
" constraintModelManager = crocoddyl.ConstraintModelManager(state, actuation.nu)\n",
|
||
" if(FRICTION_CSTR):\n",
|
||
" if(t != N_ocp):\n",
|
||
" for frame_idx in supportFeetIds:\n",
|
||
" name = rmodel.frames[frame_idx].name + \"_contact\"\n",
|
||
" residualFriction = friction_utils.ResidualFrictionCone(state, name, MU, actuation.nu)\n",
|
||
" constraintFriction = crocoddyl.ConstraintModelResidual(state, residualFriction, np.array([0.]), np.array([np.inf]))\n",
|
||
" constraintModelManager.addConstraint(name + \"friction\", constraintFriction)\n",
|
||
"\n",
|
||
" dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(state, actuation, contactModel, costModel, constraintModelManager, 0., True)\n",
|
||
" model = crocoddyl.IntegratedActionModelEuler(dmodel, dt)\n",
|
||
"\n",
|
||
" running_models += [model]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 75,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Create shooting problem\n",
|
||
"ocp = crocoddyl.ShootingProblem(x0, running_models[:-1], running_models[-1])\n",
|
||
"\n",
|
||
"solver = mim_solvers.SolverCSQP(ocp)\n",
|
||
"solver.max_qp_iters = 1000\n",
|
||
"max_iter = 500\n",
|
||
"solver.with_callbacks = True\n",
|
||
"solver.use_filter_line_search = False\n",
|
||
"solver.termination_tolerance = 1e-4\n",
|
||
"solver.eps_abs = 1e-6\n",
|
||
"solver.eps_rel = 1e-6"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 76,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 76,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"xs = [x0]*(solver.problem.T + 1)\n",
|
||
"us = solver.problem.quasiStatic([x0]*solver.problem.T) \n",
|
||
"solver.solve(xs, us, max_iter) "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 77,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"nq, nv, N = rmodel.nq, rmodel.nv, len(xs) \n",
|
||
"jointPos_sol = []\n",
|
||
"jointVel_sol = []\n",
|
||
"jointAcc_sol = []\n",
|
||
"jointTorques_sol = []\n",
|
||
"centroidal_sol = []\n",
|
||
"xs, us = solver.xs, solver.us\n",
|
||
"x = []\n",
|
||
"for time_idx in range (N):\n",
|
||
" q, v = xs[time_idx][:nq], xs[time_idx][nq:]\n",
|
||
" pin.framesForwardKinematics(rmodel, rdata, q)\n",
|
||
" pin.computeCentroidalMomentum(rmodel, rdata, q, v)\n",
|
||
" centroidal_sol += [\n",
|
||
" np.concatenate(\n",
|
||
" [pin.centerOfMass(rmodel, rdata, q, v), np.array(rdata.hg.linear), np.array(rdata.hg.angular)]\n",
|
||
" )\n",
|
||
" ]\n",
|
||
" jointPos_sol += [q]\n",
|
||
" jointVel_sol += [v]\n",
|
||
" x += [xs[time_idx]]\n",
|
||
" if time_idx < N-1:\n",
|
||
" jointAcc_sol += [solver.problem.runningDatas[time_idx].xnext[nq::]] \n",
|
||
" jointTorques_sol += [us[time_idx]]\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"sol = {'x':x, 'centroidal':centroidal_sol, 'jointPos':jointPos_sol, \n",
|
||
" 'jointVel':jointVel_sol, 'jointAcc':jointAcc_sol, \n",
|
||
" 'jointTorques':jointTorques_sol} \n",
|
||
"\n",
|
||
"for frame_idx in supportFeetIds:\n",
|
||
" # print('extract foot id ', frame_idx, \"_name = \", rmodel.frames[frame_idx].name)\n",
|
||
" ct_frame_name = rmodel.frames[frame_idx].name + \"_contact\"\n",
|
||
" datas = [solver.problem.runningDatas[i].differential.multibody.contacts.contacts[ct_frame_name] for i in range(N-1)]\n",
|
||
" ee_forces = [datas[k].f.vector for k in range(N-1)] \n",
|
||
" sol[ct_frame_name] = [ee_forces[i] for i in range(N-1)] \n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 78,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT5dvA8W+S7k33XhQos+whW5agshQBUZaAIiCKA/mpIC5eURFBBBfTAaKCiOy9N6XMUmhLB917J03O+0dtpbRAS7PaPp/r6gU9Sc65T5qT3HnG/cgkSZIQBEEQBEEQhErIDR2AIAiCIAiCYLxEsigIgiAIgiDck0gWBUEQBEEQhHsSyaIgCIIgCIJwTyJZFARBEARBEO5JJIuCIAiCIAjCPYlkURAEQRAEQbgnkSwKgiAIgiAI9ySSRUEQBEEQBOGeRLIoCILR8/f3RyaT3fdn8eLFhg5TEAShTjIxdACCIAhV1bVrV4KCgiq9rVmzZnqORhAEoX4QyaIgCLXGpEmTGD9+vKHDEARBqFdEN7QgCIIgCIJwTyJZFAShzomLi2PGjBk0atQICwsL7O3t6dq1K99++y1qtbrC/VevXo1MJmP8+PGkp6fz6quv0rBhQ8zNzenVq1e5++7bt48RI0bg7e2Nubk5Li4udOjQgXnz5pGWllZh39evX+fFF1+kYcOGZbH06NGDn376SVenLwiCoFWiG1oQhDrl9OnTPPbYY6Snp+Pr68vQoUPJysriwIEDHDt2jE2bNrFlyxbMzMwqPDY1NZX27duTmZlJ9+7dadeuXbn7vfLKKyxduhSA1q1b0717d7KysggPD+eDDz6gd+/e5ZLLjRs3MnbsWAoLCwkODmbQoEFkZWVx8uRJnn/+efbt28fKlSt1/pwIgiDUiCQIgmDk/Pz8JEBatWrVfe9XWFhYdt+XXnpJUiqVZbfdvHlT8vf3lwDpf//7X7nHrVq1SgIkQOrTp4+UlZVVYd9LliyRAMnJyUnat29fhdtPnjwpxcTElP0eFhYmmZubSxYWFtIff/xR7r7R0dFSy5YtJUBas2ZNVZ4CQRAEgxHJoiAIRq80AbzXT8+ePSVJkqR169ZJgOTp6SkVFhZW2M/vv/8uAZKtra1UUFBQtr00WTQ1NZVu3rxZ4XEqlUpycXGRgAqJ372MHDlSAqTPP/+80ttPnTolAVK7du2qtD9BEARDEd3QgiDUGvcqnRMcHAzAgQMHABg1ahTm5uYV7jd8+HAaNGhARkYGZ8+epWvXruVub9OmDYGBgRUed/bsWVJSUnB2dmbYsGEPjFOj0bB9+3YARo4cWel92rdvj42NDefPn6ewsBALC4sH7lcQBMEQRLIoCEKt8aDSOfHx8QAEBARUertMJiMgIICMjIyy+97J39+/0sfdunULgCZNmiCTyR4YZ1paGtnZ2QD4+PhU6f5eXl4PvJ8gCIIh6CVZfPTRR/nzzz9xcHAotz07O5uhQ4eyb98+fYQhCIJwX5aWllrZj0ajKfv/uHHjHnj/ylpBBUEQjIVeksUDBw6gVCorbC8sLOTw4cP6CEEQhHqgtHUuMjLynveJiooqd9+q8PX1BUrK4EiS9MDWRWdnZywtLSkoKODzzz/H2dm5yscSBEEwNjqtsxgWFkZYWBgAV65cKfs9LCyM8+fP8+OPP4quF0EQtKa0bM2GDRsoLCyscPumTZvIyMjA1taWdu3aVXm/7du3x9nZmZSUFDZv3vzA+ysUCvr16wfAb7/9VuXjCIIgGCOdJoutW7emTZs2yGQyHn30UVq3bl32065dOz766CPmzp2ryxAEQahHRowYga+vL7dv32bWrFkUFxeX3RYVFcXrr78OwIwZM6o1ocTExIR33nkHgClTpnDo0KEK9zl9+jRxcXFlv8+bNw8zMzPefPNN1qxZU65rutSlS5f4888/qxyHIAiCIei0GzoqKgpJkggMDOTUqVO4uLiU3WZmZoarqysKhUKXIQiCUI+Ym5vz+++/89hjj7F8+XK2bdtG586dycnJYd++fRQWFjJgwADmzZtX7X3PnDmT8PBwVqxYQc+ePWnTpg1NmjQhOzuba9euERkZyf79+/H29gagbdu2/PTTT4wfP57x48fz7rvv0qxZM1xcXEhPT+fixYvExcUxcuRIhg8fru2nQhAEQWt0miz6+fkBVPqNWhAEQRc6dOhAaGgon376Kdu3b2fTpk2Ym5vTpk0bxo4dy6RJkzAxqf5bn0wmY/ny5QwZMoQVK1Zw4sQJLl26hIODAwEBAYwbN45WrVqVe8yIESPo0KEDS5YsYffu3Rw9ehS1Wo2bmxtBQUFMnz6dp59+WlunLgiCoBMySZIkXR9kwYIFuLm5MXHixHLbV65cSUpKCrNnz9Z1CIIgCIIgCMJD0OmYxVLffvttWdHcOzVv3pwVK1boIwRBEARBEAThIeglWUxMTMTDw6PCdhcXFxISEvQRgiAIgiAIgvAQ9JIs+vj4cPTo0Qrbjx49iqenpz5CEARBEARBEB6CXopyT548mVdffRWVSsWjjz4KwN69e3nrrbfKSlkIgiAIgiAIxkcvE1wkSeLtt99myZIlZSu5WFhYMHv2bFFnURAEQRAEwYjpJVkslZuby9WrV7G0tKRRo0ZiPVRBEARBEAQjp9dkURAEQRAEQahd9DJmEeDMmTP89ttvxMTElHVFlxLLXQmCIAiCIBgnvcyGXr9+PY888ghXr15l06ZNqFQqLl++zL59+7C3t9dHCIIgCIIgCMJD0Euy+Mknn/Dll1/y999/Y2ZmxldffcW1a9d45pln8PX11UcIgiAIgiAIwkPQS7J48+ZNHn/8cQDMzMzIy8tDJpPx2muv8d133+kjBEEQBEEQBOEh6GXMYoMGDcjJyQHAy8uLS5cu0bJlSzIzM8nPz9dHCFWm0Wi4ffs2tra2yGQyQ4cj1GOSJJGTk4OnpydyuV6+12mNuI4EY2JM15K4NgRjUuVrQ9KD0aNHS1988YUkSZL0wQcfSC4uLtKkSZMkPz8/adiwYVXez8GDB6UnnnhC8vDwkABp06ZN5W7XaDTSe++9J7m7u0sWFhZSnz59pOvXr1cr1tjYWAkQP+LHaH5iY2Or9Ro2BuI6Ej/G+GMM15K4NsSPMf486NrQS8vi119/TWFhIQDvvPMOpqamHDt2jKeeeop33323yvvJy8sjJCSEiRMnMnz48Aq3L1y4kCVLlrBmzRoCAgJ47733GDBgAFeuXMHCwqJKx7C1tQUgNjYWOzu7crepVCp27dpF//79MTU1rXLctVF9OlcwzvPNzs7Gx8en7DVZm9zvOgLjfL51pT6dKxjn+RrTtSSujf/Up3MF4zzfql4bekkWHR0dy/4vl8t5++23H2o/AwcOZODAgZXeJkkSixcv5t1332XIkCEArF27Fjc3NzZv3syoUaOqdIzSbgE7O7sKF7JSqSRfboWtrS1mZmYPdQ61hUqlwsrKCjs7O6N5UeuSMZ9vbeyqut91BMb9fGvbnecqyRTczizA39na0GHpjDH/bY3hWtLmtaFSa0jOKSIttwgAKzMF3g2ssDBVaD9wHTDm14ouGPP5Puja0EuyqFAoSEhIwNXVtdz2tLQ0XF1dUavVNT5GVFQUiYmJ9O3bt2ybvb09nTp14vjx4/dMFouKiigqKir7PTs7Gyj5o6pUqnL3XXU0igXnTYg2u8rcJ5rVOGZjVnrudz8HdZUxnq8xxSLUnCRJzFh/jp2Xk/hwaAue7+xn6JCEWigqNY+tF25zKCKFsLgsioo15W6XySDAyZpujZzp18yNrg2dkcsNnyQLtZtekkXpHovEFBUVaa2FLjExEQA3N7dy293c3Mpuq8yCBQuYP39+he27du3Cysqq3LbPTigAGetOxtFeHl3jmGuD3bt3GzoEvTKm8zW2yV9CzZy+lcHOy0kAvLf5Ei297Gnt42DYoIRa41RUOkv3RXA4IrXcdlOFDGcbc+QyGdmFKnIKi4lMzSMyNY+1x2/h72TFxG4BjOrgi5lJ7ZooJxgPnSaLS5YsAUqaN3/44QdsbGzKblOr1Rw6dIjg4GBdhvBAc+bMYdasWWW/l/bf9+/fv0IXwdtn9lKsKmkFHTRokF7j1DeVSsXu3bvp16+f0TWX64Ixnm9pK7dQN+wPL/8h/9qGULa90h1Ls9rRZSgYxtWEbD7ceoVjN9MAUMhldA1yZlALdzoEOBLgZF3WcihJEqm5SkJjM9l3LYmtYQlEp+Uz96/L/HA4inceb8qA5u6GPB2hltJpsvjll18CJS/gFStWoFD896ZoZmaGv78/K1as0Mqx3N1LLoCkpCQ8PDzKticlJdG6det7Ps7c3Bxzc/MK201NTSskDSYKGajAwkSmla5zY6ZWqzExMUGtVpebTm9qalru71gXFBWr+e18IqqCyv/uhmIscQjaUdoi9OGQ5izbf5Oo1DwW7rzGvCebGzgywVgt3RvBl3uuo5HATCHn6fbeTO3ZEB9Hq0rvL5PJcLE1p18zN/o1c+O9J5rx+9k4lu67QUx6Pi+uO8vgEE8+GNIcByvt9Oqp1eqHHjKjUqkwMTGhsLCw1n2m1sXPwvvRabIYFRUFQO/evfnzzz9p0KCBzo4VEBCAu7s7e/fuLUsOs7OzOXnyJFOnTtXKMUzlMp5qak2fQJuyc6urJEnC3d2d2NjYCgNfHRwccHd3N4rB4tqwYNs1Vh+LxtNKwbh7DJkQhJqIy4PwpFxMFTIeb+WJj6MV41edZtXRaAY0d6dzoJOhQxSMzKGIVL7YfR2Ax1t6MGdQMN4NKk8S78XKzISxXfx5qq03S/fd4LtDN9ly4TbnYzP47vn2NPWoOMGmqiRJIjExkczMzBrt416fM7VBXfssvB+9jFncv3+/VvaTm5vLjRs3yn6PiooiNDQUR0dHfH19efXVV/noo49o1KhRWekcT09Phg4dqpXjP9HIkt6BNjRwdMbf27lOv0A0Gg25ubnY2NiUtSxKkkR+fj7JyckA5Vpwa6tD11NYfSwagNv5Mk5GZdC9idv9HyQI1XQ8qeQa6t/cHUdrM3o1cWV0Rx9+PRXL679d4O8Z3XC0rtsVFoTq+e1MHADPdvLlk2Eta7Qva3MT3h4YzMAW7sz49Twx6fkM/+YYn41oxROtPB9qn6WJoqurK1ZWVg/1eVjZ50xtUBc/Cx9EL8miWq1m9erV7N27l+TkZDSa8rO39u3bV6X9nDlzht69e5f9XjrWcNy4caxevZq33nqLvLw8pkyZQmZmJt26dWPHjh1VrrH4oHPo6mtFA0dn5Ja2WFpa1nifxkyj0aBUKrGwsCh3EZeed3JyMq6urrW6GT4zX8mbv18AwN7ShKyCYlYduyWSRUGrCpRqzqaWfJCO7uBbtv2dx5tx7GYat9Lymf7LOdZO7IiJovZ8YAq6o5bgwPWSYQvPdvR9wL2rLsTHgS3TuzLj1/Mcjkhl+i/nychT8nwX/+rFp1aXJYpOTg/fKn6vz5naoLZ8Fp6JTmfdiVt8MSKkRu8vevnrzJw5k5kzZ6JWq2nRogUhISHlfqqqV69eSJJU4Wf16tVAyXiNDz74gMTERAoLC9mzZw+NGzfWyjmoVCpMFTJkJuLbf+ks8dpc2kWSJN7ZdImk7CICXaxZO6E9MiT2hacQnphj6PCEOmTH5SQK1DK8G1jySMP/PlhtzE347vn2WJkpOHYzjff/vnzPyhFC/ZJRBEXFGsxN5DSrQVdxZRyszFg9oSPjupSUbnrvr8t8c+DGAx5VXul7/90VQ+obY/8sPHYjlRHfHuev0NusO3GrRvvSS8vi+vXr+e2332r9DGIZspIiVvVcXeh+3xwazz8XEzCRy1g8sjVN3axp5ShxIV3Gsv03WDK6jaFDFOqIP87HAzCirVeFendN3G1Z9EwIL/10jp9OxGBhouCdx5tq7RrTaCQuxmdx+XY2gS7WtPZxqDUFm+ujP87GMfevSyiLS/5GAc7WOqmRqJDLeH9wc+wsTVm67wYLd4QjQ8bUXg2rtZ+68FlQE8Z8/hqNxFd7I5Ak6NHYheFtvWu0P70ki2ZmZgQFBenjUDplxK8LoRriMwuYu/kyAK/0aUQrbwdUKhX9vTVcSJezNew2r/ZtRKCLzQP2JAj3F59ZwMmoDACGtal8bNhjLTxYMLwlc/68yA9HosgtKmb+kOaYmzx8UlegVPPHuThWHo0iMiWvbLuZiZy2vg50CXSmWyMnWnk7YCq6vo2GTAZ5SjVQ8mEToMOVfmQyGa/3b4KlmYKFO8L5dMc1HKxMGa3Fbm/BMIrVGt76PYyTUemYyGV8MqwF9pY1q66hl2Tx9ddf56uvvuLrr7826kxcqPs0GonXfwslp6iYNr4OvHzHN2lva+jdxJn94aksP3CTz0ZUfYiEIFRmS+htAILsNHjY33vs9OiOvqg1Eu/9dYn1p2O5lpjD5yNCCHKt3heWxKxC1p2I5ueTMWTml3SNWZspCPFxICI5l5ScIk5EpnMiMp0v95R0hXcOdKJbkBPdGrnQ0MVavEcb0N2tvvpYFvLlXkHkFRWzbP9N/rfpInYWpjzequ5P2KirNBqJVzeEsjUsAYVcxhfPhFR7Fn1l9JIsHjlyhP3797N9+3aaN29eoX7cn3/+qY8waky8hdZ+Px6J4kRkOlZmCr58pnWFAb9TewayPzyVTefjmdm3kVYuMqF+kiSJTedLZrS2d37wWMTnOvvh3cCSV349T2hsJgO/OsTYLv6M6+KPr9O9X4dFxWqO3Ujj11Mx7L2WjFpTcixfRysmdPVnRHsfbMxNkCSJyNQ8TkSmcexGGkdvppKZr2LP1ST2XC1ZWSbA2ZoBzd0Z2MKdVt72InHUM8u7kkVX24o1gHXhjf5NyMhX8cvJGGb9FopXA0uxulAt9dE/V9kaloCpQsayZ9vSX0tF2PWSLDo4ODBs2DB9HEqoxPjx41mzZk2F7REREXVieEBVXUvM5rOd4QC890SzSr+1t/FxoFuQM0dupLLi4E0+GlqzkhVC/XU1IYfrSbmYmcgJcSqu0mN6NXHln1e6M2/LZfZdS+bHI1H8eCSK1j4OdPBvgI+jFTbmJuQp1SRmFXDldjanotL/7bos0THAkYldA+jXzA3FHePdZDIZDV1saOhiw5hOfmg0EpdvZ3PkRipHbqRwOiqDqNQ8Vhy8yYqDN/FuYMnT7bwZ0d4HL4e6Xf3BWJiblv/yqq9ySjKZjA+HtCApq5C915KZvPYMf03rimcd/LvX5c/DVUejWHm0pAb05yNCtJYogp6SxVWrVunjMLpXi79kP/bYYxX+Di4uLgaKRv+KitW8uj4UpVpDn2BXRnXwued9pz8axJEbqfx2Jo5X+jTC1bbmpZeE+mdzaMnElt6NnbEyuV3lx/k4WrFyfAf2hyez8kgUhyNSCY3NJDQ2856PcbE15/GWHozp5EsjN9sqHUcul9HS256W3vZM7dWQ3KJi9l9LZsflRPZfSyYuo4DFeyL4am8EPRu7MKV7IF0aOonWRh26uxu6gZZWWakKhVzGV6Pb8NQ3xwhPymHSmjP8MfWROrkcZV38PDx2M5WP/rkKwNsDgxnS2kur+9dLslgqJSWF8PCSlp0mTZrUuj+O7K5sUZIkClSGWaLI0lRRrTdtc3PzsiURS6WkpNCyZUteeeUV/ve//wFw7NgxevXqxT///EOHDh20GrMhfb4znGuJOThZm/F/T7W673PXKcCRdn4NOHsrgx+PRDFnYFM9RirUBWqNxF//JotDQjxRRVc9WSzVu4krvZu4lkySiUwjNDaTlJwicgqLsTZX4GhtTlMPW1r7ONDC077Gs2ZtzE14MsSTJ0M8KVSp2XEpkQ2nYzkemcaB8BQOhKfQytuel3s1ZEDz+rFqhb5Z3DWpSd+F2m3MTfhhXHuGLjvKlYRs5m25xMKnqzZ2+2E+DzUaDQVKNSbK4hrVWdTG52F0dDQBAQEV7tuzZ08OHDjw0LHpQ1xGPtN/OY9aIzGsjRcv9gjU+jH0kizm5eUxY8YM1q5dW1aQW6FQMHbsWJYuXVorazWVXhjN5u40yPGvfDAAK7Oa/flcXFxYuXIlQ4cOpX///jRp0oTnn3+e6dOn06dPH7Kzs7UUrWEdvJ7C94dLmub/76lWuDxgHJBMJmNqz4ZMWnuGn0/E8HKvoBrPJKutli1bxmeffUZiYiIhISEsXbqUjh07Gjoso3ciMo2k7CLsLU3p0diZvdEPvy8vB0uGt/WucemL6rAwVTC0jRdD23hxKy2PH49E8duZWMLisnjpp3O08XXgnUFNae/vqLeY6oO7W/EMsaqPj6MVS0a34bkfT/LbmTg6+Dsyov29e2JK1fbPQx8fHxISEsp+T0xMpG/fvvTo0aOm4elUoUrNSz+dJT1PSQsvOxYMb6mTL3J6qZkwa9YsDh48yN9//01mZiaZmZn89ddfHDx4kNdff10fIWjFnU9/baudu3XrVmxsbMp+RowYAcCgQYOYPHkyY8aM4aWXXsLa2poFCxYYOFrtSc0t4vXfSlZpeb6zH/2aVW11lkeDXWniZktuUTHrjkfrMELjtWHDBmbNmsW8efM4d+4cISEhDBgwoGyJK+HeNv1bW/HxVh6Ym9Tu0jR+TtZ8MKQFR2c/yvTeQViZKTgfk8nTK47z2oZQ0vOUhg6xzrC4a8yiPruh79Q1yJnX+pYsaPHeX5e4llg3Gg5KVfZ5qFAocHd3x93dHQcHB1566SW6dOnC+++/b+hw7+v9LZe5FJ+No7UZK55rp7M6qnppWfzjjz/4/fff6dWrV9m2QYMGYWlpyTPPPMPy5cv1EUbN3ZEtSkhYmiq48sEAg4Ry96y5B+ndu3e559na+r/JHZ9//jktWrRg48aNnD17FnNz8wpLMtZGkiTxxsYLpOYW0cTNlncer3p3slxeUqD21Q2hrDwazQvdAuvk2J37WbRoEZMnT2bChAkArFixgn/++YeVK1fy9ttvGzg641WoUrPzUiJQ0gVdVzjZmPPGgCaM7eLHl3uus/50LJvOx3PoegofDm3BoJai3EpN3dkNbaqQGfQ9Z3rvIE5Hp3M4IpWXfz7H1hnd7tt69zCfhxqNhpzsHGztbGvcDV0d9/s8BJg4cSI5OTns3r3bqJch3Bp2m/WnY5HJYOnoNjqt3qGXZDE/Px83t4otOq6uruTn5+sjBK3TSCUDgmva9K0v1tbW95zpdfPmTW7fvo1GoyE6OpqWLevGDOBVR6M5EJ6CuYmcJaPbVPsb1xOtPPhidzix6QVsOB3D+K4Vx7PUVUqlkrNnzzJnzpyybXK5nL59+3L8+PEK9y8qKqKoqKjs99IhDCqVqtKlsEq3GesyWTWx53ISOUXFeNhb0NrLts6dawNLBR882ZThrT14Z/MVrifn8vLP53iukw9vP9YEuVQybs2YzteYYrmfO9+jrA382SL/d3Wrx5ccITIlj4//ucrHw+792SCTVf/zUKPRUGymwMrMRK9J2f0+Dz/66CN27tzJqVOnsLWt2mQxQ4hNz2fOnxcBmNYriK5Bzjo9nl5ejV26dGHevHmsXbsWC4uSmaUFBQXMnz+fLl266CMEratt3dD3olQqee655xg5ciRNmjRh0qRJXLx4EWdn3b7wdO3K7Wz+b/s1AN59vClN3Kt/0Zso5Ezp0ZD3Nl/i+8NRjOnsV29Wu0hNTUWtVlf4kufm5sa1a9cq3H/BggXMnz+/wvZdu3bdd0zy7t27ax6skVkZLgfkNLXOZ8eO7WXb6+K5vhgA203l7ImX89PJWA5eimF8YzXOFsZ1vrWlUeLOIQvG0JPhZGPOF8+EMOaHk/x8Moa+Td3oHexq6LB05o8//uCDDz5g+/btNGxYvaUP9alYrWHm+vPkFBbT1teBmX0b6fyYekkWv/rqKwYMGIC3tzchISUzqy5cuICFhQU7dxpmQOxDuSNBlOpItvjOO++QlZXFkiVLsLGxYdu2bUycOJEtW7YYOrSHll2o4uWfz6JUa+jXzI3nOvs99L5GtPPmqz0RxGcW8FfobZ5up79JBrXJnDlzmDVrVtnv2dnZ+Pj40L9/f+zs7CrcX6VSsXv3bvr161ehSH9tllNYzJunDwAaZg59hGYednX2XEsNBg5cT+HN3y8Rm6fiyyvmvNS4iInDjOd8a8tkvTtntFe3a1VXugY5M7FrACuPRvHm72HsfLU71rWjQ61aLl26xNixY5k9ezbNmzcnMbFkKImZmRmOjsY1keurvRGci8nE1tyEr0a10Usjhl7+5C1atCAiIoKff/65rFVi9OjRjBkzBkvL2ln0sy6kigcOHGDx4sXs37+/7AN93bp1hISEsHz5csaMGWPgCKuvZDm/C0Sn5ePlYMnCB5TJeRALUwUvdAvg0x3XWHHwJsPbeNW4RElt4OzsjEKhICkpqdz2pKSkCiUnoKQUhbl5xVnmpqam900YHnR7bbMvLAllsYaGLta08nEs99qra+d6p37NPfnHqwHTfznH+ZhMNkUrmGJiYjTnayxxVIeVEbQslnrrsSYcjkghIjmXOX9e5KsRzQ0dktadOXOG/Px8PvroIz766KOy7cZWOufsrXS+3n8DgE+Gt8THUT/VZPT2/cDKyorJkyfr63A6cWeCqKlFLYurV6+udHuvXr0qjOXx9/cnKysLjUZTa76N32n5wZvsvpKEmULO8ufa0kALpSee6+zLNwducCM5l11Xknishfaq4hsrMzMz2rVrx969exk6dChQMr5o7969TJ8+3bDBGbEtF0rqKQ5p7VXv6hB6OViyfEw7eny2n5s5Go7cSOPRZmLSy8O6e2a0IVmYKvhyZGuGfXOUXVeS2HHZiWDdL1utE/f6PBw/fjzjx4/XayzVVaBU88bGMCQJnmrrzZN6nECnl1fjggULWLlyZYXtK1eu5NNPP9VHCFpXi3LFeuNwRApf7Cop+v7BkOa08nbQyn5tLUwZ26WkK3v5gRt1ZgjCg8yaNYvvv/+eNWvWcPXqVaZOnUpeXl7Z7GihvNTcIo7eSAVgcB2aBV0d7vYWjOlYUpNvwY5wlMW1v6qCoRh6gsvdWnjZ81q/knI6yw/cLFuDXNCfz3eFE5Wah7udBXOfbKbXY+slWfz2228JDg6usL158+asWLFCHyFoXX1JGGqL2PR8Xvn1PBoJRrb3YVRHX63uf0LXAMxN5FyIy+L4zTSt7ttYjRw5ks8//5y5c+fSunVrQkND2bFjR6WVDQTYdjEBtUYixNu+0nXH64upPQOwNpGISM7jhyORhg6n1jKGCS53m9I9kFbe9uQVFZOZrxSfg3p0Ojq9bN3nBU+11PtCEXpJFhMTE/HwqNgd4eLiUq5iurGT7uiIFpeI8cgqUDFx9Wky8lW09LJn/hDtj6dxtjEvW0/6mwM3tb5/YzV9+nRu3bpFUVERJ0+epFOnToYOyWj9cTYOQK9dQ8aogZUZQ/1LWhSX7I0gJq12zEQ2Ng1djO8Lh4lCzsKnW6GQyyhQacgprB0liWq7AqWaNzdeQJJKJl32bqL/Gel6SRZ9fHw4evRohe1Hjx7F07N2vrGKFnjjoFJrmPbzOSKSc3G3s+D7se11VsF+co9ATOQyjtxIJSwuUyfHEGqnK7ezuRCXhalCxrA2XoYOx+A6OEt0DmhAoUrDe39dqjUtUAsWLKBDhw7Y2tri6urK0KFDCQ8PL3efXr16IZPJyv289NJLWovhu+fa0MlFw4vdjbOua7C7HaP/7blJzlFSrBZDDXTts53hRKfl425nwbtP6Lf7uZReksXJkyfz6quvsmrVKm7dusWtW7dYuXIlr732Wq2a9CJJlA1WrC1vfrpgLKu7SJLE3L8uceRGKlZmCn4c3x53ewudHc+7gRWDW5d8uflmf/1pXRQebMPpGAD6N3PHyeb+a4/XBzIZzH+yGWYKOQevp/DPxdrRg3Tw4EGmTZvGiRMn2L17NyqViv79+5OXl1fufpMnTyYhIaHsZ+HChVqLoXcTF54N0hhlN3SpMZ18MVXIUGs0JGQVGjqcOu3srXRWHSvpfv4/A3Q/l9LLCNo333yTtLQ0Xn75ZZTKknVELSwsmD17drkVIoyZmZkZ2YVqzDNTsbRrQFGhnEK5cSRNuqDRaFAqlRQWFpZV1pckCaVSSUpKCnK5HDMzw6xbWmrR7uv8eioW+b9LHTX3tNf5MV/q2ZA/z8Wz80oiN5JzCXK10fkxBeNWqFKXrQU98t+hCgIEuljzcu+GLN4Twfy/r9C9kYvBPuiqaseOHeV+X716Na6urpw9e5YePXqUbbeysqq0hFR9YWaiKFu3OiNfiYOVKbYWxv23rY2UxRrm/HmxrPu5lwG6n0vpJVmUyWR8+umnvPfee1y9ehVLS0saNWpUoS5bXFwcnp6eRrkWo1wuZ92lfDq6F9LSrYDiHHPSzY1rtpo2SZJEQUEBlpaWFUqAWFlZ4evra9C/0/IDN1m6r6TW1PwhLejTVD+TLhq72dKvmRu7rySx4uBNPh8RopfjCsZrx6VEsguL8XKwpJuOl9yqbab2asiW0NtEpubx2c5rfDS0di0lmpWVBVChKPPPP//MTz/9hLu7O08++STvvffePVcqqotLYapUKkwVMmysTMlUQnxGAUGuCqpbgla6o6fOWHqsqkOj0SBJEiqVCoXiwS3B1f3bfnswkutJuTham/JW/0Y6eU1UdZ96zXZsbGzo0KHDPW9v1qwZoaGhBAYG6jGqqsso1PDN6RxszbL538AmDA2uu2OTVCoVhw4dokePHuUK2ioUCkxMTAxaQ27t8Wg+3VFS3P3tgcE8X4MVWh7Gy70asvtKEpvPx/Nav8Z4OdTOwvKCdvx6qqQL+pn2PvWiYHt1mJso+GhYC579/iQ/nYhhYAsPna9hqy0ajYZXX32Vrl270qJFi7Ltzz77LH5+fnh6ehIWFsbs2bMJDw/nzz//rHQ/dXEpTBMTE9zd3XGUVJjIzFCqNcSlZuPwkCMwcnJytBugniiVSgoKCjh06BDFxcVVflxV/raphbAkVAHIGORRyLEDunk9VHUpTKNqGjP2cYAaqWQ+dLZSIkclK1vnui5SKBQUFxdjYWFhVKsfrDoaxfy/rwDwyqNBvNRT/+t3tvFtQJdAJ45HpvH9oUjeH1z3VjMQqiYyJZeTUenIZTCivVgKsjKPNHTmuc6+/HQihrd+D2P7q92xqwVdltOmTePSpUscOXKk3PYpU6aU/b9ly5Z4eHjQp08fbt68Wel6wnVxKczCwkJiY2Oxs7XBEhNupeeTo5Lh1sC63PrWDyJJEjk5Odja2tbKIvaFhYVYWlrSo0ePKuUDVf3bSpLExLXnUElpPNLQkblj2+ns+anq4htGlSwauzsnfSnFDDC9kiSJJXtv8OWe6wBM6RFYViDWEF7u3ZDjkWmsPx3DjEeDxKSGemrDmVgAejZ2wVO0MN/TnIFNOXQ9lZj0fD7aeoWFTxv38I3p06ezdetWDh06hLf3/b8ElJaTunHjRqXJYl1cClOtViOTyZDL5dhbmGGXryK7UMXtzEICXayrnNiUdj2X7ksfevXqRevWrVm8eDH+/v68+uqrvPrqqw+1L7lcjkwmq/bf6kH3/ys0niM30jAzkfPJsFY6nR9Q1biNb3CgEVPf0fJZJFYm0BuVuqT8Rmmi+FrfxswZGGzQb6Ldgpxp6WVPoUrD6mPRBotDMJxClZrfTpcki9ouAl/XWJub8PmIEGQy+O1MHHuvJj34QQYgSRLTp09n06ZN7Nu3j4CAB5evCQ0NBai0lnB94elgiVwmI09ZTEa+0tDh1GpZ+So+3Ppf75mxFPgXyWI13NlNLpax0o/0PCXP/1gy3glg7hPNmNm3kcG7LGQyGS/3KmlFWHMsmqwC4x2MLujG1rAEMvJVeNpb0CfYcLMUa4uOAY5M6laSfL31exjJ2cZXcmXatGn89NNP/PLLL9ja2pKYmEhiYiIFBQUA3Lx5kw8//JCzZ88SHR3Nli1bGDt2LD169KBVq1YGjt5wzEzkuNmVdMMmZBWK2os18H87rpKaqyTI1YYpPfQ/zOpejCpZNHQC8CB3roUpkkXdu56Uw5BlRzgRmY61mYLvx7ZnYjfjKVQ7oLk7jVxtyC4s5vtDYlmz+mbd8WgAxnT2w0RhVG+lRuv1/k0IdrclLU/JzPWhRre+8PLly8nKyqJXr154eHiU/WzYsAEoKaG2Z88e+vfvT3BwMK+//jpPPfUUf//9t4EjNzxnGzMsTBXk5OZy83YaeXl5Vf65c3JIcXExeXl5ZQl6qXs9tqZycnIYPXo01tbWeHl5sWzZshrv82Gdjk7n11MlvRWfDGuJWTXGf+qa8URCbZjg8t//lWq14QKpB85Ep/P08mPEphfg62jFpmld6dfMuNYklstlvDGgCQA/HokiOcf4WkoE3bgQm8mFuCzMFHJRW7EaLEwVLBvTFiszBccj01iyN8LQIZUjSVKlP+PHjwdKViM7ePAgaWlpFBYWEhERwcKFCyudqFLfyGQyvB0s6dLEm2BfV2xsbB74Y2dnh7e3N5s2bSrbz6ZNm7CxsWHgwIHl9u/v71/pPmrqs88+IyQkhPPnz/P2228zc+ZMg8xEVxZr+N+fFwEY1cGHjgGOD3iEfuk0WVQoFCQnJ1f5/leuXMHPT79lUKpDtCzqx96rSYz54STZhcW09XXgr2ldaexma+iwKtW/mRutfRwoUKn5+t+6j0Ldt/b4LQAeb+WBs5jcVC0NXWz4eFhJKZol+yI4diPVwBEJ2mJVC2sPd+3albfffpvGjRszY8YMnn76ab788ku9x/H94UgiknNxsjbj7YHBej/+g+j0L1vdlkIfH+P+hq4RYxZ1buOZWN7+8yJqjcSjwa4se7atUS97JZPJmP1YMKO/P8Gvp2KY1C0QX6d7104Tar/0PCV/h90G4Pkuxvvl1pgNa+PN8Ztp/HYmjhm/nmfLjG6iXmkdkZmdTURSLsUaDW62Frja3bukjEajITs7GxcXl7Jtw4YNIzc3t8Ls6OjoaJ3E26VLlwq/L168WCfHupfo1LyyVvb3nmiGg5VhV0erTO37GmBAd7YsitnQ2iVJEt8cuMlnO8MBeKqtN//3VEtMa8FYsC4NnejeyJnDEal8uec6X45sbeiQBC2SJIni4mLU/w49+etsDC6WMhq52dPUxYLCwvsPP1CpVJiYmFBYWFi2j9rC1NS0SitTPIz5g1twKT6bKwnZTFl7ht9fesSovxgKVWNva0uQwpyY9HzyNDJMzC0wN6n876rRaFCr1ZiY/JeKmJiYlPu9lLW1ccwK1jZJknjvr0sUFWvoFuTMkNaehg6pUjpPFn/44YcHjit45ZVXdB2GVqhFy6JOqDUS8/++XNa1N7VXQ94a0MToJzzd6a0BwRyOOMLm0HgmdPWnlbeDoUMyavGZBZxLlfGYkU1wuJtSqSQhIaFslQNJkvAzK+L93q40sDKtUmuHJEm4u7sTGxtbq17T8O84NG9vrYwNu5ulmYLvx7Vn8NIjXL6dzZu/X2Dp6Da17jkSKrK3NMXG3ITcomISMguNpvxLZU6cOFHh96ZNm+rt+Fsu3OZwRCpmJnI+GtrCaF//Ok8WV6xYcd9vpjKZrNYki5o7xyyK0gBaUaBUM+u3ULZfSkQmKymNM6Gr8cx4rqqW3vYMa+PFpvPxvL/lMn9MfcRoL3pj8PjXx8grUtD4XDxjuhjn31uj0RAVFYVCocDT0xMzMzOyC1SorApRyOUEulgjr8LfWKPRkJubi42NjVGue38vkiSRkpJCXFwcjRo10kkLo5eDJcufa8eYH06wNSyBJm62zOjTSOvHEfRLJpPh6WBJRHIu2YUqsgtU2FkaZ4Hxo0ePsnDhQoYOHcru3bvZuHEj//zzj16OnZmvLKupOKO38dRUrIzOk8UzZ87g6lo3apCp72gEEd3QNRefWcCUtWe4fDsbM4WcRSNDeKKVcTbBV8XbA4PZeTmRczGZbA6NZ1gbsfzbveQVlXTH7rmWbLTJolKpRKPR4OPjg5WVFZIkEZtdjMzEDFc7C6wsq7bcp0ajQalUYmFhUauSRQAXFxeio6NRqVQ6647uGODI/MEt+N+mi3yx+zoeDpY83U5cO7WdhakCZxszUnKKuJ1ZgI25iVGunf76669z5swZ5s+fj52dHYsWLWLAgAF6OfanO66V1VR80QBL11aHTpPFutayoqnnYxaz8lWoNBocLE1rXFfucEQKr64PJS1PiZO1Gd+MaUunQCctRWoYbnYWTOsdxGc7w1mw7Rr9mrljUwtnB+pTadJozEoTvNyiYgpVauQyGY7WxjcAXRf09R7+bCdfbqXn8e3BSGb/EYaTjRm9m9SNRob6zNXWgsx8FUq1hpTcorLC3YZ04MCBsv/ratJMVRhzTcXKGNVsaGN355jFAmXxfe5Ztxy7mcqbG8OIzywpkmpmIifY3ZaO/o70aepGB/8GVU4es/JVfL4rnHUnSsYnNvOw47ux7fBuUDdmEL/QLYDfzsRyKy2fRbuuM/fJZoYOyajl1aLrKCWnCABHazNRhFsHZg8IJiW7iD/Px/PyT+dYP6UzIT4Ohg6r1tNoNBQUFFBYWEhRURFmZmbY29vrZd1phVyGh70FMen5JOcU4WBles/JLvWJsljDO5tKaiqObG98NRUro9Nkcd68eToZGG0IJcVZ//s9t7D2fMjVREpOES+uO0vOHeerLNYQFpdFWFwWPxyJws7ChB6NXejVxJWejV1wsa1Ydy42PZ8/z8Xz45FIsv/d17gufrw9sGmdmgFpYapg/uDmjF91mlXHongixIO2vg0MHZbRyq8FLYsA+cpicouKkSHD2aZ+tCrqm1wu49OnW5GSW8ThiFTGrjzFL5M70dzT3tCh6d3DzJrPzMzkwoULXLhwgdDQUG7cuEFsbCzx8fGoVOWXI3V2diYlJaXs94MHD+Lg4EDLli21PlSiNk120ZeVR6O5nlRSU3HOIOOrqVgZnSeLAKdPn+bXX3/l+vXrADRu3Jhnn32W9u3b6/LwWnX3pM2corqfLGok+N/my+QUFtPMw45fJnfC1sKU2PR8LsRlcvB6CvuvJZORr2JrWAJbwxIA8HW0oqGLNVbmJhSp1NxMySMq9b9lmYLdbXnviWZ0DXI21KnpVK8mrgxv68Wf5+J56/cw/nmlm/g2fQ/5ytqRLCZll7QqOliZYib+ljpjqpCz/Ll2jP3xJOdiMhnzw0l+mdSZZp71Z4WUt99+mxUrVnDu3DmaNGnywPtv2rSJuXPncunSpQfeVyaTIUkSDg4O5bbPnDmTCxcu8MMPP/DCCy88bOj3PGZtmeyiD6mF8PXpkuVh332iqVHWVKyMzgdUvfXWW3z++efY2NgQGBgIlHyL+eqrr3jjjTf49NNPdR2CVty9hmleUTGSJNW5cZl3+vuWnAMJJVP6Fz7dquxF7e9sjb+zNUNae6HWSJyPyeBAeAoHridzKT6bmPR8YtLzy+1LJoMugU6M7ODDE608URjhQGdtmvtEMw5dT+VGci5L9kbw5oDa8e1RH+4sO5VbC7qhC5TF5BSWtCq6VtJqbozGjx/PmjVrKmyPiIggKCjIABFVnY25CasnduT5H09xITaTMT+c4NcpnQl2rx8J46JFiwD45JNPKvwNr1y5wqZNm3jyySdp1aoVUFKXsDRR9PPzo3Xr1rRu3Zrg4GB8fHzw8fHB0dERCwsLTExMKC4uLisFBSVrMXt5eREbG8vw4cPLtu/bt4+CggIGDRpU48+5Oye7JGQVYGNhUqVKAnWNJElsjJRTVKyha5ATQ1t7GTqkKtNpsrhmzRqWLl3KkiVLePHFF8vGSKhUKpYvX87s2bNp3rw5Y8eO1WUYWqG5a/ylRoIClRors7o5gWHj2Xj2JZR0R3w+IoQWXpV3BSnkMtr7O9Le35E3BjQhPU9JeGIO0Wl5KIs1yOUyApysaephi1M9WhbNwcqMD4c0Z+rP5/jmwE26BjnzSMO62ZJaXQV3tCbmFamN/ktXWp4SkJeMtzKtPa2Kjz32GKtWrSq37c6VMoyZnYUpayd25PkfTxIWl8Wz35/kpxc61fkWxjvH+WdmZqJWq5HL5WXXx4cffsj69evJzc0tSxZ79uzJxo0b6dmzZ5X+viYmJuXWsjYxMeGff/5Bo9GUdUFLksTrr79OaGgo7du3Z+nSpXTu3LnCvjSaqk/0dLW1ICNPRVGxhrRcZaXDlWqb6pw/wLZLSVzLkv9bU7GlUb/v3U2nmc6yZcv45JNPmD59erntpqamvPLKKxQXF/P111/XimTx7pZFKBm3WBeTxf3hyczdUlr7KZDBIVUvZ+NobUaXhk50aVi7ZzZrw8CWHjzT3pvfzsQxc30o217pXifeIGsqX1W+NTG7oBh7K+PsllIWa1AWFSM3McfV1hxJkihQVa/rXKPRUKBUY6IsrtF4MEtTRbU+XMzNzXF3dy/7feLEiSQnJ7N169aybSqVCi8vLxYsWKD17seasrc0Zd3ETjz340kuxmcx8tvj/DCufa2vmnA/6enpZf8PCwujRYsW/P777zRv3hyAp59+muzsbDp06FB2Pzs7O55++ukaH/vO12ZRURH9+vXjxo0bnDlzhi5dujBhwgS++OILGjRogJmZGXK5nNu3b+Pi4oKZmVmVXpuOFpCUrSQxQ4Wl3Bq5rKREVWFhYa0qKyVJEkqlkpSUFORyOWZmD+5KzlcW8387SlYoe6l7AAF6GruprS/jOs10Ll++zJAhQ+55+9ChQ3nvvfd0GYLW3DkT2sJUTqFKQ05RMXWtuMPZW+lM/eksxRqJds4apvcy7tpPxm7+4BaExmZyPSmXWb+FsnpCxzrfBf8gd5fLScktNMpkUZIksgpU2NtS1qqYryym2dydBonnygcDavTldNKkSfTo0YOEhAQ8PDwA2Lp1K/n5+YwcOVJbYWqVvZUpP03qxOQ1ZzgVnc7Ylaf4+tm29GvmZujQdCI2Nrbs/6VlXbZs2VKWLD711FM89dRTOo/DwsKChQsX8vrrrzNnzhxWrVrFqlWr2L17N2vXrqV3794EBASQkJDA7du3q7xfSYKMnEJUaoncFAX2lqYUFBRgaWlZq1rZSllZWeHr6/vARHfnsfO8NGsOsZdP4z/0NSZ376OX+CRJYtSoUUybNo0ePXrUaF86TRYVCgVKpfKet+uy0Ku23Vlj0c7ClEJVEXl1bJLLpfgsJqw6TaFKQ89GzgxxTDTKIqq1iaWZgmXPtmXw10c5HJHKh1uv8P7g5oYOy6AK7prUkpxTRJCrrYGiubfDESnIijXIZDLcjaA+XHVt3bq1XDWKgQMH0qRJE9atW8dbb70FwKpVqxgxYoRRV62wtzRl7Qsdmf7LefZcTeKln86yYFhLnungY+jQtC4mJqbCtvHjx+s/kH+5ubmxcuVKJk2axLhx47hx4wZ9+vTh3Xff5f3338fX17fcuulVkXkrg3d+v4BcLuPbMW1IjDpNjx499FLKR5sUCgUmJib3TXKPhV5jyqw5XD6wBSQNCltnnu3aCAsdDmcpLi4mOjqaoKAgZDIZK1asYOHChXTt2rVG+ZZOk8W2bdvy888/8+GHH1Z6+7p162jbtq0uQ9Aadblk0YTknKI6VT7nTHQ6E1afJqewmHZ+DVg6KoT9exINHVad0MjNls9HhDDtl3OsPhaNdwNLJnUPNHRYBpN/16SW0vqFxqSoWM13h6J4sa0tDazNMP23YK6lqYIrH1RvdQeNRkNOdg62drY17oaujt69e7N8+fKy362trVm/fj3fffcdb731FklJSWzfvp19+/Y9dEz6YmGqYMVzbXn7z4v8fjaOt/4IIyotjzf7N6lTX2j79u3LmTNneOeddzh48CA//fRTWSuwIT3yyCOcP3+eWbNm8f333/Phhx9y6dIl1q5di42NTbUSvUeaeNDUO449V5P5aOdNnnEpxsLCotYli/dz9koEL70xlzM7fwdNyfudb8gj/O/1mbjblQxFKi4u5t1332Xy5Mk0bKidHrzz588zYMAArKysiIqKQiaT0aBBAxYsWFDjfet0kMAbb7zBggULyt6YSiUmJvLmm2/y6aef8sYbb2j9uMuWLcPf3x8LCws6derEqVOnarzP0m5oGRI2FiU5dl0pn/PnuTie+/EkOYXFdAxwZPWEDnWq9qExeLyVB3MGlsyI/uifq3T9v31MWXuG9Lx7t7zXVfl3jfkzxmRx7bFbJGQVoJDLcLyjtIVMJsPKzKTaP5Zmiod63J0/1e2ms7a2JigoqOzHw8ODsWPHEhkZyfHjx/npp58ICAige/fu2n76dMJEIeezp1sxvXfJbO7lB24y9eezZBeqHvDI2sPKyopWrVoxdepUsrOz9dLlXFU2NjZ89913rF69GjMzMzZt2kTXrl1JSEio9r7efbwZ5iZyjt1M50xq3Un2j56/Qpv+I2jfshlntq8HTTHuwe1Zu2knt0KPMnHUsLL7/vjjj3z66af06tXroepqqtVqTp48yd69e8u2BQcHU1BQQF5eHrdu3dLKOZXSabL4xBNP8OWXX/LVV1/h6emJo6Mjjo6OeHl5sWTJEj7//HOeeOIJrR5zw4YNzJo1i3nz5nHu3DlCQkIYMGAAycnJNdpvAyszNk/tzKyW6rIl3HJqccuiJEkcv5nGqO+OM+u3CxSqNDwa7MqaCR2xtag73/CMyZQegczs0wiZrGRd7F1XkvgrNN7QYend3YW4S1cGMha3MwtYvKekJqydhUmdGmPq5OTE0KFDWbVqFatXr2bChAmGDqlaZDIZbwxowqJnQjBTyNl5OYmBiw9z7GaqoUOrN8aNG8fBgwdxc3MjLCyMbt26ERkZWa19+Dtb80qfRgBsipaTkV+7vzTvPXGeFr0G061dS0J3l7QmujRqw9J1m0i4eprnh/av8JgOHTrw2GOPMX369LLu4cLCQl577TU2btzI5cuXyc7ORqVSkZ+fz61bt9izZw+LFi1ixIgRuLi40LlzZ6ZPn142i97S0pJjx45x+/Zt/P39tXqOOp/KO2PGDIYNG8bGjRuJiIgASopyP/XUU/j4aH/MyaJFi5g8eXLZm+CKFSv4559/WLlyJW+//fZD79dUIae5px23bCDatKQZ+baRfcg9iEYjcTUxmwPhKWw6H8+N5FwATBUyXu4VxCt9GtWpD0ZjI5PJeK1fY55u582bv1/gRGQ6F+OzDB2W3t3dDR2RlGugSCqSJIm5f10iT6mma4Bjnax2MGnSJJ544gnUajXjxo0zdDgPZXhbb/ydrXl1fSgx6fmMW3mK7TN7EORqvGMv65LOnTtz7Ngx+vbtS2RkJOvWrStbhKOqJncPZPP5OCKS81i4M4LPn2mtm2B1RJIkNuw7zVuvv07shaNAScLm0bwT8957jxdHPn7fx7dt25bt27eXK5e0fft2Fi9ezOLFi6sUg729PS1atCAvL69s3HHLli0f6nweRC/vhN7e3rz22ms6P45SqeTs2bPMmTOnbJtcLqdv374cP3680scUFRVRVPRfN1h2djZQMvnm7iWSSn/3a1Ay2P1GUk6F+2iLJEmk5CqJyyggI19JVoGKrIJiCpRqpH9vL32JyShJREr+pazYqSRJZBaoSMtVEpWWT0RybrkVMyxN5Qxt7clLPQLwdLBEoy5Goy5/rro6P2Ojz/N1tzVlwiN+nIhMJyw2857H1FUsH3/8Mf/88w+hoaGYmZmRmZlZ4T4xMTFMnTqV/fv3Y2Njw7hx41iwYAEmJjV/y3ishTvN3W34dcdh1t1QcC0xp8b71JZ/Liaw52oypgoZs/o1RsqpWY+EMerbty8eHh40b94cT8+ql8UyNm19G7B9ZnemrDvD0RtpzNtyiXUTO9WpMYzGLDAwkCNHjvD9998/VFUTMxM5Hw1pzsjvT/H7uXgeb+VJ72Djry+Sma/k77AE1hyLJjw6nrhLJwEJ39bd+fiDeTz3ZPVmOt85vMTT05Pp06dz/PhxIiIiyvIRKCk56OfnR0hICK1bt6ZPnz506NBBK+/JVaGXo2zcuLHS5f60URvqTqmpqajVatzcypdVcHNz49q1a5U+ZsGCBcyfP7/C9l27dmFlZVXpYzJjIwAFoTdvs21bbKX3qY48FcTmyYjNg7hcGYkFMtKKQKXR/puemVyikb1EiwYSbZ2KsTCJJvRYNKH3uP/u3bu1HoMx09f5phcBmBCZmss//2yjsuFod66yoE1KpZIRI0bQpUsXfvzxxwq3q9VqHn/8cdzd3Tl27BgJCQmMHTsWU1NTPvnkkxof39bClEZuNrR0LPm6k5pbsqqDh71ljfddE7czC3hnU8lKGFN7BeHvbE2U8eSx1bJ69ep73paXl0dGRobR1VV8GNbmJnw0tCUDvzrE0RtprD4WzcRuAYYOq97w9PQs16KoUqlIS0srV9/zftr6OtDTQ8PBBDlv/RHG3td7YmeEw6DUGomN+88yd+57xMXfxnVUyfugfQMnOs78iGnPDODRTiE1Pk6nTp3o1KkTUNLYk5+fj1KpRKFQYGtra9DyQjpNFjUaDaNHj2bjxo00btyY4OCSAf6XL19m5MiRjBgxgl9//dWgT8CcOXOYNWtW2e/Z2dn4+PjQv3//clXuoeRC2L17N0Me7cLK66dIU5nQrltPXG3Nq3wOWQUqLt3O5lJ8Nhfjs7h8O5u4zMJK7yuXgae9BY42ZthbmGJnaYq1meLfxEKGTFbSqljW0iiVrCwjUfJ/AAdLUxytzfBpYEljNxv8nawwUTx4qGrpufbr169OzVK7F32fb05hMfPP7UMjyejTf0ClpRTu/FapTaVfju6VUOzatYsrV66wZ88e3NzcaN26NR9++CGzZ8/m/fffr1IB2qowV0A7XwfOxmTyy8kYXu//4HVwdUWtkXhtQyhZBSpCvO2Z8WgQalXtHkd1N41GQ2pqKl988QUODg4MHjzY0CFpRYCzNe8/2ZxtlxJ5shoLCAjaVVRUxOjRowkLC+Pw4cNVnsX9hI+GW0obotPyWXM0mhn/jmU0tIzsXLaeuMKlbAv2XE0iOTmJuOO7QNLgJc/khUGPMKK9N7YW1auOUFUymQxra2usrfVTvPtBdJosfvXVV+zZs4ctW7ZUmMiyZcsWJkyYwFdffcWrr76qleM5OzujUCjKzbwGSEpKuuc3HXNzc8zNK66qYWpqes+koYmHPX5OVtxKy6fbZ4ewNTfBx9EKX0crfJ2s8HG0wsHSlAKlmuxCFbHp+dxKzycyJa/Cmsml/J2saOFlT0sve5q42+LvZI1XA0tMq5DY6dL9noe6SF/n66D479IrVMuwraQotaGe9+PHj9OyZctyLfQDBgxg6tSpXL58mTZt2lR4THWGc5RuBxjV3pOzMZks23+DIlUxM3o31GkNsnv5fFcEJ6PSsTZT8MXTLUGjRqVSIUkSGo2m2st63al0TFLpvgwlOjqahg0b4u3tzcqVK5HL5Q+MR6PRIElStWriGmIIy/DW7gwLcUcul9339SboTkZGBqGhocTHx3P+/PkqJ4tmCpjeK5Dpi35h6T45DazNGNXBp0qNGtoUces267fuZf/hI1w+f4aUyMuYuTfEfcxCAJxcXAl56R2ee+JRnnmsR61acUYbdJosrlq1is8++6zSGc+DBw9m4cKFWk0WzczMaNeuHXv37mXo0KFAyZvd3r17Kyw5WBMKuYwvR7bmjd8uEJmaR05RMVcSsrmSULWWIL87EsNWXvY097LH3rL+JGQCyOUybMxNyC0qJreo2KiWAUxMTKx0KEfpbZV5mOEcAKa3w+jmJudIkpzvDkez6XQUowLVBFW+FLlOnE6R8dONkkToKT8ll08e4DIla+a6u7uTm5t738UFqionx7B92o6OjmRkZJT9XpWWa6VSSUFBAYcOHaK4uHrVH4xpCIuuhnQI/3F3d2f37t0kJCTQrVu3aj02K2wvSev/R/Hjr/GuWsNPJ27x7mMN6RbspaNoobBIyRcrN/DLho1EXTpHQVollSny0hnTzp1BbfzoGOCIqaLirOb6QqfJYkREBH379r3n7X379tVqEgcwa9Ysxo0bR/v27enYsSOLFy8mLy9P6yUi2vo2YN8bvShUqYnLyCcmPZ+YtHxi0guISc8jt6hk3WhrcxO8HCzxc7LCz8mKZh52OFhppxtPqN3KkkUtlGB6++23+fTTT+97n6tXr5YNBdG26gzngP+6/fv378fjpqbsvZrMvL+vkpRTxNIrJoxs783sAY10Xsbp8I1UNpw6D0hM7RHArH7/dYEVFhYSGxuLjY0NFhYPv4KLJEnk5OQYfMzRwygsLMTS0pIePXpU+TkwxiEsuhrSIZTXsGHDcgWmMzIycHBweODr/ubNGwB0ddNwy8qUq7czebRnDxo1bc7vq5bRNEB7lVO27D/Op0u+5dSeLRTnZpS7zcrNj4bN2tC5S2eG9O/NwO7t610L4r3oNFm0tLQkMzMTX1/fSm/Pzs6u0ZtwZUaOHElKSgpz584lMTGR1q1bs2PHjgotJdpiYaogyNXWKJcrE4ybjYUJZENOUc27yF5//fUHLgsWGFi1VWPc3d0rFLIvHdqhzeEcd97+WCsvHmnsyv9tv8YvJ2PYcCaO/eEpzBkUzNDWXjpJso7dSGXqz6Go1BKDWrrz5mNNy82kVavVJVUGZLIafWCUdvXWdD+GUHr+DzM8w5iGsBhLHPVJWFgYjz/+OK+88gpvvvnmfe87f/582rVrx6BBgyjUKHj5szWsT47kSnIkLYL30OXxkSz9+F3aNH24lU6ScwpZteM0n8x6gey4iLLtJtb2tO8zmGFPDmLkwEfx8zL+2diGotNksUuXLixfvrzcklN3WrZsGV26dNH6cadPn671FktB0LbS4u55RdWv3n83FxcXXFxcarwfKLluP/74Y5KTk3F1LXnz3L17N3Z2djRr1kwrx6iMnYUpnwxryeAQT+b8eZGo1Dxe23CBn07EMO/JZrTydtDasTafj+et38NQqjX0berK4pFtKpRcKU0w8vPzsbQ07ExtQyntfq/JmrJC/XTw4EHi4uJ46623CAoKYtiwYRXuc2eNwdLVaiyBX9+fzGOt/Zj5yitkxYZzdNNq2v71Ez4tOzP86RG8NmHUfRM7jUbDoTOX2HY8jETbxhy9kUqxSkVuegrITfBv040J4yfwxqSRWFkYzxAgY6bTZPGdd96hV69epKWl8cYbbxAcHIwkSVy9epUvvviCv/76i/379+syBEEwWqXJYq4WWharIyYmhvT0dGJiYlCr1YSGhgIQFBSEjY0N/fv3p1mzZjz//PMsXLiQxMRE3n33XaZNm1Zp66G2dQ50Yser3fnxSBRf77vB2VsZDP76KP2auTGzTyNaeD38gMZClZrPd4bzw5EoAAY0d2PJ6DaYmVRs8VMoFDg4OJSt/mRlZfVQLZwajQalUklhYWGtalnUaDSkpKRgZWWlt1puQt0xY8YMwsPDWbZsGc899xxHjhwpNzlu69atfPXVVzz33HOVPn7c0P48P/gKC3/cwKLPPiMl4jyxF47w1YUjfPXeTKzc/HDzCcTVwwtLS0v8W7THrVlnbqXlc+7sGa5/NwOFjSNeL69BJpPRxt+Z57/4jgmDutHQ1/Drbdc2On0HeOSRR9iwYQNTpkzhjz/+KHdbgwYN+PXXX+natasuQxAEo1WWLOp52ci5c+eyZs2ast9L38D3799Pr169UCgUbN26lalTp9KlSxesra0ZN24cH3zwgd5iNDdR8HKvIIa38WbhjmtsCo1n95Ukdl9J4tFgV57r7EvPxq5VXnFIkiQOhKfw4T9XiEzJA2Bqr4a82b/JfYs4l3a712S5UEmSKCgowNLSstaNWZTL5fj6+ta6uAXjsHjxYiIiIti1axeDBw/m9OnTuLu7ExUVxfPPP09mZiYNGjTg2WefrfTxcrmctyeP5u3Jo9l+6DSLv1/L0d1byUuKJj/pFlFJt4j697424bE45ZVMiNHYeCBTmOLkFcCMru4M7xJMoItY3acmdP51cdiwYQwYMICdO3eWW+6vf//+950lKQh1nY3Fv2uMF+k3WVy9evV9izYD+Pn5sW3bNv0EdB/u9hYsGtmal3sHsXRfBFsu3GbftWT2XUvGw96Cfs3c6B3sSnu/BhUmw0iSREJWIbuvJPH72biypRVdbM1ZMKwlfZs9eByzTCbDw8MDV1fXhy6/olKpOHToED169Kh1Y+fMzMxqVWuoPi1btozPPvuMxMREQkJCWLp0KR07djR0WEbFxMSEDRs20LlzZ8LDwxkyZAh///03gwcPJjMzk44dO/LMM89UaV8De3RgYI8OwFLCo+L4c9chLl+7Tlx8PEVFRbgHNOHRfo1xt7egqYcdvh9kYWddP4eP6IJe+hasrKwqHa8gCPWZoVoWa6MgVxu+GtWGmX0a8cvJGH4/F0dCViFrj99i7fFbAHg5WOJia46lqYJ8ZTHxmQWk5v5X8sbCVM7YLv683KthtSsSKBSKhx63p1AoKC4uxsLCotYli0LlNmzYwKxZs1ixYgWdOnVi8eLFDBgwgPDw8LJxvkIJBwcHtm7dSseOHTl16lTZZFN3d3fWr19PWFhYtffZJMCbOS9W3hop6IZOvzL6+vqSlpZW9vvXX38tShgIwr9sLUonuIhksaoCXWx494lmnJjTh+/HtufZTr54OZS0HsRnFhAam8nxyDQuxGWRmqtEIZfR2seB955oxpHZj/K/QU1F6SqhxhYtWsTkyZOZMGECzZo1Y8WKFVhZWbFy5UpDh2aUgoKC2LRpEzY2JV3B9vb2/PXXX3h7exs4MqGqdNqyGBcXh1r930zP//3vfwwaNKjSumuCUN8MaO5OgLM1jUTZpWqzMFXQr5kb/f7tSs7MV3IjOZf0PCUFKjXWZia42JrTxN3WICvCCHWXUqnk7NmzzJkzp2ybXC6nb9++HD9+vML9H3Z1o7q26swjjzxCWFgYx44do3v37nh4eNTZc70XYzzfqsai1ylud06TF4T6roWXfY1m9gr/cbAyo72/o6HDEOqB1NRU1Gp1pascXbt2rcL9H3Z1I2NaAUebbGxsOH/+POfPny/bVlfP9V6M6XyrurqRqIdwl9KEtrLucpVKRX5+PtnZ2XV+7FF9OlcwzvMtfQ3Wxi9Z97uOwDifb12pT+cKxnm+hryW7l7dKCsrC19fX7p06YKtbcVeBZVKxf79++ndu7fRPH+6Up/OFYzzfEuXIX3QtaHzZPGHH34oG6dQXFzM6tWrcXZ2LnefV155RddhVFnpE+fjo73lhQShJnJycrC3r10tkOI6EoyRNq4lZ2dnFApF2apGpZKSkipd4eju1Y1KE9eAgIAaxSEI2vSga0Mm6fCrlr+//wPrc8lkMiIjI3UVQrVpNBpu375d6TqupevdxsbG1vlxl/XpXME4z7d0TWFPT89aV77kftcRGOfzrSv16VzBOM9X29dSp06d6NixI0uXLgVKXu++vr5Mnz6dt99++76PFdfGf+rTuYJxnm9Vrw2dtixGR0frcvc6IZfLHzhDy87Ozmj+0LpWn84VjO98a1uLYqmqXEdgfM+3LtWncwXjO19tXkuzZs1i3LhxtG/fno4dO7J48WLy8vKYMGHCAx8rro2K6tO5gvGdb1WuDaMas9iyZUu2bdsmuq4EQRAEozVy5EhSUlKYO3cuiYmJtG7dmh07dlSY9CIIdYVRJYvR0dFGNaVcEARBECozffp0pk+fbugwBEEvatdAKAMzNzdn3rx55QYr11X16Vyh/p2vodWn57s+nSvUv/PVtvr0/NWnc4Xafb46neBSXba2tly4cIHAwEBDhyIIgiAIgiAgWhYFQRAEQRCE+xDJoiAIgiAIgnBPIlkUBEEQBEEQ7smgyWJcXBxTpkwp+/3bb78VpQcEQRAEQRCMiEGTxbS0NH788cey35999lmsra0NGNG9LVu2DH9/fywsLOjUqROnTp0ydEg6sWDBAjp06ICtrS2urq4MHTqU8PBwQ4elF//3f/+HTCbj1VdfNXQodZq4luo+cS09HHFt1H219drQS7I4ceLEsrVi71RQUIBGo9FHCDWyYcMGZs2axbx58zh37hwhISEMGDCA5ORkQ4emdQcPHmTatGmcOHGC3bt3o1Kp6N+/P3l5eYYOTadOnz7Nt99+S6tWrQwdSp0mriVxLQmVE9eGuDaMmqQHcrlcSkpKqrB9//79kp5CqJGOHTtK06ZNK/tdrVZLnp6e0oIFCwwYlX4kJydLgHTw4EFDh6IzOTk5UqNGjaTdu3dLPXv2lGbOnGnokOoscS2Ja0monLg2xLVhzHTaspidnU1WVlbZQtXZ2dllPxkZGRw5ckSXh9cKpVLJ2bNn6du3b9k2uVxO3759OX78uAEj04+srCwAHB0dDRyJ7kybNo3HH3+83N9Y0D5xLYlrSaicuDbEtWHsdLrc352LUwcFBVW4XSaTIZPJdBlCjaWmpqJWqytMvHFzc+PatWsGiko/NBoNr776Kl27dqVFixaGDkcn1q9fz7lz5zh9+rShQ6nzxLUkriWhcuLaENeGsdNpsvjYY48hSRI7d+6kd+/e5Za4kcvl2NjYYGVlpcsQhBqYNm0aly5dqhUtwA8jNjaWmTNnsnv3biwsLAwdjlCHiWtJEConro3aQafJYunMrtjYWHx9fY2+FbEyzs7OKBQKkpKSym1PSkrC3d3dQFHp3vTp09m6dSuHDh3C29vb0OHoxNmzZ0lOTqZt27Zl29RqNYcOHeLrr7+mqKgIhUJhwAjrFnEtiWtJqJy4NsS1Yex0OmaxUaNGpKamsm/fPn7//XdGjhxZ7mLYuHEja9as0WUINWZmZka7du3Yu3dv2TaNRsPevXvp0qWLASPTDUmSmD59Ops2bWLfvn0EBAQYOiSd6dOnDxcvXiQ0NLTsp3379owZM4bQ0NBacQHXJuJaEteSUDlxbYhrw+jpcvaMTCaTkpKSpEaNGkn79u2TbGxspJs3b5bdfuDAAalx48a6DEEr1q9fL5mbm0urV6+Wrly5Ik2ZMkVycHCQEhMTDR2a1k2dOlWyt7eXDhw4ICUkJJT95OfnGzo0vaiNs9RqE3EtiWtJqJy4NsS1Ycx02g1dKiYmptJvDn5+fsTExOgjhBoZOXIkKSkpzJ07l8TERFq3bs2OHTvq5Gozy5cvB6BXr17ltq9atYrx48frPyChThHXkriWhMqJa0NcG8ZMJkmSpKudKxQKEhMTadeuHV9//TVjxowhLCysLHH866+/mDZtGnFxcboKQRAEQRAEQagBnSaLcrmcgQMHEhERQXx8PIWFhfTp0wdra2tSU1M5d+4cnp6eRERE6CoEQRAEQRAEoQZ02g09btw4AJycnDh8+DDR0dFlA3glSaJhw4Z1cvCuIAiCIAhCXaHTlsW7Xb9+nQsXLmBpaUnLli3x8/PT16EFQRAEQRCEh6DXZFEQBEEQBEGoXfQyGxogLi6OLVu2EBMTg1KpLHfbokWL9BWGIAiCIAiCUA16SRb37t3L4MGDCQwM5Nq1a7Ro0YLo6GgkSSpX1VwQBEEQBEEwLjpdwaXUnDlzeOONN7h48SIWFhb88ccfxMbG0rNnT0aMGKGPEARBEARBEISHoJcxi7a2toSGhtKwYUMaNGjAkSNHaN68ORcuXGDIkCFER0frOgRBEARBEAThIeilZdHa2rpsnKKHhwc3b94suy01NVUfIQiCIAiCIAgPQS9jFjt37syRI0do2rQpgwYN4vXXX+fixYv8+eefdO7cWR8hVJlGo+H27dvY2toik8kMHY5Qj0mSRE5ODp6ensjlevlepzXiOhKMiTFdS+LaEIxJVa8NvXRDR0ZGkpubS6tWrcjLy+P111/n2LFjNGrUiEWLFhlVvcW4uDh8fHwMHYYglImNjcXb29vQYVSLuI4EY2QM15K4NgRj9KBro1bVWTx06BCfffYZZ8+eJSEhgU2bNjF06NCy2yVJYt68eXz//fdkZmbStWtXli9fTqNGjap8jKysLBwcHIiNjcXOzq7cbSqVil27dtG/f39MTU21dVpGqT6dKxjn+WZnZ+Pj40NmZib29vaGDqda7ncdgXE+37pSn84VjPN8jelaEtfGf+rTuYJxnm9Vrw29dEMHBgZy+vRpnJycym3PzMykbdu2REZGVmk/eXl5hISEMHHiRIYPH17h9oULF7JkyRLWrFlDQEAA7733HgMGDODKlStYWFhU6Ril3QJ2dnYVLuTEjFz2p9rQSW1CoFPFi7wuUalUWFlZYWdnZzQval0y5vOtjV1V97uOQPvPd0aekqM3U7makE16ngozhQxfJ2s6+jvSwsvOoM+hMb+2dMGYz9cYriV9XxvGKC4jn6sJOUSl5BCabk3CmRSyi9TYW5oyprMvrrZV+7yubYz5b/uga0MvyWJ0dDRqtbrC9qKiIuLj46u8n4EDBzJw4MBKb5MkicWLF/Puu+8yZMgQANauXYubmxubN29m1KhRDxf8Hd784xKH4+Vc+P40J9/pW+P9CYLw8CRJ4kRkOj8cjmRfeDL36iMJdLZmSo9ARrT3QSE3fLIgCPVNXlExx2+mcTgihUMRqUSl5t1xqwJi/5v0+sPhSF7q2ZBJ3QOxNFPoP1ihUjpNFrds2VL2/507d5Zr4lSr1ezduxd/f3+tHCsqKorExET69v0vibO3t6dTp04cP378nsliUVERRUVFZb9nZ2cDJd8AVCpVufuejs4AICmnqMJtdU3p+dX18yxljOdrTLEYm1tpeby/5TL7w1PKtjV2s6GDvyOuthYUFquJSMrh6I00IlPzePvPi/x8MoavRrUm0MXGgJELQv2QklPE9ksJbL+YyJlb6ajU/32bU8hlNHGzxc/RksyUBPz9fLGxMOVUVDoX4rL4Yvd1fj4ZwxsDmjC8jRdy8SXP4HSaLJaOJ5TJZIwbN67cbaampvj7+/PFF19o5ViJiYkAuLm5ldvu5uZWdltlFixYwPz58yts37VrF1ZWVuW2SZICKHnRbtu2rYYR1w67d+82dAh6ZUznm5+fb+gQjI4kSfx2Jpa5f12mqFiDqULGM+19mNgtgIaVJIF5RcX8eiqGr/ZGcDE+iyFfH2XxqNb0aepWyd4FQagJSZI4djONlUei2B+ejOaO1n5fRyt6NHameyMXujR0ws7CFJVKxbZt8Qwa1AxTU1MkSeLvsAQ+3X6N+MwC3th4gTXHovl8RAhN3G0Nd2KCbpNFjUYDQEBAAKdPn8bZ2VmXh3soc+bMYdasWWW/lw727N+/f4XxJHND91FUUAzAoEGD9BqnvqlUKnbv3k2/fv2MbmyFLhjj+Za2cgslCpRq3t18iT/OxQHwSEMnPhzaotIksZS1uQmTugcyOMSTl38+x5lbGUxee4bFo9owOMRTX6ELQp2m1kj8feE2Kw7e5FpiTtn2EB8HnmzlQb9mbvg5WT9wPzKZjMEhnvRv5sbqY9Es23eDi/FZPLn0CLP6N2Zy90AxlMRA9DJmMSoqSufHcHd3ByApKQkPD4+y7UlJSbRu3fqejzM3N8fc3LzCdlNT0wpJg6lCXu72+qCy56EuM6bzNZY4jEF6npIJq09zITYTuQxe79+EqT0bVrl7ytXOgl8md+adTRfZeDaO1zaEYiqXMbClx4MfLAhCpSRJYt+1ZD7bGV6WJFqZKRjRzpuxj/jf94vc/ViYKnipZ0OGt/Vizh8X2Xstmf/bfo29V5NYOrot7vZ1cwKMMdNLsgiwd+9e9u7dS3JyclmLY6mVK1fWeP8BAQG4u7uzd+/esuQwOzubkydPMnXq1BrvH8BEfKMRBL2LTc9n3MpTRKbm4WBlyjdj2vJIw+r3UpiZyPn0qVZoJPjjXBwzN4Ti1cCSVt4O2g9aEOq4G8m5vLf5Escj0wCwtTDhpZ4Nea6TH/ZW2vmi62prwQ/j2rPxTBwfbL3C6egMnlh6hGXPtqFToNODdyBojV5K2c+fP5/+/fuzd+9eUlNTycjIKPdTVbm5uYSGhhIaGgqUtFiGhoYSExODTCbj1Vdf5aOPPmLLli1cvHiRsWPH4unpWa4WY02YKGrXKhqCUJlDhw7x5JNP4unpiUwmY/PmzeVulySJuXPn4uHhgaWlJX379iUiIsIgsUan5jFixXEiU/PwcrDk95ceeahEsZRcLmPh063o29QVZbGGl9adJTW36MEPFAQBgEKVmi92hTPwq0Mcj0zD3ETOiz0DOfxWb6b1DtJaolhKJpPxTAcf/nmlG8HutqTmFvHsDydZdTSKWlQmutbTS8viihUrWL16Nc8//3yN9nPmzBl69+5d9nvpWMNx48axevVq3nrrLfLy8pgyZQqZmZl069aNHTt2VLnG4oOYipZFoQ7QR71SbYhNz+fZ70+QmF1II1cb1r3QSSvdTwq5jEUjWzN02VEiU/J4bUMoayd2NIoafIJgzC7FZzFz/XluppSUvunVxIUPh7TAx9HqAY+sOT8na/58+RHm/HmRv0JvM//vK0Sn5jH3yeZiHKMe6CVZVCqVPPLIIzXeT69eve77TUImk/HBBx/wwQcf1PhYlTFRiBekUPvpol5pdUpQlW6/89+73c4sYMyPp7mdVUigszVrJ7TDyUqhtXJClgpYNiqEYStOcDgilTVHIxnTyVcr+76bMZZl0iVjPF9jiqU2Umskvj10k0W7rlOskXC1NWf+4OY81sJdr1+yrMxMWDyyNc097fhk2zXWHL9FQlYhS0a3wcJU1GTUJb0ki5MmTeKXX37hvffe08fhdEZh4AXoBUHXHrZeaXVKUN2pslJFmUWw9LKC1CIZLhYS4/2yOHVo70OczYM97iXjj2gFn2y7SnHcJVwsdXIYwLjKMumDMZ2vKEP18BKyCpi5PpRTUekADGzhzifDWtLA2swg8chkMqb0aIiXgxWv/RbKritJPPv9CVaN76j1LnDhP3pJFgsLC/nuu+/Ys2cPrVq1qjDLc9GiRfoIo8ZMRcuiUMc9bL3S6pSggnuXKkrLU/LsD6dJLcrDp4ElP7/QAQ8dznx8TCMRv/oMJ6Iy2J/jxqrhbbXeUmKMZZl0yRjPV5ShejjHbqYy45fzpOUpsTZTMH9IC55q62UUQzYeb+WBq505k9ac4VxMJs/+cIJ1L3TC0UBJbF2nl2QxLCysbIbypUuXyt1mDC+6qhKzoQWhctUpQXWv27MLVUxad47I1Dw87EtK3ehjLNSnT4fQ78tDHL2Zxt7wNJ2V0zGmskz6YEznayxx1BaSJPHdoUg+3XENjQTNPOxY/lzbKtVK1KcO/o5seLEzz/1wksu3sxn13XF+mtSpzq4tbUh6SRb379+vj8PonJgNLdR1D1uvtKYKlGomrT7DpfhsnKzNWPdCJ70kilAycP6lng1ZsjeCD7ZeoWcTF6zM9FZVTBCMSm5RMW9uvMD2SyU9CU+19ebjYS2MdkxgsLsd66d0YcwPJ7ielMuob0/w8+ROeNjrcExJPaT37CcuLo64uDh9H1Yr7pwNrdaIKftC3XNnvdJSpfVKu3TpopNjKos1TP35LKei07E1N2HNxI4Euep3/eaXezXEu4ElCVmF/HhY94sICIIxSsgqYMSK42y/lIipQsZHQ1vw+YhWRpsolgpyteG3F7vg5WBJZGoeo787QXJ2oaHDqlP0kixqNBo++OAD7O3t8fPzw8/PDwcHBz788MMKBbqN2Z2zoZXFtSduQbiToeuV3m3elkscCE/BwlTOygkdaOFlr5Pj3I+FqYK3HgsG4LtDkaTnKfUegyAY0pXb2QxbdoyrCdk425izfkoXnuvsV2uGivk5WfPbS13wbmBJdFo+z/5wUtRQ1SK9JIvvvPMOX3/9Nf/3f//H+fPnOX/+PJ988glLly6tVTOkTe6YDV1UrDZgJILw8M6cOUObNm1o06YNUFKvtE2bNsydOxeAt956ixkzZjBlyhQ6dOhAbm6uVuuV3iksLotfT8Uik8HyMe3o4O+o9WNU1RMtPWjuaUdOUTHf7L9hsDiE6ntn00VGf3eCYzdSDR1KrXTwegojVhwjMbuQIFcbNr38CO38Ghg6rGrzcrDk18md8bC34EZyLs/9cJIM8cVPK/SSLK5Zs4YffviBqVOn0qpVK1q1asXLL7/M999/z+rVq/URgtYViZZFoZYqrVd690/ptVharzQxMZHCwkL27NlD48aNdRLLPxdLxkU90cqT3sGuOjlGVcnlsrLWxbUnbhGfWWDQeISqOxCewvHINIrF8KBq+/VUDBNXnyZPqaZzoCN/vPSI3sYL64KPoxW/TO6Mi6051xJzeH7lSbIKRJ3NmtJLspienk5wcHCF7cHBwaSnp+sjBK24c5xikUoki4LwMP4KjafVB3v4/pqcQxElLUEDmrs94FH60aORM50DHVEWa1iyxzBLHArVE5eRT3xmAQq5rFa2hhmKRiOxcMc15vx5EbVGYngbL9ZO7FQnahUGOFvzy6ROOFmbcSk+m3ErT5FbVGzosGo1vSSLISEhfP311xW2f/3114SEhOgjBK1Q37F6TKHohhaEh1ag0pBXLOPGv8uGdQ50MnBEJWQyGW8OaALAH+fiROtiLXDsZhoALb3ssTYXs9irolClZuaGUL45cBOAmX0a8cUzIZiZ1J2KH43cbPlpUiccrEwJjc1kwqpT5CtFwviw9PLKWLhwIStXrqRZs2a88MILvPDCCzRr1ozVq1fz2Wef6SMErdCIlkVBqDHzfz+QUv7Nw6zNFDgZUSHddn6OdAl0olgj8f2hSEOHIzzAjn9LvPRq4mLgSGqHjDwlz/94kr8v3MZELuPzESG81q9xrZnIUh1NPexYN7ETthYmnI7OYOLq0yJhfEh6SRZ79uxJeHg4w4YNIzMzk8zMTIYPH054eDjdu3fXRwhacWfLopjgIggPp7T1Ire45MPJx9HK6D6opvUOAkrGc4kZlcZJkiRWH41i37VkAAa20E0x9brkVloew5cf43R0BrYWJqyd2JGn23kbOiydaultz5qJHbExN+FEZDovrD4jEsaHoLc2ey8vLz7++GN9HU4nyo1ZFBNcBOGhmCnK12zzbmB8xXO7BjkR4uPAhdhMfjwSxezHKo65FgynUKVmzp8X2XQ+HoDnOvvSxN3WwFEZt7O3Mpi89gzpeUq8HCxZNaEDjd3qx3PW1rcBayZ2ZNzKUxyPTOOF1WdYOb4DlmbGXT/SmOilZXHVqlVs3LixwvaNGzeyZs0afYSgFeWTRdGyKAgP4+5xUd4NjG/mpUwmY/q/rYvrjt8iu1DMpjQWyTmFjP7+BJvOx6OQy3jviWZ8MLiFocMyatsvJvDs9ydIz1PS0sueTdMeqTeJYql2fg3KWhiPR6YxcfVpCpTic7yq9JIsLliwAGdn5wrbXV1d+eSTT/QRglaU64YWYxYF4aHcnSy62FZcU9oY9Al2pbGbDblFxfx2OtbQ4QjAuZgMnlx6hPMxmdhZmLBmQkde6BaAXG5cwxiMhSRJfHvwJi//co6iYg19m7qy4cXO9Xbt5JKEsUNZwjhu5Smy8sUXwarQS7IYExNDQEBAhe1+fn7ExMToIwStuHOxGdENLQgPx+yuNdYdjLRUh1wuY2LXkvetVUejKVaLa95QJEnipxO3GPXtCZKyiwhytWHztK50a1SxEUIooVJr+N+miyzYfg1JgnFd/Pj2+fb1ft3zdn6OrJnYAVtzE05Fp/P0imOi6kEV6CVZdHV1JSwsrML2Cxcu4ORkHCUzqqJYdEMLQo3d3bLoYGk8M6HvNrSNF47WZsRnFrDrSpKhw6mXknMKmbTmDO9uvoRSreGx5u5sntaVQBftrx/+/vvvI5PJyv3cWSO4sLCQadOm4eTkhI2NDU899RRJScb3usguVDFx9emy1ZHmPdmM+UNaoBAtsEBJwvjbS11wszMnIjmXYcuOciqq9tR8NgS9JIujR4/mlVdeYf/+/ajVatRqNfv27WPmzJmMGjVKHyFoxZ2lcwpFN7QgPBTzu5NFI21ZhJI1o5/r5AvAD4dFGR190mgkNpyOYcCXh9h7LRkzhZx3BjVl+XNtsdFhPcXmzZuTkJBQ9nPkyJGy21577TX+/vtvNm7cyMGDB7l9+zbDhw/XWSwPIzY9n6e+OcbhiFSszBR8/3x7JnSt2LNX3zX1sGPTy11p7GZDck4Ro747ztK9EeXmJgj/0Ut79Icffkh0dDR9+vTBxKTkkBqNhrFjx9beMYuiZVEQHsrdLYv2lsabLAI818WPFQcjOReTyfmYDNr4ilVCdEmSJI5HprFg2zUuxmcBJR/si0e21suMZxMTE9zd3Stsz8rK4scff+SXX37h0UcfBUombzZt2pQTJ07QuXNnncf2IOdjSmY8p+YqcbMz58dxHWjhZW/osIyWp4Mlm17uynubL/Hn+Xi+2H2dE1FpfDmydb0d13kvekkWzczM2LBhAx999BGhoaFYWlrSsmVL/Pz89HF4rRHL/QlCzdWWMYulXG0teDLEkz/OxfHjkSi+flYki7qg1kgcCE/mmwM3OXsrAwBbcxNm9m3EuEf8MVXoZ3WRiIgIPD09sbCwoEuXLixYsABfX1/Onj2LSqWib9++ZfcNDg7G19eX48eP3zNZLCoqoqjov1qd2dnZAKhUKlSqipMrSrdVdtv9bDwbx7y/r6JSSzR1t+Xb59rgYW9R7f3o08OeqzaZyeHT4c3pFODA+39f5eiNNAYuPsyHg5vRr5l216s3hvO9W1Vj0etI10aNGtGoUaN73m5nZ0doaCiBgYF6jKrqRJ1FQai5CmMWrYx3zGKpF7oF8Me5OLZfSiQhqwAPe+OrDVlb3UjOZWvYbX47HcvtrEKg5DUyqoMPMx5tpNfZ8p06dWL16tU0adKEhIQE5s+fT/fu3bl06RKJiYmYmZnh4OBQ7jFubm4kJibec58LFixg/vz5Fbbv2rULK6t7l43avXt3lWIu1sAf0XKOJZVcVy0baHjeN4PzR/dxvkp7MLyqnqsuWQCvNoPVEQoS8pS8/GsobZ00PBWgwUbL32eN4XxL5efnV+l+RjUtSpKMe6yARnRDC0KN3Z0sWteCwrjNPO3oGODIqah0fj0Zw6z+TQwdUq2VW1TM2VsZHLuZyu4rSUT+uz44lAxJeKa9N5O7B+Jqp/9uwIEDB5b9v1WrVnTq1Ak/Pz9+++03LC0f7gvCnDlzmDVrVtnv2dnZ+Pj40L9/f+zs7CrcX6VSsXv3bvr164ep6f2zlKTsQmasv8D5pCxkMpj5aBBTe9SeUkLVOVd9GaNSs3R/JN8fieJcmpzoQnPeHRTMEy3da7zSlDGeb2lL94MYVbJo7ETLYu1QVKxGkkomJwjGx+SuDzJjW+rvXsZ28eNUVDq/nIpl+qONKiS9QuUy8pScjErndHQ6p6LSuXw7izvnEJgp5HRp6MTwtl4MaO5uVNetg4MDjRs35saNG/Tr1w+lUklmZma51sWkpKRKxziWMjc3x9y8YuuoqanpfROGB91+8HoKr/92gdTcImwtTFgyqg29g7XbbaovDzpXfTI1NWXO4814PMSTt34P41piDrM2XuTX03HMfaI5Lb1rPgbU2M63KkSyWA1izKJxik7N489zcRyPTOPy7Wzy/63Kb2dhQoiPA/2auTEkxAt7Ix8bV1/cmRzePTPamA1o7o6LrTkpOUXsvJzIkyGehg7JKGXmqwhNk3Fm61VO38rkWmJOhfv4OlrRwd+R3sEu9Gzsgq2FcV6bubm53Lx5k+eff5527dphamrK3r17eeqppwAIDw8nJiaGLl266C2momI1n+0I54cjUQA0cbPl2+fb4e9srbcY6oNW3g5smd6Nbw/e5JsDNzkdncHgZUcY1tqLaY8G0VAHpZuMmUgWq0HMhjYu1xKzWbgjnH3Xkiu9PbuwmMMRqRyOSOWzHeFM7hHIpO4B9b4orTGxNKJWpAcxVcgZ3dGXJXsjWHf8Vq1MFrMLVey7mszZWxlEJOeQmqskr6iYomINlqYKbMxNcLUzx7uBFd4NLP/9scLH0RIXG/N7tgKn5RZx5EYqf19I4EB4MsUaBfDfqjeNXG3oGOBY9mOsYz7feOMNnnzySfz8/Lh9+zbz5s1DoVAwevRo7O3teeGFF5g1axaOjo7Y2dkxY8YMunTporeZ0BFJObz2WyiX4ku6Dp/v7Mc7jzc1qtbYusTMRM6MPo14ur03n26/xubQ2/x5Pp5NofE80cqTl3oG0tyzfsw2N6pPTWPvjrpzBRdRZ9FwCpRqPt1xjbXHo8u6s3o1cWFgC3fa+TXAxcYCmRxi0vI5EZnGb2diuZ6Uy6Ld19kcGs+SUW1EOQkjYVkLxive6dmOvizbf4NT0elcS8wm2L3imDNjk1tUzPpTMRy9kcqRG6mo1PcfGx6eVLElEEpagb0alCSNFqYKTOQysgpUxGcWkPDvxJRS7pYSfVv58kiQCx0DHHG2Mc4lHe8WFxfH6NGjSUtLw8XFhW7dunHixAlcXFwA+PLLL5HL5Tz11FMUFRUxYMAAvvnmG53HVahS8/W+G3x76CYqtYSDlSkLn2pF/+b37v4WtMfD3pLFo9owsVsAS/beYM/VJP6+cJu/L9wmxMeB0R18eCLEU6f1Pw3NqM7M2Ce4iJZFwwtPzGH6L+eISM4FYGALd94c0KTS1RxaeNnTwsueiV0D2HoxgU/+uUpkSh7DvjnKwqdbMayNt77DF+5Sm1oWAdztLRjQ3I1tFxNZd/wWHw9raeiQ7kutkZj601kOR6SWbQtyteHRYFeauNni4WCBrbkpZiZy8pXF5BYVk5hVSFxGAXEZBcRm5BOfUUBCVgFFxRoiU/LKTUi5U2M3G/o1c+Px5m5EnD3EoEFNjWZcVlWtX7/+vrdbWFiwbNkyli1bpqeI4ND1FN776xK30kpmrfYJduXjYS1xtxd1APWtlbcDP4xrz+XbWXxz4Ca7LidyITaTC7GZzP3rMl0aOtGnqSsd/B1p7GZbp1bM0WmyGBgYyOnTp6u8pN/27dvx8vLSZUg1Iia4GNbJyDQmrTlDTlExLrbmfD4ihJ6NXR74OLlcxuAQT7oHOTP7jzB2XUnitQ0XSM1RMrmHcZZpqi+salnLIsBznf3YdjGRTefjmT0wGDsjHW8H8NWe6xyOSEUug5d6NmR4Wy+CXKtf2FpZrCExq5DYjHzS85QoizUUazTYWZjiamdOE3e7slYVlUpFhLZPpB5SqTW8tyWM9adLuvPd7Sx4f3AzBjSv+axcoWaae9qz7Nm2pOYW8cfZODaciSUyJY+D11M4eD0FABtzExq62uDvZIWngyWOVma42JiiMkA7kyRJNX7N6DRZjI6ORq2u+jPTrVs3HUZTc+pyy/2JlkV92n8tmZd+OktRsYaOAY4sH9MWp2p2bTWwNmPFc+34ZNtVfjgSxcfbrmKqkDG+kqWwitUaDt9I5WhEKhfiMknMLiS3sBhrcxNcbM1p4WlPe/8GPBrsarSD82uD2tYNDdAl0IlGrjZEJOfy59m4Sl8/xuDsrXS+3n8DgEXPtGZom4f/Im5mIsfXyQpfp3vXBRRqTpIk8pXF5BfDioNRrD8di1wG4x7x5/X+Tep0N2dt5Gxjzos9GzKlRyA3U3LZdSWJYzfSOB+TQW5RcVmr453szRQUecQxooMv5ia6f//7JyyBn0/e4sdxHWr0fiteedVwZ53F0hm3gu5tuXCbWRtCKdZIPBrsyjdj2j70gG65XMa7TzTDxsKExXsimL/1Ck425jzWrKSFsqhYww9Hb7LyaBQpOUUVHp+RryIuo4DzMZmsO3ELMxM5/Zq5MaV7ICE+DjU5zXrJqpZ1Q0PJ2Ornu/gx96/LrDtxi3GP+BtdS09uUTGvbbiARoLhbbxqlCgK+vPzyRje3XyJpg5yovNKZjsvfDqEp9uJITPGTCaTEeRqS5CrLS/3CkKtkbiRnEtUah7RaXkkZReSnqfkVFQ6CVmFvPvXFb7ad5Pxj/gzppOvzhYm2HU5kRm/nkMjwdrj0bzYs+FD70vnyeLOnTuxt7//ZILBgwfrOgytuLNlMaew2ICR1B8/n7zFu5svIUkwOMSTL54J0cqyXzP7NCI9T8na47d4/bcLOI1vx9VMGV9+fYzof8cGOVqb8VgLd9r5NsDf2RobcxNyi4q5nVlAaGwmB8KTuZmSxz9hCfwTlsAjDZ2Y/ViwSBqrwc2udkx8uNuwNl58uv0aN1PyOH4zjUeCnA0dUjkf/H2ZmPR8vBwseX9Ic0OHI1SR3b/rpF/NlAMa3O0seKqtSPRrG4VcRhN32wprmefmF/Le2l0cS7ciKbuIz3aG89XeCPo2dWVwiBe9g11q3NoYl5HPnitJ7LmazNGbqUgSjGjnzaTuNRtypfNkcdy4cfe9XSaTVaur2lAkSSpXSDa70HjWdqyLNBqJ5Qdv8tnOcADGdPLlgyEttDZgWCaTMe/J5iRnF7HjciLP/ngaUAD5uNiaM/uxYAaHeFZaeLmdXwOeDPHk3cebcvl2NiuPRPHXhdscu5nG0G+OMqKdN289FlxrZoAawv8Na853ey4xq9+9l/80ZrYWpgxr68VPJ2JYe/yWUSWLOy8n8tuZOGQyWPRMiFGPqRTKs7Uo/5HcvZGz0bVaCw/P3FRBLw+Jj8Z1Z9e1FL4/FMWVhGy2XUxk28VErM0UdAxwpGuQMy297Al2t7tvfeBitYZb6flcS8jhVFQaJyLTK1QzeKy5Ox8Pa1njz06dJ4uJiYm4utbOqvJ3urNVEUq6eTQaqdYsq1SbXIjN5P2/L3M+JhOAl3s15M0BTbT+pqmQy/hyZGtSfjzJ2VsZyJEY94g/s/o3qdI4RJlMRgsvexaNbM2s/o1ZtOs6f56P57czcey+ksSHQ1vwRKvaV4tPH55q64Vl4gWcrI1/Xeh7eb6zPz+diGH31SSjWS86ObuQt/8IA2BKj0A6BVZtcqFgHO5O7EUvRd1kZiJnWBtvhrb24kpCNltCb7Plwm0SsgrZH57C/vCUsvs2sDLFxdYcByszFDIZMllJz2ZGvpKk7MIKpbDkMmjv50jfZq70bepWaaWQh6HTZLEufSNS31XWR5IgV1ksvrVrUUpOEZ/tvMZvZ+KAkpmysx8LZtwj/jo7pqWZgp8ndeKv87Fk3rzAxIFNHqrch3cDKxaNbM2Yzn68t/kSVxKymf7LebZfSuTDIS1wrMVJkVC5Ju62ZetF/3IyhtcNvF60JEm89UcYGfkqmnrYMatfY4PGI1SfvWX5j+RAF7EqS10mk8lo7mlPc097Zj8WzNXEbI7dSONkVEkd17iMAjLyVWTk37sn09JUQZCrDe38GtAxwJHOgU46+bzRabJo7HUTq0NTSaWc7AKVSBa1QJIk1p+O5ZN/rpJTVDIWdHgbL2YPDMbNTve1xCxMFQxv48W2hAs13lc7vwZsntaVr/ffYNn+G/wTlsDpqHS+HNmarkbUVSlox7gu/pyKSufXUzFMfzRIL7Mb72XdiVscCE/BzETOV6NaGzQW4eHc/XlS35aUq8/k8v8Sx9KSbtmFKhKzCknJKSIjX4lGKvm8tDE3wcHKDDc7czztLfXSw6nTZHHcuHFYWhq+a0Ybiu/IFm0tTMgpLBaTXLQgLbeI1367wKF/a1O19LLn/cHNaefXwMCRPTwzEzmz+jWmb1NXXtsQys2UPJ778SRTugfyev8mlY6DFGqn/s3dcLMzJym7iB2XEhnS2jCTEcITc/j4n6sAvP1YMI3dql9LUTC8u4e/uNqKcc/1mZ2FKXYWpkZxPes0WVy1ahUA8fHx/PHHH1y/fh2AJk2aMHz4cKMuwH23O1sWHSxNySksJrtATHKpiUvxWby47izxmQWYm8h5c0ATJnQNqDNV71t5O7B1Rnc++ucKP5+M4dtDkRy7mcZXo1prbRyJYFimCjljOvmxaPd11hyLNkiyWKhS88qv5ykq1tCriQsTuvrrPQZBOyxM//si6WRtVqeGcgm1m84nuHzzzTfMmjULpVKJnV3JOqrZ2dm8+eabLFq0iJdfflnXIWjFnWMWHaxMic0oEC2LNXA4IoUpa89SoFLj72TFt8+3r1BmoC6wNFPw8bCW9Gjswuw/wrgYn8XArw7T2M0WXycrPhrSggZiPGOtNqqjD0v3RXAuJpOLcVm09NbvuuMf/3OV8KQcnG3M+OzpEJFg1GJ3/u1q8+Qvoe7RaX/YP//8wyuvvML06dOJj48nMzOTzMxM4uPjefnll5k5cybbtm3T+nGXLVuGv78/FhYWdOrUiVOnTtV4n6Xd0DKksnElonzOw9l2MYGJq09ToFLTvZEzf03vVicTxTsNaO7Ojpk9eKShE0XFGi7GZ/FPWAKbQ+MNHZpQQ662Fgxq6QGUFL7Vp9/OxLLuxC0APhsRgovotqwznG1EsigYD50mi5999hlvv/02n3/+OR4eHmXbPTw8WLRoEbNnz2bhwoVaPeaGDRuYNWsW8+bN49y5c4SEhDBgwACSk5NrtF8HSzM2TO7IjOZqPP5dwD0mPV8bIdcrW8NuM/2Xc6jUEo+39OCHce2xt6wfk4Tc7S346YVO/DK5E63+bX0qLQ8k1G5ju/gD8NeF22TkKfVyzHMxGby76RIAr/ZtRO8mtb9EmfCfll76baEWhPvRabJ47tw5nn/++Xve/vzzz3Pu3DmtHnPRokVMnjyZCRMm0KxZM1asWIGVlRUrV66s0X7NTOS09XWgoR00/LecQURyrjZCrjeO3Uhl1r9LkI1s78OS0W3q3YxNuVzGIw2deWtAMADnYzMMHJGgDW19HWjhZYeyWMOGM7E6P15EUg4TV59GqdbQv5kbrzxaO4ubCxWteLY1HZw1vNzLONccF+onnY5ZVKvV961ZZ2pqqtXVW5RKJWfPnmXOnDll2+RyOX379uX48eOVPqaoqIiiov/WAM7OzgZApVKhUpXvZi793d+xpGUxIjGnwn3qitLz0tb5Xb6dzeR1Z1CqNTzW3I35TwajURejMZLFe7R9vg8S4FTyGorLKKCoSFlp6YO6+tqqi2QyGWO7+PPW72GsO36Lyd0DdTZR61Zayez6zHwVIT4OfDmytVgcoA7p09SVoigNVmY6n1IgCFWm01dj8+bN+euvv3jttdcqvX3z5s00b669dUtTU1NRq9W4ubmV2+7m5sa1a9cqfcyCBQuYP39+he27du3Cysqq0sckhp8DTLiRnMM3G7bhX4eH2+3evbvG+0gthMWXFOSpZATZSfS1iWfnDuMcq6eN860KpRrABEmCzVu3Y1HJlZifL4Y51CaDQzz5ZNtV4jML2HctmX7N3B78oGq6cjubsStPkZpbRGM3G9ZM6IC1uUgqBEHQLZ2+y0ybNo2pU6dibm7OlClTMDEpOVxxcTHffvst7777Lt98840uQ3igOXPmMGvWrLLfs7Oz8fHxoX///mWzt0upVCp2797NyCf6cTD3Igeup/LlJRMeCXRkbBdfejd20ek3/PQ8JWHxWdxMySM6LZ+Y9Hwy81XkFhVTrJawMlNgbW6Cn6MVQa7WtPCyo4NfAyxMq9/VW3qu/fr1e6gVTUql5RYx8vvT5KjyCXa35ZcX2ldpKT1909b5VpUkSfzv7B5UaonOPXrj6VCxHmlpK7dQO1iYKhjZwYdvD0ay9ni01pPFHZcSeHNjGDlFxTT1sGPtxI44WIlJEIIg6J7Oi3JfvHiR6dOnM2fOHBo2bIgkSURGRpKbm8srr7zC+PHjtXY8Z2dnFAoFSUlJ5bYnJSXh7u5e6WPMzc0xN684g9DU1PSeSYOpqSmfjWjN+1sus/1SAsci0zkWmY6fkxVju/gztLUnTjY1m5VYrNYQnpTDuZhMzt/K4FxMBtFpVWtpuhCXVfZ/MxM5vRq78FQ7b/oEu2KiqN4w1fs9Dw+SW1TM5J9CuZWej3cDS9ZO7Iijre5XZKmJmpxvddlZmJKWp6RATaXH1FccgvY818mP7w5FcjgilRvJuQS51ryeZqFKzSfbrrL2eMms547+jnxfjyaGCYJgeDrvv/j88895+umn+fXXX4mIiACgZ8+ejBo1is6dO2v1WGZmZrRr1469e/cydOhQADQaDXv37mX69OlaPZaLrTnLxrQlLiOfdcdv8eupGG6l5fPh1it8su0qPRo582hTNzoFOBLkYnPfFke1RuJ2ZgFXE7I5H5vJ+ZgMwuKyyFdWHNDX0MWaYA87Apys8XOywtnWHFtzE0wUcvKVJYXCb6bkEZGUw8modBKyCtl1JYldV5Lwc7Li5V4NGdbGW+eriCiLNUz96SwX47NwtDZj7cSOuOph6b7axNbChLQ8pajXWYf4OFrRJ9iNPVeT+OnELd4fXLNhNpEpuUz/5TxXEkpamV/q2ZDX+zfGtJpf+gRBEGpCL4NdOnfurPXE8F5mzZrFuHHjaN++PR07dmTx4sXk5eUxYcIEnRzPu4EVcwY1ZWbfRvx5Lp4Np2O5GJ/F/vAU9oeXLGFnZabAp4EVXg0ssTRTYK6QU1isJrugmOScQqLT8lEWV1x82tbchNa+DrTxbUAbXwfa+DhUq9tJkiSuJeaw+Xw8G8/GcSstn9l/XGT5gZt8MKQFPRq7aO15uJNGI/HGxgscjkjF0lTByvEdxIollSjtjs8R9TrrlHGP+LHnahK/n43jjQFNMH/IvG7T+Tje2XSJfKUaJ2szvngmhF6iPI4gCAagl2Tx9OnT/Prrr+WW+xs9ejTt27fX+rFGjhxJSkoKc+fOJTExkdatW7Njx44Kk160zcrMhOc6+/FcZz9upuSyLSyBE1FpnL2VQb5STXhSDuFJOfd8vJlCTqCLNa19HGjj60Bb3wY0fECL5IPIZDKaetjR1MOOmX0b8cvJGFYcjCQ6LZ+xK0/xRCsPPtTyCiKSJPHxtqtsuXAbE7mM5c+1pbWPg9b2X5fY/jurRbQs1i1dGzoT6GJNZEoem87FMap99ZYALFSpeW/zJTaejQOgc6AjX41qg5tomRcEwUB0niy+9dZbfP7559jY2BAYGAjAwYMHWbx4MW+88Qaffvqp1o85ffp0rXc7V0dDFxtm9GnEDBqhUmuITS+ZjJKQVUiRSk1RsQYLUwX2lqY4WpsR4GyNp4OlTtdEtjIzYVL3QEZ28Clbx3ZrWAJnojNYMroNHQMctXKc7w5F8uORKAA+G9FKtITcR2mymC2SxTpFLpcxtrMf7/99hTXHb/FMW88qPzY+s4CX1pUM35DJYGafRsx4tFGdWS9deLCTJ0+yYcMG+vfvX+VxyxqNBrn8vybspUuX8s8//5CQkEBKSgqFhYUUFhZSVFSEXC7H2toaa2trnJ2d8fb2xtvbm3bt2jFlyhRdnZZQy+k0WVyzZg1Lly5lyZIlvPjii2UvfJVKxfLly5k9ezbNmzdn7NixugzDoEwVcgJdbIymG9bWwpR5TzbnqbbevPLreSJT8xj13XHeebwZL3SrWRHYP87GsWB7SYmi/w0KZlgbb22EXGeJbui666l23ny+6zo3knM5EJFapceci8lg8pozpOUpaWBlytfPtqVrkLOOIxWMTffu3QEICQlh9uzZFW5XqVRln6X5+fn06tWLK1eukJiYiI1NyefM1atX2blzZ6X712g0ZGVlkZWVxe3btwkLCwNgwIAB5ZLFWbNmERwczIgRI2jQoIFWz1GofXSaLC5btoxPPvmkQiufqakpr7zyCsXFxXz99dd1Olk0Vi287Pl7Rjfe++sSf56L58OtV8gtLOaVPkHlFrOvqt1Xknjrj5I3nUndApjSo6G2Q65zRDd03WVrYcqYzr58ezCSbw9FMfYBjYunotKZsOoUeUo1zT3t+Pb5dng3qLzOq1B33Vlb9eDBg0yZMoWDBw9y9uxZLly4QFhYGM2aNWPbtm0AWFlZERsbS15eHpcvX6ZTp04AjBkzho4dO+Lh4YGrqyuWlpZYWFhgbm6OWq0mLy+PvLw8UlJSiIuLIzY2lkaN/lsFKCEhgS+//BKZTFY2WRQgMzMTe3v7h/qMEGo3nSaLly9fZsiQIfe8fejQobz33nu6DEG4D2tzExY905pAZ2s+33WdL/dcR6XW8MaAJtXaz/GbaUz75RxqjcTwNl78b1BTHUVct4iWxbrtha4BrDoSzbmYTLrdp3B/aGwm41aeokClpmuQE9+PbS9W76inQkNDy/6/fft2HB0rDg+6e2Wn9evX4+7uTlBQUNm2rl270rVr14eOQy6XM3fuXNLT03F1/W8o0bBhw0hLS2PChAk899xzuLjoZpKkoB03b97k/fff5/PPP6/xvA2d1l9QKBQolcp73q5SqVAo6tfawMZo+qONePfxkgTv6/03WLI3osqPvRiXxeS1Z1AWa+jb1I1Pn24llh6ropEdfPhrWldmGPG6vsuWLcPf3x8LCws6derEqVOnDB1SreFqZ8FT7UqGYuyJr/ytNiGrgMlrz1CgUtO9kTM/jusgEsV6rHnz5qxdu7bctiZNmvDCCy+wZMkSDhw4wKVLl8rd3rNnT5o0aaLVz1I3Nzfmz5/P0qVLy7bl5eVx+vRpLl68yKxZs/D09GT48OFs27ZNq8v2CpVTq9VkZWURFxfHlStXuHDhQrnbv/zyS8aOHcvly5fLtv3999/89NNPPPXUU0iSVKPj6/RdqW3btvz88898+OGHld6+bt062rZtq8sQhCqa1D0QSYKPt11l0e7ryJHwecBjLsVn8fzKk+QWFdM50JGvn20j6r9Vg5eDJV6VrNxiLDZs2MCsWbNYsWIFnTp1YvHixQwYMIDw8PByrQ3Cvb3YI5ANp2O4kinnSkI2Ib5OZbcVFauZsvYsKTlFNHGzZflz7R5qtSWh7rC3t2fUqFHcunWLvXv3MnnyZEaPHm0U3b7W1tbExsayfv16Vq5cyZkzZ9i0aRObNm3Cx8eHSZMmMXHiRLy9a+dYdUmSyj3PX331FUlJSbz88stl57R582ZWrFhRlniZm5tja2uLnZ1d2b/29vY4ODjg4OCAvb09jo6OtGjRomy/8fHxHDp0iLZt25aNBT1y5Ajr168nMzOTnJwcsrOzy/2bk5NDXl5euXhdXV3LLUDy559/cuTIER5//PGyZZRbtWrFoEGD+OKLL2r+GpJ06O+//5YUCoX05ptvSomJiWXbExISpDfeeEMyMTGR/v77b12GUG1ZWVkSIGVlZVW4TalUSps3b5aUSqUBItOPr/dFSH6zt0p+s7dKM7/5657nej4mQ2o5b4fkN3urNOTrI1J2Qe1+Tozxb3u/16I+dOzYUZo2bVrZ72q1WvL09JQWLFjwwMc+KHZjfL515eWfzkh+s7dK4348UW77/22/KvnN3iq1nr9TiknLM1B02meMf1tDX0vVicUYn7/KXLx4UXr11VclR0dHCZAASS6XS0888YS0ZcsWSaVSPXAfhjpXtVotnTx5Upo3b57Us2dPycfHR+rcuXO5+wQFBUmAdOjQobJtixcv/n/27juu6up/4PjrXvbeU0Bw4sKFIO6NI800NW040pY2pH6VDc2+paWlllnacFXmKEelqUiOVFwoblBRBJSNbLj3cu/9/YHcJFAZ93IvcJ6Ph4/ic+/93Pe5cO593/M55300ba3qPzc3N83j5XK52sfHRw2o9+7dqzn+3XffVfl8xsbGakdHR7W/v3+5eFevXq1euHCh+uLFi9V6LaraN3Q6svjII4+wdOlS3njjDT7//HPs7OwAyMnJwdjYmM8++4xHHnlElyEI1TSzfwtkJSq+jLjK9ptGdDyewNRe5RerHLmWwQs/RpEnKyGwqQNrpnYzyP2ehZqTy+VERUUxZ84czTGpVMqgQYOIjIyscH+ZTIZMJtP8XLavtUKhqDDHquz4vf9tyGb2acpf55M5cCWDo1fT6ObrwJnEbFYdjAPg40fb4W5j0mBeC0P83RpSLA1F+/btWbp0KQsXLmTr1q18++23HDx4kD///JM///yTJk2aMHPmzHLvIfqUmZnJ3r172bVrF7t37yYjo3yVgv9OmZs2bRqpqanlrqIMGTJEM01ArVYjk8nKjf7l5eWRk5NDdna25p+zc/mKBh4eHpiZmZUrdRQYGMh7772HnZ0dtra25UYq7/2vjY0NZmZmlY4S6mrjkTI6nxzz8ssv89hjj7FlyxbNdn+tWrVi7NixeHs/7EKnoA+zB7VEJi9h1T83mP9nDOamJkwM8gFgy6lE5mw9T4lKTfdmjvwwuRtWZmKOVUOTkZGBUqmsMCnazc2NmJiYCvdfuHAh8+fPr3B87969WFref1VveHh47YOtB0LcpBxJlfDOphO81FbJZ+eMUKklBDqrUMSfYle8viPUPkP63d67yljQLnNzcyZNmsSkSZOIiYnh+++/Z+3atdy6davc/Dm5XE5CQgLNmzfXJDsqlYrExER+/vlnzp8/T1JSEq6urrRs2ZLWrVvj7++Pt7d3ucSqqkpKSjh58iR79uxh7969HD9+HJXq353SbG1tGTx4MEOHDqV9+/Y0bdq03OMrS3LbtGlDmza1W8A5Z84chg8fXq6GZqdOnejUqVOtzqtrdfIp7+XlxezZs+viqQQtkEgkvD64BbHX4jiQLOWdbefJLlRwO7uIH4/dBGBUR08WPR4g5lgJQOkbYFhYmObn3NxcvL29GTJkCLa2thXur1AoCA8PZ/DgwVUuPFxfKRQKcnaGczrLmPh8FW+eKH3bdbM1Y+VzPbCzaFjtN8TfbdlItzatWLGCxYsXk5KSQseOHVm+fDlBQUFaf576xN/fn88++4yPP/6Ybdu20br1v5U1oqKi6NGjBz179uTw4cNA6RWJV199tVwS918WFhaaxLF169Z4e3sTGhqqmUeYk5NDamoqZmZmmoQvNjaW7t27k52dXe5cHTp0YPjw4QwbNowePXoYzN9nfaDTZLFPnz78/vvv2NvbA/D7778zePBgLCwMd1K/UEoikTC6qQovn6b8dDyRT3f/O5o0s39zXh/cWqx6bsCcnZ0xMjIqN4EaIDU1FXd39wr3NzMzw8zMrMJxExOTB74hP+z2hsLOFGb08uPL/aWXniUS+OKJzjjbNtxaiob0u9V2HGLx14OZmZnxxBNPlDsWFxeHqakp5ub/bltpYWFBy5YtcXR0pGvXrjRr1ozU1FSuXLlCTEwM165do6ioiOjo6HJlhXbv3q1JFtevX88rr7zClClTWLNmDQA+Pj7k5+fj4ODAoEGDCA0NZciQIeJqZi3oNFk8fPhwuXkATz31FNHR0Zpt/wTDJpHA+8P8cbI256djN/G0t2DOMH96iF0lGjxTU1O6du1KRESEpiivSqUiIiJCr1tp1mfP9fYlKaeYw1czeGuoP92bOT38QYJBWrJkCTNmzNDME1u5ciU7d+5k9erVvP3223qOzjA99dRTPP7442RlZZU7/sknnzBixIhKE3qFQsGNGzeIjY0lJiaG2NhYkpOT8fX11dynbEXyveV7LCwsiI6Oxt/fX5Tn05I6nWymrmWdH6HuSaUSZg9uxezBrfQdilDHwsLCmDx5MoGBgQQFBbFs2TIKCgp0PpG6oTIzMWLJ+E76DkOoJbH4q+aMjIxwcXEp10aJRPLAtvr5+eHn58fQoUPLHS97zNSpUzXvSfeep1WrVqhUqgde4q5rhvi7rWosYmXCf5QltJXNcVEoFBQWFpKbm2swl1d0pTG1FQyzvWV/g/r6kjVhwgTS09OZO3cuKSkpdOrUid27d1dpJ4AH9SMwzNdbVxpTW8Ew26vNvqStxV/bt29/4OKvHTt21DrW+qIxtRUMq71li78e1jd0nizu2bNHUzKn7DLWfyvQjxo1StdhVFleXh6AmNsgGIy8vDxNH6prs2bNqtFlZ9GPBEOkj77038Vft27dom3btkyfPr1O4xCEB3lY39B5sjh58uRyPz///PPlfpZIJAa1VZCnpyeJiYnY2NhUqGVUtsIzMTGx0hWeDUljaisYZnvVajV5eXl4enrqO5Rqe1A/AsN8vXWlMbUVDLO92uxLtV38ZW1tLfrGXY2prWCY7a1q39BpsmhIcwWqSiqVPnS7orKimY1BY2orGF579TWiWFtV6UdgeK+3LjWmtoLhtVdbfam2i79E36ioMbUVDK+9VekbBrWR74gRI0hOTtZ3GIIgCIJwX2FhYXz33XesW7eOy5cv8+KLL4rFX0KDZlALXA4dOkRRUZG+wxAEQRCE+6rN4i9BqI8MKlk0dGZmZsybN6/S4sMNTWNqKzS+9upbY3q9G1NbofG0t6aLvx6msbx+0LjaCvW7vRK1ARU/tLGx4ezZs6JotyAIgiAIgoEwqDmLgiAIgiAIgmERyaIgCIIgCIJwXyJZFARBEARBEO5L78nivauf33nnHRwdHfUYjSAIgiAIgnAvvS1wkclkfPXVVyxevJiUlBR9hCAIgiAIgiA8hE5HFmUyGXPmzCEwMJAePXqwfft2ANasWYOfnx/Lli1j9uzZACQkJFS6kbVarSYhIUGXYVbJihUr8PX1xdzcnODgYE6cOKHvkHRi4cKFdOvWDRsbG1xdXRk9ejSxsbH6DqtOfPLJJ0gkEl577TV9h9Kgib7U8Im+VDOibzR89bVv6DRZnDt3Lt988w2+vr7Ex8czbtw4nnvuOZYuXcqSJUuIj4/nrbfeAsDPz4/09PQK58jKysLPz0+XYT7Upk2bCAsLY968eZw+fZqOHTsSGhpKWlqaXuPShYMHDzJz5kyOHTtGeHg4CoWCIUOGUFBQoO/QdOrkyZOsWrWKgIAAfYfSoIm+JPqSUDnRN0TfMGhqHfLz81Pv2LFDrVar1efPn1dLJBL11KlT1SqVqsJ9JRKJOi0trcLx+Ph4taWlpS7DfKigoCD1zJkzNT8rlUq1p6eneuHChXqMqm6kpaWpAfXBgwf1HYrO5OXlqVu2bKkODw9X9+3bV/3qq6/qO6QGS/Ql0ZeEyom+IfqGIdPpDi5JSUl07doVgPbt22NmZsbs2bORSCSa+4SFhQEgkUh4//33sbS01NymVCo5fvw4nTp10mWYDySXy4mKimLOnDmaY1KplEGDBhEZGam3uOpKTk4OQINeeDRz5kxGjBjBoEGD+Oijj/QdToMl+pLoS0LlRN8QfcPQ6TRZVCqVmJqa/vtkxsZYW1uXu8+ZM2eA0rmJ58+fL3d/U1NTOnbsyBtvvKHLMB8oIyMDpVJZYc9PNzc3YmJi9BRV3VCpVLz22mv07NmT9u3b6zscndi4cSOnT5/m5MmT+g6lwRN9SfQloXKib4i+Yeh0miyq1WqmTJmi2QexuLiYF154ASsrK819HBwc2Lp1K1OnTuWLL77A1tZWlyEJ1TBz5kwuXLjA4cOH9R2KTiQmJvLqq68SHh6Oubm5vsMRGjDRlwShcqJv1A86TRafeeaZcpecn3rqqfved9myZZSUlFQ4npWVhbGxsd6SSGdnZ4yMjEhNTS13PDU1FXd3d73EVBdmzZrFn3/+yaFDh/Dy8tJ3ODoRFRVFWloaXbp00RxTKpUcOnSIr776CplMhpGRkR4jbFhEXxJ9Saic6Buibxg6nSaLc+fOxdfXF6n04Yuun3jiCUaOHMlLL71U7vjmzZv5/fff2bVrl67CfCBTU1O6du1KREQEo0ePBkqHzSMiIpg1a5ZeYtIltVrNyy+/zLZt2zhw4IDeV6Lr0sCBAzl//ny5Y1OnTsXf35+33nqrXnTg+kT0JdGXhMqJviH6hsHT5eoZqVSqTk1N1fw8fvx4dUpKSqX3dXBwUF+6dKnC8cuXL6sdHR11FmNVbNy4UW1mZqZeu3at+tKlS+rnnntObW9vf9+21Gcvvvii2s7OTn3gwAF1cnKy5l9hYaG+Q6sT9XGVWn0i+pLoS0LlRN8QfcOQ6XzO4r127drFwoULK72vTCar9DK0QqEotyWgPkyYMIH09HTmzp1LSkoKnTp1Yvfu3RUmIzcE33zzDQD9+vUrd3zNmjVMmTKl7gMSGhTRl0RfEion+oboG4ZMp9v9SaVSUlJScHV1BcDGxoazZ8/SrFmzCvft378/7du3Z/ny5eWOz5w5k3PnzvHPP//oKkxBEARBEAThPnQ6siiRSMotcCk7VpmPPvqIQYMGcfbsWQYOHAhAREQEJ0+eZO/evboMUxAEQRAEQbgPnY8sDhs2TFM6548//mDAgAHlSucAbN26FYDo6GgWL15MdHQ0FhYWBAQEMGfOHFq2bKmrEAVBEARBEIQH0GmyOHXq1Crdb82aNboKQRAEQRAEQagFnSaLNVVcXIxcLi93TBTrFgRBEARBqHsPL4BYRwoLC5k1axaurq5YWVnh4OBQ7p8gCIIgCIJQ9wwmWfy///s//v77b7755hvMzMz4/vvvmT9/Pp6enqxfv17f4QmCIAiCIDRKBnMZ2sfHh/Xr19OvXz9sbW05ffo0LVq04Mcff+SXX37R2w4ugiAIgiAIjZnBjCxmZWVp6i/a2tqSlZUFQK9evTh06JA+QxMEQRAEQWi0DCZZbNasGTdu3ADA39+fzZs3A6Xlduzt7fUYmSAIgiAIQuNlMJehly5dipGREa+88gr79u1j5MiRqNVqFAoFS5Ys4dVXX62TOFQqFbdv38bGxua+BcQFoS6o1Wry8vLw9PREKjWY73VVIvqRYEgMqS+JviEYkqr2DYNJFv/r5s2bREVF0aJFCwICAurseZOSkvD29q6z5xOEh0lMTMTLy0vfYVSL6EeCITKEviT6hmCIHtY3dLrdX3WsX7+eCRMmaHZ7adq0KU2bNkUul7N+/XqeeeaZOonDxsYGKH3h/lvbUaFQsHfvXoYMGYKJiUmdxKMvjamtYJjtzc3NxdvbW/M3WZ88qB+BYb7eutKY2gqG2d6q9qUPPviA+fPnlzvWunVrYmJigNIawK+//jobN25EJpMRGhrK119/jZubW5VjEX3jX42prWCY7a1q3zCYZHHq1KkMHToUV1fXcsfz8vKYOnVqnSWLZZcFbG1tK00WLS0tsbW1NZhftK7ou615xQre2XYBTztzZg9uhbmJkU6fT9/tfZD6eKnqQf0IDPv1rgmVSs1vp5PYcioJAD9nK5q5WOHnbIWPgzlmFg2nrQ9jyL/bqvSldu3asW/fPs3Pxsb/fkzOnj2bnTt3smXLFuzs7Jg1axZjxozhyJEj1Y7hfn3j11MJ/HjTmlBTC2xtLKt83vrIkP9WdMGQ2/uwvmEwyaJara402KSkJOzs7PQQkaBPn++9wh9nbwNw8Eo6K5/qiq+z1UMeJQh173xSDu/vuEB0Yrbm2In4rHL3MZEa8dPtE3T0tmdIW3e6N3Osl18CGgNjY2Pc3d0rHM/JyeGHH35gw4YNDBgwACjdqrZNmzYcO3aM7t27a+X53/j1PCBl+f7rzBvVXivnFITa0nuy2LlzZyQSCRKJhIEDB5b7FqdUKrlx4wZDhw7VY4RCXcvIl7HhRILm55iUPEZ+dZi1U4Po2lTs5iMYBqVKzdf7r7Es4ipKlRorUyNe6t8CLwcLrqcXcCOjgOsZ+VxPL6BQruR0QjanE7JZcySezj72vDeiDV2bOuq7GcJ/XL16FU9PT8zNzQkJCWHhwoX4+PgQFRWFQqFg0KBBmvv6+/vj4+NDZGTkfZNFmUyGTCbT/JybmwuUjjIpFIr7xhGfUfDA2xuCsvY19HaWMcT2VjUWvSeLo0ePBiA6OprQ0FCsra01t5mamuLr68vYsWP1FJ2gD9tO30JeoqKjlx2rng7kpZ+jOJ2QzZTVJ/jlue60byJGmgX9yilUMHPDaQ5fywDgkQAP5j7SFldb8wr3lcnkrNv2F47NO3EqIYft0bc4k5DN2G8iGdHBg/8LbS1GzQ1EcHAwa9eupXXr1iQnJzN//nx69+7NhQsXSElJwdTUtEIpNzc3N1JSUu57zoULF1aYBwmwd+9eLC0ru8xc+rGcmJLWaDajCA8P13cIdcqQ2ltYWFil++k9WZw3bx4Avr6+TJgwAXPzim+2QuPy5/lkAB4P9Mbdzpyfpgczdc1Jjt/I4vkfo/h9Vk+crM30HKXQWN3IKODZtSe5nlGApakR/3u0PWO6NLnvZWWpVIKbBQzv5Mnj3ZoSNqQVS8OvsOlkIjvPJ7PrQjL9WrkwunMT+rR0wcHKtI5bJJQZNmyY5v8DAgIIDg6madOmbN68GQsLixqdc86cOYSFhWl+LltQMGTIkErnLL4auRcAUytbhg/vUaPnrC8UCgXh4eEMHjzY4Obw6YIhtrdspPth9J4slpk8eTIAcrmctLQ0VCpVudt9fHz0EVY5arWa1KLSyeyCbiRmFXI2MRupBIa2K503ZGlqzLfPBDJ6xRFuZBTw+pazrJnSTcz5EupcdGI2U9acILtQgaedOd9P7kZbz4of+A/iamPOwjEBPBPiy6LdMeyPTdf8A/BysKClqzUe9hbYWZhgY26MhYkRFiZGmN/9Z2FqhL2FCa3dbXS++Ksxs7e3p1WrVly7do3Bgwcjl8vJzs4uN7qYmppa6RzHMmZmZpoqH/cyMTF5YMKQL1MaTEKhaw97LRoaQ2pvVeMwmGTx6tWrTJs2jaNHj5Y7XrbwRalUPvQcDyt7UFurj97kk2hjbprG8PGYuqv92JjsujuqGOznhIvNv2+wdhYmrHq6K48sP8yB2HQ2nkxkYpD+v0A0dCtWrGDx4sWkpKTQsWNHli9fTlBQkL7D0ouT8VlMXXOSfFkJHb3s+G5yIK42Nb8S0sbDljVTg7iRUcCWU4n8HZNGTEoeSXeKSLpTVKVzmBpJ6dPKhem9/ejezKnGsQiVy8/PJy4ujqeffpquXbtiYmJCRESEZmpUbGwsCQkJhISEaP+5ZSVaP6cg1JTBJItTpkzB2NiYP//8Ew8PjxqPGj2o7EFtLd13DYCfTySKZFFHdt5NFkcEeFS4rZWbDf83pDUf77rMwl2XCW3njqO4ZKczmzZtIiwsjJUrVxIcHMyyZcsIDQ0lNja2Qomrhu7ItQymrztFkUJJ92aO/DC5G1Zm2nlv8XO24s2h/rw51J87BXKupuVzNS2P9DwZOUUK8opLKFYo7/5TUaRQUiRXkppbTGaBnH2XU9l3OZUxnZuwYEwHMdJYC2+88QYjR46kadOm3L59m3nz5mFkZMTEiROxs7Pj2WefJSwsDEdHR2xtbXn55ZcJCQnR2kpo5T1XrfJlDx8gEYS6YjDJYnR0NFFRUfj7+9fqPPcre6ANJkZSZCWqh99RqJHErELOJeWUXoJuX/nvcFovP7aducWl5FyWhMfy0egOdRxl47FkyRJmzJjB1KlTAVi5ciU7d+5k9erVvP3223qOru5ExmUyde1J5CUq+rRyYdVTXbEw1U1C5mBlSpCfI0F+D18lrVaruZKaz/rIeDaeTGTrmVvczCrkp2eDdRZfQ5eUlMTEiRPJzMzExcWFXr16cezYMVxcXIDSbWmlUiljx44tV5RbW2Ql/yaI8hIVKpUaqVRMtxH0z2CSxbZt25KRkVHr89yv7MH9VKesgYnRv53WkJa+64I+lvj/Hl1a0DjYzxE7M+l9n/vd4a148odTbDiewBNdm9DavfY7nNTnkga6IJfLiYqKYs6cOZpjUqmUQYMGERkZWeH+1S0PYoivd2Uu3Mpl+vrSRLF/a2eWP9ERY4kKhaLqXxp12dZmTuZ88Ig/w9q5MvOXaKJu3uH1zWdYNj5Ab3N6DfF3W9VYNm7c+MDbzc3NWbFiBStWrNBGWBUUycuPJmYXKcTVk0ZKrVaTW1xCRr6MIrkSM2Mp5iZGeNiZY2xU9/ubG0yy+Omnn/Lmm2+yYMECOnToUGHSZWWrxv7rQWUP7reVTXXKGigVRkDpG7AoaaB9G8+Vvr7epD/09e3kKCU6S8qbPx/h+TbaG+2tjyUNdCEjIwOlUllhGzM3N7dK5wBXvzxIKUN6vf8rtQi+uGBEQYmEFrYqRtinELF3d43Pp+u2PtMMVlwyYteFVByKdhPkqt+FeIb0u9VnX6qO4v9cucrIl4lksZEoUao4EZ/FwSvpnE3M5nxSDgXyilMRTIwk+DhaEuBlT++WzvRu6VJufr+uGEyyWFbodODAgeWOV2eBy4PKHjz77LOVPqY6ZQ0+vXSI3JxiAIYPH161htVTdb3EPyGrkMTIw0glEDZ+IE4PeYNsF1zIkC8Ocylbik/HHrRvUr0Vqf9Vn0saGILqlgcxxNf7Xsk5xUz47gQFJcW097Rl/dRAbMxr9nZZl201O3SDz8Kv8leKObMn9MLOou5fW0P83daXvlSsKP85l54no5Vb/dsbXqi6uPR81h2NZ+e5ZDIL5BVutzEzxtLMCHmJigKZErlSRVx6AXHpBWw7cwupBPq2cmFikA8D/F11NupoMMni/v37tX7Oe8se3E91yhqYGkvL3d4Y1NUS/72XS6cghDR3wt3+4QWKW7jb8WinJmw7c4tvDt3g22cCtRJHfSxpoAvOzs4YGRmRmppa7vj9yoTUtDyIIb3eZbIK5ExdF0VyTjHNXKxYNy0IRy3U9ayLtj7XtwXbzyZzLS2fNZEJ/F9o7eaA14Yh/W4NJY6H+e9l6Ix82X3uKdR355NyWLbvChExaZpj9pYmDGrjRpCvIwHedvg6WZVbsKZSqUnOLeZqah7Hb2Rx6Eo6F2/nakpv+Tlb8erAlozs6ImRlue6Gkyy2LdvX62f896yB9pw75xFQbt2ni/dB3pEB88qP2Zm/xZsj77F3kupXE7OpY1H7UYXhX+ZmprStWtXIiIiNLssqVQqIiIimDVrln6D06F8WQlT1pwgLr0ADztzfnw2uF4VgDc1lvLGkNa88FMUP0be5MV+LbDW0qptQffuXeACkJYrksWGJksGYVvO8ce50l1/JBIY6O/G0yFN6dHcCZMHjAxKpRKa2FvQxN6Cfq1deWuoP9fT89l0MpHNpxK5kVHAa5ui+Wr/NV4Z2JIRHTy0ljQa1LtIdnY2P/zwA5cvXwZKy+BMmzYNO7uqbe/2oLIH2nDvyKKgPTczC7hwKxcjqYTQdm4Pf8BdLVytGd7Bg53nkvn+nxt8Pr6jDqNsfMLCwpg8eTKBgYEEBQWxbNkyCgoKNKujG5pihZIZ605xLikHRytTfnw2mCb2Ndu1Q5+GtHWjmYsV19ML2Hgigem9m+k7JKGKiv+zcOpWdtXqbQqGT6VS8+OxBD6JNkKuKk0UH+vchJcHtKCZi/VDHn1/zVysmTO8DS8PbMm6o/GsOhjHtbR8XvnlDB/+cZEJ3bx5Y0jrWi94M5js59SpUzRv3pylS5eSlZVFVlYWS5YsoXnz5pw+fbpK5ygre9C6dWvGjx+Pk5NTubIHtWUsNZiXq0Epq60Y0syp2qM403v5AfDH2dviko2WTZgwgc8++4y5c+fSqVMnoqOj2b17d4VFLw1BiVLFK7+cIfJ6JlamRqyd2o0WrjV/A9cnqVTCjLsJ4oYTCajVYsep+uK/l6Hj0vP1FImgbe9uv8CHO2OQqyQENrXnz5d7sXRCp1oliveyNjNmZv8WHH57AGGDW2FnYUJGvpwV++PYeyn14Sd4CIPJfmbPns2oUaOIj49n69atbN26lRs3bvDII4/w2muvVekcGzdu5Pbt28hkMpKSkti4cSPNmzfXWoziMrRu7Dx3/0LcD9PZx4GO3vbIlSo2HE/QdmiN3qxZs7h58yYymYzjx48THBys75C0Tq1WM2frefZeSsXUWMp3kwMJ8LLXd1i1MrKjJxYmRlxPL+B0Qra+wxGqqPjuZWgjSWmCH5cmksWGYPeFFH45kYBEAmN9lfw8rRvtm1Ttiml12Zqb8MrAlpx4dyBTevgCsO30rVqf12CSxVOnTvHWW2+V23HF2NiYN998k1OnTukxsn+Z3jOXQOwPrR3xGQVcvF12CbpmxdSn9fQF4KdjN5GLoulCNajVaj7eeZktUUlIJbB8Ymd6NHfWd1i1Zm1mzLAOpf3p16hEPUcjVFXZZWivu2v8bucUk1tsOPUqherLLVYw7/cLADzXy48+HnVTaN3M2IiQ5qVbgKbkFtf6fAaTLNra2pKQUHFkKDEx8b41EuvavRNPi0vEVkzaUHYJukdzpxrXExvW3gNXGzPS8mSEa2G4XWg8vvr7Gt8fvgHAp2MDavyFxRA93tULgD/PJVcoySIYJk97c0Z0cKeDo4pmzqX1SfdeFO9p9dlne2JJzZXh62TJrP51O3/Y+e60rvS82k/RMphkccKECTz77LNs2rSJxMREEhMT2bhxI9OnT9faApXaMr7nMvR/JyILNfPH2bJV0NW/BF3G1FjKuMDSD8YtYhRFqKK1R27wefgVAOY+0pZxgd56jki7uvs54WFnTl5xCQdi0x7+AEHvejR3Ztn4AAY3UTOqY2lliGX7rpCqhZEhoe6dTczmx2M3AVjwWN3v2+56t1h3Rr6s1nOXDSZZ/OyzzxgzZgzPPPMMvr6++Pr6MmXKFB5//HE+/fRTfYcHgOqeF7tIfFOvtcvJucSk5GFqJGVY+5oniwDjupZ+0B+6kk5yjlhBKDzYb1FJfPDHJQBeG9SSaXcXSjUkUqlEk3DsiL6t52iE6noq2BsfR0uS7hQxesURYlLqR2FxoZRSpeb9HRdQq0tXPfdoUffTW8pGFmUlKvJkJbU6l8Eki6ampnzxxRfcuXOH6OhooqOjycrKYunSpZUW+9UH5T3zFP+7ak2ovu3RpZNu+7V2wc6ydkVzfZ2tCPJzRKUuTQQE4X52X0jh/349C8C0nn68OrClniPSnVGdSpPFiJg0MfetnrGzMOHn6cE0d7EiOaeYcd9EcjQuQ99hCVW06WQi55JysDEzZs5w/RTHtzA10tRZzajlpWiDSRZzcnLIysrC0tKSDh060KFDBywtLcnKyjKYrZqU91x5FnOAakelUvP73dGOxzo30co5x9+9jLj5VJJYgCRU6kBsGq/8cgaVGsZ19eK9EW1qXX/MkLX1sKWlqzXyEhW7z6foOxyhmrwdLfntxR4E+TmSJyth2tqTRMZl6jss4SHuFMhZtCcGgNmDW+FqY663WMr2ja7tvEWDSRafeOIJNm7cWOH45s2beeKJJ/QQUUVK1b/ZokgWa+f4jSySc4qxMTemv7+rVs45vIM71mbGJGQVciI+SyvnFBqO/TFpPLc+CrlSxbD27iwc06FOViXqk0Qi4dG7o4s7zta+fIZQ9+wtTfnx2SD6t3ahWKHi2XUnOSne3wzaoj2xZBcq8He34ZmQpnqNxcXaDDNjKXnFDeQy9PHjx+nfv3+F4/369eP48eN6iKiiEpWYs6gtW06VLkQZ3t5Da5N+LU2NGdnR4+75xaVo4V9/x6Ty/I+lieLQdu58ObEzxg/YVqshebRT6cj90bhMMZ+3njIzNuKbp7rSu6UzhXIlU1afIOrmHX2HJVQiOjGbjSdLK7t8+Gh7vb/PrH82iJj/DWVQ29ptpmAw75YymYySkoqZr0KhoKjIMN7gxJxF7cjMl/Hn3ULcTwRpdwXqY51LV0XvvZgiRn8FAPZd+jdRHNbeneWTOj9w/9WGxtvRkiBfR9Tq0lqkQv1kbmLEd88E0qO5EwV3E8YLt3L0HZZwD6VKzdy7i1rGdG5CkJ+jvkPC3MRIK1NtDOYdMygoiG+//bbC8ZUrV9K1a1c9RFSRUowsasWmU4nIlSoCvOzo5G2v1XMHNnUoLRciE+VCBNh6OokXfopCoVQzooMHX05sXIlimal3C9f/fDxBfNGtx8xNjPh+cqBmDuOUNSe5mVmg77CEuzaeTNAsanlbT4tadMX44XepGx999BGDBg3i7NmzDBw4EICIiAhOnjzJ3r179RxdqXsvQ8tEncUaUarU/HysdIj+6e5Ntb64QCqVMLKjJ98eus7vZ28ztJYleYT667tD1/l412WgdBHV4scD9H5JSF+GtHPHy8GCpDtFbD2TxJPB+p1HJdScpakx308O5IlVx7iUnMvTP5zgtxd7aBYyCPqRVSBn0e5YQP+LWnTBYN45e/bsSWRkJN7e3mzevJk//viDFi1acO7cOXr37q3v8AAxsqgN4ZdSuJVdhL2lCSPv1oDTtrLachGX08gT5UIaHbVazcJdlzWJ4vRefnw+rmOjTRQBjKQSzT6xqw/fENUC6jlbcxPWTuuGj6MlCVmFTFlzQrzX6dniPTHkFBnGohZdMKh3z06dOvHzzz9z8eJFTp06xerVq2nZsnwNtE8++YTs7Gy9xCeSxdpRq9Us//saAE8G++ismn07T1uaOVshK1GJ7f8amSK5klc2RrPq0HUA3h7mz7sj2jT4Vc9VMaGbN9ZmxsSlF3Dwarq+wxFqydXGnPXTgnC2NuXi7VyeWx+FTGxDqxdnEu6w8WTpok1DWNSiC/WuRQsWLCArSz9lA8QCl9r5OyaNi7dzsTQ14tleutsjUyKRaEYtfz8rdq5oLFJyihm/KpI/zt7GWCph0eMBvNC3eYOuo1gdNuYmmlqkq+/uhy3Ub77OVqydGoS1mTGR1zP5vy3nar2tm1A9pYtaLpYuauliGItadKHeJYv67Aj3zlkUK22rp0Sp4pO/SouUPh3SFEcrU50+X9nOFYevZpBdKNfpcwn6F52YzaivDnP+Vg4Olib8ND1YkxgJ/5ra0xepBP65mkFsSp6+wxG0oH0TO1Y93RVjqYTfz95myd39zoW68cuJBM7furtTy7A2+g5HZ+pdsqhPSpEs1tgvJxK4mpaPg6UJL/VrofPna+5ijb+7DSUqNfsui1XRDZVarebHyHjGr4wkLU9Gazcbfp/Vi+7NnPQdmkHydrRkSFt3QIwuNiQ9WzizYEwHAJb/fU1Tx1bQrawCOYv3/LuopSEvMhLJYjWIOYs1czu7qNwqMTuL2u0DXVVD25d+KO6+kFwnzyfUrdxiBTM3nOb9HReRK1UMbuvGby/1wNvRUt+hGbRne/sBsC36Fhn5tdsCTDAc4wO9mdW/9Iv4nK3nOXpN7COta4t2N+xFLfcSyWI1lN/BpfGUzrlTIOeHwzeITsyu9mOVKjVv/nqOPFkJnX3s67Rkx7C7ZXMOXc0gX1a7rY4Ew3I+KYdHvjzMrvMpGEslvDeiDd8+3RVrM4OpBmawAps6EOBlh7xExYbjCfoOR9CisMGtGNnRkxKVmud/iuJamphqoCtnEu6w6e4I7v9GN8xFLfdq2K3Tssa4wCWnSMGoFYf535+XGL3iCN8ciKvWvNHP98Zy+FoGZsZSFj/eEaM6XJXays0aP2cr5CUq9seIS9ENgVKl5psDcYz95igJWYU0sbdgywshTO/dTCxkqSKJRMKzvUpHF9dH3hQraBsQqVTC4scDCGzqQF5xadHu9Dwxeqxt/13U0s23YS5quZfek8X169cjk1X9j7l3795YWFjoMKL7K1eUu5G8wX74ZwyJWf9ut/jp7hjm/X6xXOJ8P9//c52vD8QBsOjxAFq4WusszspIJJJ7LkWn1OlzC9p3PT2fx1ce5dPdMciVKoa0dWPXK73p7OOg79DqneEdPHC3NScjX8YfZ8U0jYbE3MSIb58JpKmTJUl3ipix/pSYY69lG082jkUt99J7sjh16lRycqq+v+WuXbvw8NDPrhyqe0bUChvByGJ0poTfzyUjlcDWl3rw3og2SCSloxEv/BR131XGshIlH/5xiY92lhZFfnVgSx7t1KQuQ9cYdjdZ3B+bJt4w6ymVSs3aIzcY/uU/nEnIxsbMmMWPB7Dq6a7YWdbN/NeGxsRIyjM9SqeE/HD4hii30sA4WpmyZko37C1NiE7MZvamaFGIXUvu3aklbEjDXtRyL70ni/XpTerekcX84oY9By49T8bm66V/Hi/1a0EXHwem927GVxO7YGosJfxSKgM+P8gX+65y6XYuOUUKbmYW8OOxmwxecojVR0pXWs4e1IrXBrV80FPpVIcmdjSxt6BQruTQFVGIuL5JulPIUz8c54M/LlGsUNGrhTO7Z/dhXKC3uOxcS5OCfLAwMeJyci5HrmXqOxxBy5q5WPPt04GYGkn560IKn+yO0XdIDcK9O7U83b1hL2q5l0HMBq8vb/r3XnrNasC1+9RqNe/uuEhBiYQ27ja8MvDfZG9EgAee9ua89ds5rqTms3TfFZbuq1jXy8XGjI9Ht2dIO/e6DL0CiURCaDt3Vh+5we4LKXqPR6gatVrNllNJfPjnJfJlJViYGPHOcH+eDG4qdmPREntLU8YHerEu8iYrD8bRq6WzvkMStCzIz5HF4wJ4dWM03x66jreDBU+H+Oo7rHorOjFbs1NLY1jUci+DSBYHDhyIsfGDQzl9+nQdRVM5tVpdLlnMLpSjVqvrTaJbHZtPJbI/NgMjiZrFY9tjaly+Q3T2cWDnK73ZdT6Z307f4vTNO+TLSjA1ltLG3YaRHT2ZGOSDlYGsTB3WoTRZDL+cikKpwqQRdfD6KDGrkHe2neefq6WlPwKbOvDZuI74OlvpObKGZ3rvZvx0PIHD1zI4n5RDBy87fYckaNmjnZqQmFXIZ3uvMO/3i3jaWzCwjZu+w6p3She1XGhUi1ruZRCf5qGhoVhb1+3ih+r674IOhVJNgVzZ4Ep1JGYV8uEflwAY4a2itbtNpfczMZLyaKcmPNqpCWq1GrlShbFUWqernauqi48DztamZOTLOXEji54txAiKIVKqSgtsL9oTS6FciamxlNcHt2J672YG+XfVEHg7WjIywIPt0bdZeSiOFZO66DukGpmz9RzX0wuYPbiVKMheiZn9W5CYVcSmU4nM2nCGzc+HiC8G1bTxZALnkhrXopZ7GUSm83//93+4urrqO4wHKqlkcvCdAnmDShaVKjWvbz5LgVxJYFN7+ntUrairRCLBzNhIx9HVnJFUwgB/VzafSiL8UqpIFg3Q1dQ83vrtHKcTsgEI8nXkk7EdaOZi2F8iG4Ln+zZne/Rt/jqfzM3MApo61b8R3DMJ2cSk5CEraTz1b6tDIpHw0WPtuZ1TxD9XM5i27iTbZ/akib1+KovUN2l5xXx6d7vaxrSo5V56vx5XXy7j3juyaGdRmiBmFyr0FY5O/HD4Oifis7AyNeLTMe1pSIM5g+5edgm/lFqvFlU1Busj4xnx5WFOJ2RjbWbM/0a3Z+Nz3UWiWEfaeNjSr7ULKjV8e+i6vsOpkdTcYgDcbc31HInhMjGSsuLJLvi725CeJ2PqmhPkFjeszzBdmf/HJXKLS+jQxK5RLWq5l96HxerLB7fynjidrMzIKSqpsMhFrVZzNS2fyLhMrqfnk5JbjFIFlqZGeDta0MbDlu7NnHC2NrxvJTEpuXy2p3ShyvuPtMXH0ZILeo5Jm3q3dMHMWMqt7CIuJ+fR1tNW3yEJwD/XMpi74yIA/Vu78PFjHfAUox117oW+zTkQm86WqCReG1S/Rk6KFUru3P3i7mZbf+LWB1tzE1ZP6cboFUe4kprPiz9FsWZKUIV56cK/Ii6nsvNcMkZSCQvHdKjRoha1Wk10dDRRUVFcv34dDw8POnTooLea0TWh92Txxo0bODv/e1kwI6P00ue9xwyBUvlvsuhsbcr1jALuFJQmi9mFcn45kciGEzfLFbC+n8CmDjze1YtHOzXBwlT/l29lJUpmbzqLXKlioL8rE7p5U1LSsEoDWZga0bulM/sup7HvcqpIFvUo6uYdNp24iSxDQnZm6XZz4wO9+HRsQL250tDQBPs50tnHnjMJ2aw5coM3h/rrO6QqK9uhxMxYWmf7zutSfn4+N27c0Nn5Pe0tWD2lG+NXRXLkWibvbjvPosdF36tMgayE97eXDptM7+VH+ybVm+cZFxfH999/z/r167l9+7bm+MKFC5FKpQQEBHD69Ol68drr/etE06ZNyc3NZebMmTg7O+Pm5oabmxvOzs7MmjWL7Ozsap9zxYoV+Pr6Ym5uTnBwMCdOnKh1nGVzFiWo8XWyBOBySi47zyXTe9F+Pt1dutOJmbGUPq1ceL5vM/73aDsWPNaBOcP8eTLYB/+7i0VO3bzD21vP0+vTv/n6wDXy9HwpYGn4VS4n5+JgacLCsR3qxR9uTQxu+++laEF/ErMK2Rx1iwtZUg7fre/3XJ/mDfbvrj6QSCS82Lc5UFp0v+yLcH2QcvcStJuteYP4GxozZgyzZ88mIiJCZ8/RvokdKyZ1QSqBLVFJfBFxVWfPVZ99vvcKt3OK8Xa04NUq1gtWKpVs27aNwYMH06JFCz755BNu376NlZUV/fv3p2XLljg5OaFSqTA2Ni73NztkyBDGjRtHbGysrppUY3ofWczKyiIkJIRbt27x5JNP0qZN6SqjS5cusXbtWiIiIjh69CgODlXb0mvTpk2EhYWxcuVKgoODWbZsGaGhocTGxtZqEY21mTELRrfj7LlzdGlqz+aoW6w6+O/8ntZuNkzv7ccjAZ4PHC1MySlme/Qtfjp2k6Q7RSzaHcvqw6Xf5B/v4lXnNeTCL6Wy8mDplnwLHuuAq03DnfMzwN8NieQ852/lkJxThIdd/bkEoE0ff/wxO3fuJDo6GlNT00q/kCUkJPDiiy+yf/9+rK2tmTx5MgsXLnxoiauqMDcp7R9JhaVzgW3MjWnuUv8WVTQ0g9q40dbDlkvJuaw6dJ23h9WP0cVbd0qv5jSU+YoHDhwA4IsvvmDo0KE6e57+/q58+Gh73tt+gWX7ruJoZcozogajxtnEbNYeLR3h/Wh0ByxNH/zeJ5fL+fHHH1m0aBFXrpRO6ZJIJISGhjJjxgxGjBiBVCpl165dDBs2jKysLLKysjSPz83NJSIiApVKxeeff645HhMTg52dnd52riuj95HFDz/8EFNTU+Li4li1ahWvvfYar732Gt9++y3Xrl3DxMSEDz/8sMrnW7JkCTNmzGDq1Km0bduWlStXYmlpyerVq2sVp4WpEeO6NqGHm5qge+orSSQws39z/nylF+MCvR96WdndzpwX+jZn/xv9+HxcR3ydLMnIl/Pmr+cY881RziVl1yrO6ojPKCBsczQAk0OaMqyDfv8Ydc3FxozO3vYA7Lucpt9g9EgulzNu3DhefPHFSm9XKpWMGDECuVzO0aNHWbduHWvXrmXu3LlaeX5zk9K3HZmy9ItRKzebBjEiVN9JpRLCBrcCYN3ReM3lXUN26Eo6K/ZfAyCggZWCSUpK0vlzPNW9qWbThbk7LrIj+pbOn7M+kJeoeOu3c6jUMLqTJ31buTz0MYWFhcyePZsrV65gb2/P22+/TVxcHH/99RdjxozBzOzf+bQSiQR3d3fatm2rOWZlZcXRo0f58ssv8fHx0Rx//fXX8fLyYvDgwaxZs6ZGV1u1Qe8ji9u3b2fVqlW4uVUsEuru7s6iRYt44YUXWLp06UPPJZfLiYqKYs6cOZpjUqmUQYMGERkZWeljZDIZMtm/b4q5ubkAKBQKFIryl4fLfnazNuazse05efMOj3TwoHszR1ApUaiqt/fwqAA3hrZ1Yd2xm6zYf53oxGxGrzjCk8E+zB7YAhtz3f16sgrkTFlzgrziEjp72/HmkJbl2lv2//99Deq7Aa1dOJ2QTfjFZJ7o6qk5bojt1VUs8+fPB2Dt2rWV3r53714uXbrEvn37cHNzo1OnTvzvf//jrbfe4oMPPsDU1LRWz29hUv4LVSu3ymt5CnVvYBtXOnrbczYxm5UH43j/kbYPf5AeZBXImbP1HHsulk4psTE3ZnrvZnqOqvbuXfB57xw3XZo9qCU5hXLWRd7k9c1nsTE3ZoB/4y7a/WXEVWJS8nCwNOG9+/QBlUpFREQEgwcPBsDe3p65c+cilUqZMWMGNjbVe18zMjIiODiY4OBgzTGlUkl+fj4qlYp9+/axb98+XnjhBUaMGMGkSZMYMWJEnS2S0XuymJycTLt27e57e/v27UlJSanSuTIyMlAqlRUSTzc3N2JiKt8Xc+HChZoPz3vt3bsXS0vLSh8THh6OCdDDBLJibrKrlltuNgHe6gA7bkqJypDy47EEfo+6yRg/FR0d1Wh70EWmhBWXjLiZL8HBVM1jrpns27u70vuGh4dr98n1zKQQwJgj1zLY+scuzP8zEFxX7c0shtgcCcEuau63uK6wsLBOYvmvyMhIOnToUK4fhYaG8uKLL3Lx4kU6d+5c4THV+dJlIi1fAaGJnZlBJenaZohfRB7k1f7NmLb+ND8du8nUEG/cqnl5V9ftjUnJ48Wfz5CUXYyxVMKkIG+m9PDBydLovs9ZX177vLw8zf9nZWUhl8tr/eXsYSQSCfNGtiOnSMH26Nu8+NNpfnw2mCC/xrVDSZkzCXf4+kDpaPXHj3WotHqJUqmkZ8+eHD9+nPDwcAYNGgTAG2+8odVYjIyMOHjwINevX2fjxo38/PPPXLp0iW3btrFt2zZsbW0ZM2YMkyZNon///lqZJnQ/ek8WnZ2diY+Px8vLq9Lbb9y4gaOj7v5o58yZQ1hYmObn3NxcvL29GTJkCLa25VfMKhQKwsPDGTx4MCYm2l91NxE4fC2TD/64zM2sQtZcMaJfK2fmPdIGLwftfHvIK1Yw48cz3MzPxs7CmA3Tg2jhWrGena7bqi9qtZoNiUe4mVWIhV8XhrUv3Su6LtsrK1Ex8quj3MgsxN23ObP6N6/0fmUJV11LSUmp9AtX2W2Vqc6XrpS7CXuZ5Bsx7Mq/XLug64H68sVLrQY/GyNu5Kl4e/0BxjWrWaFrXbQ3OlPCz9ekyFUSnM3UTGtdQhPJdc5HXuf8Ax6nry9e1ZWZman5/8GDB5OVlYW7u+73s5dKJSwe15G84hIiYtKYtvYk66Z1o2vTxpUwFiuUvL7lLCo1jOroyfD7TM0qGwW8fPlynYwAN2vWjHfeeYc5c+Zw/vx5fv75ZzZu3EhCQgJr165l7dq1uLm5MX78eCZNmkRwcLDWp/boPVkMDQ3l3XffJTw8vMI3KJlMxvvvv1/lSb7Ozs4YGRmRmlp+tWtqaup9O5yZmVm5uQRlTExM7ps0POi22urfxp2QFi6s2H+NlQfjOHAlg+PLj/LaoJZM6+VXq32NU3KKmbH+NOdv5WBjbszaqUG0afLghUO6bKu+DGnnxnf/3GD/lUxGdfYud1tdtPfrg1e5kVn64bXqnxvMHlL5QoLqxPH222/z6aefPvA+ly9fxt9fN4sWqvOlK+lOEQvP/qP5eXCvIHo2b7hbtNXHL17ObbN4avUpItONeHd8r0q/UN6PLtqrUqlZvj+ONVdKFxX2bO7EsvEB2FtW7fz6+uJVXWXJopOTEzt37qzTv5eyot1T15wk8nomz/xwgnXTgghsRHsgL9ody/X0AlxtzPjw0X+veMbGxvLee+/x9ttv07VrVwA++OAD3n///Tot8yeRSAgICCAgIICFCxdy9OhRNmzYwObNm0lNTWX58uV8++23pKamYmen3Tm8ek8WP/zwQwIDA2nZsiUzZ87E398ftVrN5cuX+frrr5HJZPz4449VOpepqSldu3YlIiKC0aNHA//OK5g1a5YOW6Fd5iZGvD6kNY928uSdbRc4cSOLhX/FsO3MLRaM6UAXn6qtDL/X0bgMXvnlDBn5chytTFk/LajaNaMaikFtSpPFv2PSKFGqalRktaZOxmex/O9/y1QUK1QUykseutLuYV5//XWmTJnywPs0a1a1OV3u7u4Vyk2VfQHTxpcua4vyI1WeDlb1Jomqjfr0xatXKzcGtXFj3+VUPt17lbVTg6p9Dm21N19WwuxNZzUlr6b38uPtYf7V6rf15XUvWx1b3flu2mJuYsTqKd14dt1JjsZlMnn1CdZOC6JbI0gY98eksfpI6ernT8cGYG9pSlJSEh9++CGrV69GqVSSm5vLnj17AKpcoUVXpFIpvXr1olevXnzxxReEh4ezYcMGjI2NNYmiWq1m+vTpTJo0iYEDB9bq+fSeLHp5eREZGclLL73EnDlzNBN8JRIJgwcP5quvvsLb2/shZ/lXWFgYkydPJjAwkKCgIJYtW0ZBQQFTp07VVRN0poWrDZue686WqCQW7LpMTEoeY74+Sr/WLrzYtzlBfo4PHWpOzS1m0e5YfjtdurKujYctK5/qUi/3f9WWrk0dcLA04U6hgpPxdwipo1Gtm5kFvPTzaUpUah4J8GDvxVTkShWZ+XIsHWvXFV1cXHBxefiKvaoICQnh448/Ji0tTVNuKjw8HFtb23Kr92rqvxUDXOvRbiGNybsj2nDwShoHYtPZH5tG/9Y1Lz1WUzczC5ix/hRXUvMxNZay8LEOjO1a+ZSlhkAmk+Hg4KBJFleuXEnr1q3p169fnVUMsDA14ofJ3Zi+/iRHrpUmjD9M7lZn75P6kJJTXK4ySAdnKa+//jorVqzQzMUeOXIkCxYs0GOU92diYsLw4cMZPnx4ueNr165l9erVxMTE1P9kEcDPz4+//vqLO3fucPVq6ahLixYtajRXccKECaSnpzN37lxSUlLo1KkTu3fvrnS1dX0gkUgYH+jNQH9XPvkrht9OJ3EgNp0Dsek0d7FiRIAn3f0caeNhi52FCSq1mvR8Gafi7xB+KZVd55M1BcUnBvkw95G2BrFrjD4ZG0np7+/K1tO32Hc5tU7eBJPuFDLpu+Ok58nwd7fh07EBnIo/SEpuMVkFcrwdK19MpQsJCQlkZWWRkJCAUqkkOjoaKO1z1tbWDBkyhLZt2/L000+zaNEiUlJSeO+995g5c2alo4fVZf6frcUawq4bDZGfsxWTQ3z5/vANPt55mV4tnGs1Daa6/rmazqwNZ8gpUuBqY8aqp7vSuQZXVeqTkSNHkpqays6dO/n+++956aWXsLa2Ji0tTbPq9c6dOzof1dIkjOtOcfhaBpNXn+CLJzo1yPJqSpWaVzee4U6hgmaWxRQcXk+zp1dqFhv16dOHBQsW0LNnTz1HWn39+/enf//+FZLImjCIZLGMRCJBKi19Myr7b03MmjWrXl12rgonazMWj+vIrAEt+PbQdX6NSiIuvYAvI67y5d37SCWgqmSr7W6+DswZ3qZGl68bqiFt3dh6+hbhl1J5b0QbnT5XSk4xk747zq3sIpq5WPHjs8FYmRnjZG2qSRbr0ty5c1m3bp3m57LVzfv376dfv34YGRnx559/8uKLLxISEoKVlRWTJ0+uVr3TB7n38qFUgqixaMBeHtiSrWducS0tn1UH45g1oGq7WNSGWq3mh8M3WLDrMio1dPK2Z9XTXau9Krs+k0gkjBo1isjISCwtLTWJolqtpnPnzkilUkJDQxk6dCgDBgzQyWVrcxMjvp8cyKsbz7DnYiovbTjNh4+25+nuTbX+XPr0zYFrHDp6jMKo3/kn9jD7725127lzZxYsWEBoaGi9fY/y9fXl77//1sq5DCJZjI+PZ+bMmezZs6fcZeihQ4fy1Vdf4evrq98ADUhTJys+fqwDbw/zJ/xSKhExaUQnZHMru0iTKEol0Nrdlu7NHBnbxavRzk18kN4tXTA1lpKQVciV1HyaOenmgygtr5hJ3x0jIasQH0dLNkzvjsvdy66OVqULujLrOFksWz33IE2bNmXXrl06j8XWXIwqGjI7CxPmPtKW1zZF82XENYa2d6eFq+7m0xUrlLyz7TxbT5cWh368qxcfjW6v2fWnMXF1dWX9+vXljiUnJ3Pr1i1KSkpYuXIlK1euxNjYmJ49exIaGkpoaCidOnWq1WDLvcxNjPj6ya68v+MCG44n8P72CyRmFfLWUH+M6ni3MV3YuOco/zf9OYqTLmqO9e3bl9dee41Ro0Zp7XVsCPSeLCYmJtK9e3dMTEz43//+V267v2+++YaQkBBOnjx539I6jZWNuQljungxpkvp6yIvUZFdKMdIKsHe0rRBdGRdsjIzpmdzJ/bHprPvcirP9dL+t+XMfBlPfnec6xkFNLG3YMOMYNzt/k1Kne4mi1kFhr9Thq7osvC8oB2PdvJkR/Qt9sem89Zv59nyfIhOtiW9nV3ECz9FcS4pByOphHeGt2FaT996O6qjC56enty5c4cDBw6we/du9uzZw7Vr1zh48CAHDx7knXfewdXVlSFDhjB69GiGDh2KlVXt5qcbSSV8PLo9rjZmLNt3lW8PXedyci5fTeyCXRVXoxuif66kM21GaaIoNTLmyUkTee211+jSpYu+QzNIek+bP/jgA1q3bs3Vq1eZM2cOo0ePZvTo0bzzzjtcuXKFVq1a8cEHH+g7TINnaizF1dYcJ2szkShW0ZB2pSt7916sWtH36sgulPP0Dye4mpaPm60ZG2YE4+VQfl6io1XpCGNdjywaEpEsGj6JRMJHj3XAytSIqJt3NCtGtelkfBajvjrMuaQcHCxNWD8tiGd7+YlEsRLW1tY88sgjfPXVV1y9epVr166xYsUKRo0apZnf+NNPP/H444/j4uLCmDFjyhX7rgmJRMJrg1rx1aTOWJgY8c/VDEatOMzF2zlaalXd2n0hhWfXncLxkTdoGjiQ2KtxrF+/XiSKD6D3ZHH37t18/PHHmJtXvAxoYWHB//73vzq5HCY0PgPbuCKRwNmkHJJzirV23ox8GU98e4xLybk4W5uxYUb3SlefO1mbYmospURZyUTTRkIki/VDE3sL5gwvverz6e4Yre1hr1ar+fHYTSZ+e4yMfDltPGz5fVYveraou9p19V3z5s156aWX2LFjB5mZmezfv5/XX38dPz8/ioqKOH/+PNbW/9bJPHXqFEVFRTV6rkcCPPntxR54OVhwM7OQ0SuO8M2BOJSVTZY3QCqVije//pUXf45CrlQxskcHrkTupYWfz8Mf3MjpPVnMyMh44JzEZs2aaWpPCYI2udqYaxb9/B2TppVzpuQUM35VJDEpeXcTxWCau1Re0Pj5Ps2I/d9Qg91/ty6IOYv1x5PBPoS2c0OhVGtWKddGbrGCl385w/vbL2jKSf32YkidVgZoaExNTenXrx+fffYZcXFxREdHs2LFCs0IbXFxMYMHD8bd3Z3Y2NgaPUdbT1v+mNVL87fw6e4YJn57jOvp+dpsitbdyZfRutdwFs8cR0HsUZ4M9mH5xM6YGus9DaoX9P4qeXh4cOnSpfvefuHChTrZ7khonIa0LS2pFH45vdbnis8oYPyqSK6nF+BpZ86WF0Jo5Xb/xQDGRtJGe5ntxT5+mBmpeTNU96trBe2QSCQsGtuRJvYWJGQVMmvDaRTKmm0FeDYxm0e+PMyf55IxlkqYM8yf5RM717o4vfAviURCx44dGTJkiObY9evXsbOzw9bWlpYt/+17e/bs4fr161U+t4OVKSuf6sqixwOwMjXiRHwWocsO8enuGApkJVptR22p1Wp2X0hh+PLDpCrMQSJlWHMLPhrdvk43ZKjv9P5KjR49mjfeeIP09Iof1mlpabz11lua3VgEQdvK5i0ev5FFQS0GSo7GZTD66yMkZBXS1MmSzS+E4OfceAufP0zY4JYs7KbEtxEXh6+P7CxNWPV0V828tbk7LmoqWFSFQqlixf5rPL7yKAlZhTSxt2DzCyE837d5o/3iVJfatm3L9evXOXz4sGalr0Kh4JlnnqF58+b069ePdevWUVBQ8NBzldUA/uvVPvRr7YJCqeabA3H0WbSfbw7EkW8ASePPf/7NsA9+5oWfokjOKabTmJfY8OffrFv8nvh7qya9J4vz5s2juLhYM+/iyy+/5IsvvuCFF16gRYsWFBUVMXfuXH2HKTRQfs5WtPGwpUSl5nh69d881Go1a4/c4JkfTpBdqKCjlx1bng+psJhFqMhIvFfXS+2b2PHlxM5IJPDLiQQ+2nm5SgnjuaRsRn11hMV7YlEo1Qxt586uV3qL+q91TCqV0rTpv9UfMjIy6NSpExKJhIMHDzJlyhTc3d159tlnOXLkyEN/tz5OlqyZ0o3vnwnE18mSzAI5n+6OocfCCObuuMCFWzkPPYdcUcLFuATiU+/Uun25BYW8v+wHXFp15qmRAznwwwJMjSS8PKAFu18fwMThfWv9HI2R3sf8HRwcOH78OO+88w4bN24kOzsbAHt7eyZNmsSCBQtqtJOLIFTVU919eHfbBXYnShl2OY2hAU2q9Lhb2UXM2XqeQ1dKR8Uf7eTJp2MDGmVNOKFxGdzWjY9Hd+Cdbef54fANSpQq5o5sV2klhrS8Yr6MuMqG4wmo1GBvacJ7I9oytksTMbpjADw8PNizZw8JCQmsX7+etWvXEhcXx+rVq1m9ejWtWrViypQpPPPMMzRpUvl7o0QiYVBbN/q1duH3s7f56u9rXM8oYH3kTdYdjcdZkYZL4Q0UOekUFRZQWFhIQX4+d9JTyMtIQZ6XCSolruPm0yqwF71aONPF3ZxAH1v8vB4+De3E+Sv88vse9uzdS+zxv1HJCktvkBrRrHlztr0QSGvvut+usiHRe7IIpQnjN998w9dff625HO3i4iLeSIQ6MT7Qm53nbnM0LosXNkQz9GwKb4S2poVr5QtTUnOLWXs0ntWHbyArUWFmLOXtYf5M6SFqwgmNx6Tg0hWk72w7z7rIm9zMKuTLiZ2xuPtdKTmnmA0n41h3NJ4ihRKAUR09mTuyLc7W9X8/8BUrVrB48WJSUlLo2LEjy5cvJygoSN9h1ZiPjw/vvfce7777Lv/88w9r1qxhy5YtXLlyhXfeeYf33nuPIUOGMHXqVB599NFKt/40NpIyposXw9u58n8fLmJX+N/cvBhFQmFulWJQywtIzCrilxOJfHtmF1l7v8YtaASDn3sfN1tzTFVyDm9ZSWFBAfl5uWSk3CInJYGSguxy5zGxdabn0MdY8sFbdG7TXBsvT6On92Tx77//pk+fPhgbGyORSHB1Fdm/ULdMjKR8+1QXXv52LwdSpOy+mMKeSykE+znSs7kzPk6ll5TjMwo5dTOLI9cyNLvlBPk5suCx9jrd1UIQDNWkYB9sLYx5ffNZDsSmM3TpIZ7o5kV4jJSLxw5p+kknb3veGupfJ/uw14VNmzYRFhbGypUrCQ4OZtmyZYSGhhIbG1vvP8MkEgl9+vShT58+fPnll/z666+sXr2aw4cPs3v3bnbv3k2fPn04ePAgULq24Pfff8fCwoInn3wSADNTE7b88BWpqamlP5ub4+3fCccmzbCwtMTKyhobG2u8PT1QFOUxceyjdGzdDCVSjt/I5PDVTL4/mkoWUGRkzT9XMwAoyUnl1m+rKwlair13a9p1DWbyxHFMfSwUY2NxhUeb9J4sDh48mOTkZE0H6969O7/99tt9h7sFQRfMjKWM9lXxxtieLPv7OuGXUjl2PYtj1ysv29TN14Hn+jRnUBtXMZooNGqPBHjS1NGKmRtOk5BVyJJ91yibDh/SzImpPX0Z3NatQfWTJUuWMGPGDKZOnQrAypUr2blzJ6tXr+btt9/Wc3TaY2Njw9SpU5k6dSpXr15l7dq1rFu3rtyi09u3bzNjxgzc3NyYNGkSEomktIj3a68hkUjo27cvXbp0wdTUtML5FQoFu3btokub5piYlJbRGuDvxgB/N+aO/JW4hGRuZOSTqTQjs0BOSoodf6dOwdLKChtra1o086Vrhzb0D+6Ei4PY1laX9J4s/nfi68WLF5HJGu/2Z4J+tXKz4btnAkm6U8jei6mcS8omNVeGRAJutuZ09LKjV0uX+16iFoTGqIOXHbtf6823h65z+mYW5oXpvPZYL9p6NbzFK3K5nKioKObMmaM5JpVKGTRoEJGRkRXuL5PJyn2m5eaWXpJVKBQoFBVLMJQdq+w2ffL19eWDDz7g/fffLxe7u7s7w4cPx8PDg5ycHM32gq+//nq5x9ekrT4ezvh43FugvSnvjw2u9L6G9npVxhB/t1WNRe/JoiAYIi8HS6b18tN3GIJQb1iaGvPaoFaa0aKWbg3zC1VGRgZKpRI3N7dyx93c3IiJialw/4ULFzJ//vwKx/fu3Yul5f2rJoSHh9c+2Dry3HPPAWguTVdXfWqrNhhSewsLC6t0P70ni2VD1vf7ua6VjXSWffu7l0KhoLCwkNzcXM2QeUPVmNoKhtnesr/B6tSxMxQP6kdgmK+3rjSmtoJhtleffWnOnDmEhYVpfs7JycHHx4eQkBBsbCrOdVYoFOzfv5/+/fsbzOunK42prWCY7S3bN/xhfUPvyaJarWbgwIEYG5eGUlhYyMiRIyvMbzh9+nSdxFP2wnl7e9fJ8wnCw+Tl5WFnV7/m44h+JBgibfQlZ2dnjIyMNIs3yqSmpla625iZmVm5lcNliaufn7hyIRiOh/UNvSeL8+bNK/fzo48+qqdISnl6epKYmIiNjU2FEc7c3Fy8vb1JTEzE1tZWTxHWjcbUVjDM9qrVavLy8vD09NR3KNX2oH4Ehvl660pjaisYZnu12ZdMTU3p2rUrERERmoUeKpWKiIgIZs2a9dDHi77xr8bUVjDM9la1bxhcsvgwR44cITAwsNIaT9oglUrx8vJ64H1sbW0N5heta42prWB47a1vI4plqtKPwPBeb11qTG0Fw2uvNvtSWFgYkydPJjAwkKCgIJYtW0ZBQYFmdfSDiL5RUWNqKxhee6vSN/SeLFbXsGHDiI6OplmzZvoORRAEQWiEJkyYQHp6OnPnziUlJYVOnTqxe/fuCoteBKGhqHfJYn2c7C8IgiA0LLNmzarSZWdBaAik+g6gPjEzM2PevHk6uwRuSBpTW6HxtVffGtPr3ZjaCo2vvdrWmF6/xtRWqN/tlajr2VCdjY0NZ8+eFZehBUEQBEEQ6oAYWRQEQRAEQRDuq94liw1pf1FBEARBEARDV++SxXp21VwQBEEQBKFeM/hk8dy5c+V2c8nLyxPzFQVBEARBEOpIjZJFIyMj0tLSKhzPzMzEyMio1kHdS61Wo1QqtXrOmlixYgW+vr6Ym5sTHBzMiRMn9B2STixcuJBu3bphY2ODq6sro0ePJjY2Vt9h1YlPPvkEiUTCa6+9pu9QGjTRlxo+0ZdqRvSNhq++9o0aJYv3uxQsk8kq7OncEGzatImwsDDmzZvH6dOn6dixI6GhoZUmzPXdwYMHmTlzJseOHSM8PByFQsGQIUMoKCjQd2g6dfLkSVatWkVAQIC+Q2nQRF8SfUmonOgbom8YNHU1fPHFF+ovvvhCLZVK1R9//LHm5y+++EK9ZMkS9ejRo9WdOnWqzikfKjo6Wi2VSrV6zuoKCgpSz5w5U/OzUqlUe3p6qhcuXKjHqOpGWlqaGlAfPHhQ36HoTF5enrply5bq8PBwdd++fdWvvvqqvkNqsERfEn1JqJzoG6JvGLJq7eCydOnSsgSTlStXlrvkbGpqiq+vLytXrqxWspqbm/vA2/Py8qp1Pm2Ty+VERUUxZ84czTGpVMqgQYOIjIzUY2R1IycnBwBHR0c9R6I7M2fOZMSIEQwaNIiPPvpI3+E0WKIvib4kVE70DdE3DF21ksUbN24A0L9/f7Zu3YqDg0OtA7C3t39gORy1Wq3XcjkZGRkolcoKe366ubkRExOjp6jqhkql4rXXXqNnz560b99e3+HoxMaNGzl9+jQnT57UdygNnuhLoi8JlRN9Q/QNQ1ejvaH379+vtQD+/vtvUTvRQM2cOZMLFy5w+PBhfYeiE4mJibz66quEh4djbm6u73CEBkz0JUGonOgb9UONksWxY8cSFBTEW2+9Ve74okWLOHnyJFu2bKnyubp06VKTEOqMs7MzRkZGpKamljuempqKu7u7nqLSvVmzZvHnn39y6NAhvLy89B2OTkRFRZGWllbub1CpVHLo0CG++uorZDKZ1lf3N2aiL4m+JFRO9A3RNwxdjVZDHzp0iOHDh1c4PmzYMA4dOlStc9nb2+Pg4PDQf/piampK165diYiI0BxTqVREREQQEhKit7h0Ra1WM2vWLLZt28bff/+Nn5+fvkPSmYEDB3L+/Hmio6M1/wIDA3nyySeJjo6uFx24PhF9SfQloXKib4i+YehqNLKYn59faYkcExOThy5Y+a97L2mr1WqGDx/O999/T5MmTWoSmk6EhYUxefJkAgMDCQoKYtmyZRQUFDB16lR9h6Z1M2fOZMOGDezYsQMbGxtSUlIAsLOzw8LCQs/RaZeNjU2FOTJWVlY4OTk12Lkz+ib6kuhLQuVE3xB9w6DVZAl1t27d1PPnz69wfN68eeouXbrUYnG2Wm1tba2Oi4ur1Tl0Yfny5WofHx+1qampOigoSH3s2DF9h6QTQKX/1qxZo+/Q6kR9LGlQ34i+tEbfodUJ0ZeqT/SNNfoOrU7Ux74hUaurv9nyH3/8wZgxY5g0aRIDBgwAICIigl9++YUtW7YwevToGievNjY2nD17VmzpJwiCIAiCYABqdBl65MiRbN++nQULFvDrr79iYWFBQEAA+/bto2/fvtqOURAEQRAEQdCTGo0s6pKNjQ3nzp1r0BNeBUEQBEEQ6osajSxq05gxY8r9XFxczAsvvICVlVW541u3bq3LsARBEARBEARqmCwqlUqWLl3K5s2bSUhIQC6Xl7s9Kyuryueys7Mr9/NTTz1Vk5AEQRAEQRAEHahRsjh//ny+//57Xn/9dd577z3effdd4uPj2b59O3Pnzq3WudasWVOTEARBEARBEIQ6UKM5i82bN+fLL79kxIgR2NjYEB0drTl27NgxNmzYoItYBUEQBEEQhDpWox1cUlJS6NChAwDW1tbk5OQA8Mgjj7Bz507tRScIgiAIgiDoVY2SRS8vL5KTk4HSUca9e/cCcPLkSczMzLQXnSAIgiAIgqBXNUoWH3vsMc0eli+//DLvv/8+LVu25JlnnmHatGlaDVAQBEEQBEHQH63UWTx27BhHjx6lZcuWjBw5Uhtx6Y1KpeL27dvY2NggkUj0HY7QiKnVavLy8vD09EQqrdH3Or0R/UgwJIbUl0TfEAxJVftGjZLFQ4cO0aNHD4yNyy+mLikp4ejRo/Tp06f6ERuIpKQkvL299R2GIGgkJibi5eWl7zCqRfQjwRAZQl8SfUMwRA/rGzUqndO/f3+Sk5NxdXUtdzwnJ4f+/fujVCprclqDYGNjA5S+cLa2tuVuUygU7N27lyFDhmBiYqKP8OpMY2orGGZ7c3Nz8fb21vxN1icP6kdgmK+3rjSmtoJhtteQ+pLoG/9qTG0Fw2xvVftGjZJFtVpd6fB5ZmZmhZ1X6puydtna2lboyFl5RZzOtaK/1AwnW2t9hFdnFAoFlpaW2NraGswftS4Zcnvr46WqB/UjgKsp2UTnWfGYtQ3mZqZ1HV6dMuS/LV0w5PYaQl96WN8w5NdP2/TV1iK5ktjUPK6n55OcU4ybrTktXa1p7W6DuYmRzp7XkH+3D+sb1UoWy7bmk0gkTJkypdzKZ6VSyblz5+jRo0cNwqwfPtoVw9YbRlz68TQ7X6m/l9oFQd+GfHEEtdoI/5OJTO3VXN/hCILQwGUXytl+5ha7zqdwJvEOCmXFGXhGUgltPWwZ1MaNIe3c8HcX80rLVCtZLNuaT61WY2Njg4WFheY2U1NTunfvzowZM7QboQEJv5wGwMXbeXqORBDqt7KZ0gevZIhkURAEnbmens9Xf1/jz3PJyJUqzXFnazNauFrhaW9BcnYxV1LzyCyQc/5WDudv5bB03xUCvOyY2tOXER08MTWuX4sMta1ayWLZ1ny+vr688cYb9f6Sc3VZmhqRV1yi7zAEocHIl4n+JAiC9qXkFLN4TyzbziShuvvltI2HLeO6ejHA35WmTpblRg3VajUpucX8czWDvRdTOXQ1nXNJOczedJbP9lzhjdBWPNqxCVJp4xxprNGcxXnz5mk7jnrBylR3cxkEoTHKl9XfxXCCIBieEqWKtUfjWRp+hQJ56fvLoDauzBrQko5edve9rCyRSPCws2B8oDfjA73JzJfxy4kE1kfe5FZ2EbM3neWHwzdY8FgHArzs67BFhqFG46qpqak8/fTTeHp6YmxsjJGRUbl/DZWVWY1ya0EQ7kOMLAqCoC3X0vJ57OujfLTzMgVyJV187Nk+syffT+5GJ2/7as0/dLI2Y9aAlhx6sz9vDm2NjZkxF27l8tjXR/l0dwzFisb1RbdG2c+UKVNISEjg/fffx8PDo9FMALW8Z2TxfivCBUGougKRLAqCUEtqtZqfjifw8c5LFCtU2FmYMGeYP+MDvWt92djcxIiX+rVgQqA3H/xxiT/O3uabA3EciE3n6ye74OfcOKbj1ShZPHz4MP/88w+dOnXScjiGzeKeJfV5shJszQ1r6bsgVMWhQ4dYvHgxUVFRJCcns23bNkaPHq25Xa1WM2/ePL777juys7Pp2bMn33zzDS1bttTK8ytV/65CFCOLjVNmvoxzSTncyCjgTqEcpUqNlZkxXg4WtHa3oaWrDUaNdG6YUD15xQpe33yWvZdSAejVwpnPxnXE3c5cq8/jZG3G8omdeSTAg3e2nudyci6jlh9m8bgAhrb30OpzGaIaJYve3t5oYZfAeu1OgVwki0K9VFBQQMeOHZk2bZqmHNa9Fi1axJdffsm6devw8/Pj/fffJzQ0lEuXLmFuXvs34EL5vwmiQqlGqVKLxKARyC1W8OupJHacvc3ZxOwH3tfe0oTeLV0Y07kJfVq5iL8PoVLX0vJ57sdTXE8vwNRIylvD/Jnaw1eni1BC27nT0cuel385zcn4O7zw02n+L7Q1L/Vr3qCvNtYoWVy2bBlvv/02q1atwtfXV8shGa57l91nFchp6tQ4hp+FhmXYsGEMGzas0tvUajXLli3jvffe49FHHwVg/fr1uLm5sX37dp544olaP3+RvPxcn8wCGa422h0FEAxHkVzJqkNx/HD4RrlqEs1drPB3t8XRyhQjqYS84hJuZhYQk5JHdqGCP87e5o+zt/GwM+fpkKY8E+KLtZg3Lty192IKYZvPki8rwcPOnJVPdaWjt32dPLe7nTkbZnRnwa7LrDkSz+I9sSTdKeTDR9tjYtQwS+zUqOdNmDCBwsJCmjdvjqWlZYVK5FlZWVoJztDIS/5NFu8UyvUYiSDoxo0bN0hJSWHQoEGaY3Z2dgQHBxMZGXnfZFEmkyGTyTQ/5+bmAqU7FigUinL3zS2Slfs5+U4BDuYNd2FcWfv/+zo0VPe292hcJu/tuETinSIAWrhYMSnIm2Ht3XC2Nqv08SVKFWeTcth9MZXt0ckk5xSzaHcs3x26zvRevkwOaYpZNWveNZbXvjFQq9WsPHidT3fHABDk58jXT3a579+TrpgYSZk3sh2+TlbM/+Miv5xI5HZ2MSuf6opFA6ycUuORxcZIVnLvyKJ48xEanpSUFADc3NzKHXdzc9PcVpmFCxcyf/78Csf37t2LpaVluWO3CuDet55dfx8h3qHhT2sJDw/Xdwh1RqWGsNUR7E4qTersTdWMbqqio1MO0qwcThy68NBzdAY6BMDpTAl7k6SkFypYvPcqaw9dYayfijb2Vf+bKSwsrGlTBAOiVKn54PeL/HjsJgCTQ5ry3iNt9TqaN7mHL572FrzyyxkOXkln6toT/DC5W4OrnlKj1kyePFnbcdQL5UYWC8TIoiCUmTNnDmFhYZqfyzanHzJkSIX9b88kZMO5E5qffdsEMLxLk7oKtc4pFArCw8MZPHiwwe0Hqwu5hcVMXnmAC3dKP8Cf6ObFW6GtanwJeRTwnlLFjrPJfB5+lfR8OSsvGzGkrStvD22Ft4PlQ89RNtIt1F9FciWvbDxD+KVUJBJ4b0Rbnu3lp++wABjc1o2fpgcxefVJjl3PYvLqE6yZ2g2bBrSuocapr1KpZPv27Vy+fBmAdu3aMWrUqAZdZ7HcyKK4DC00QO7u7kBpLVUPj39X+KWmpj6w+oGZmVm5veLLmJiYVEiQFOryk8CzCksaRRJV2WvR0OQUKnh+wzku3JFiZixlwWMdGNvVq9bnNTGBJ4J9Gd6xCcvCr7IuMp69l9I4cCWD8YFeTAzyoZ2n3QMe37Bf94Yuq0DOtLUniU7MxtRYyrIJnRjewbBWIHdt6shP04N55ofjnLp5h6d/OMFP04MbzDzbGo3dXrt2jTZt2vDMM8+wdetWtm7dylNPPUW7du2Ii4vTdowGQyZGFoUGzs/PD3d3dyIiIjTHcnNzOX78OCEhIVp5jsL/LHCJzyjQynkF/UrNLWbCt5GcupmNhZGatVO6aiVRvJetuQlzR7Zl5yu96NHcCXmJip+OJTB6xREuJ4vRw4YoLa+YCasiiU7Mxs7ChJ+nBxtcolimk7c9G2Z0x97ShOjEbKavO9lginfXKFl85ZVXaN68OYmJiZw+fZrTp0+TkJCAn58fr7zyirZjNBjykvKroQWhPsrPzyc6Opro6GigdFFLdHQ0CQkJSCQSXnvtNT766CN+//13zp8/zzPPPIOnp2e5Woy1cW/pHIAraflaOa+gP2m5pR/oMSl5uNqY8XI7JYFNHXT2fP7utvw8PZj104IIbOqAQqnmmwMNd6CisUrOKeKJVce4mpaPm60Zv70YQjdfR32H9UDtm9ixfloQ1mbGHLuexawNp1HcU0mlvqpRsnjw4EEWLVqEo+O/vzQnJyc++eQTDh48qLXgDM29I4uZIlkU6qlTp07RuXNnOnfuDEBYWBidO3dm7ty5ALz55pu8/PLLPPfcc3Tr1o38/Hx2796tlRqLAGbGUrwdLPC2Kl2gcC01r9HXba3P7hTIeeqH48RnFuLlYMHGGd1oUgdVxSQSCX1aufBiv+YAXM8QXzoaksSsQsaviuR6RgFN7C3Y/HwILVxt9B1WlQR42fP95EDMjKXsu5zGG1vOolLV7/e4GiWLZmZm5OXlVTien5+PqalprYMyVLKSf4eTE7LE6jqhfurXrx9qtbrCv7Vr1wKlH8IffvghKSkpFBcXs2/fPlq1aqW15x/a3oO/w3ozu70SEyMJBXIlsakV308Ew6dQqnj+xyiupJaO/GyY3r1KC060ydPeAoDb2cV1+ryC7sRnFPDEt8dIzCrCx9GSTc93r3d1jbs3c+Kbp7pgLJWwI/o2836/WK+/FNcoWXzkkUd47rnnOH78uOaD5tixY7zwwguMGjVK2zEaBJVKjUL57y86PU9GXrEonyMINWUkhX6tXABYeSCuXr+RNlb/+/MSJ+KzsDEz5qdng/FxqttEEcDTrjRZzCqQN5j5YY3ZtbR8Jnwbya3sIpq5WLH5+RC86vgLiLYM8HdjyYROSCTw47GbLI24pu+QaqxGyeKXX35J8+bNCQkJwdzcHHNzc3r27EmLFi344osvtB2jQbh39xZzk9KX7YaYmC8ItTI5xAeA7dG3eXbdKdLzZA95hGAodkTfYn1kab27pRM60dJNP5cIbS2MsbxbBPl2dpFeYhC043JyLk98G0lqrozWbjZsei5E63s817VRHT35aHR7AL45eIONcVIKZCUPeZThqVGyaG9vz44dO7hy5Qq//vorv/76K7GxsWzbtg07u/uXL6grK1aswNfXF3Nzc4KDgzlx4sTDH/QQ985XbH33TfHCrVyKFUrOJmYTfimVHdG3+C0qib/OJ3PoSjpnEu6QllcsRkwE4T6C/RxZNDYAU2Mpf8ekMXTZIcIvpeo7LOEhbmUX8d720sLarwxsyaC2bg95hO5IJBLNpejkHHEpur46dCWdcSsjyciX09bDll+e646LTd3uyqIrTwY35Z3h/kgkEJkmZdTXkUTdrF873dWqAFCLFi1o0aKFtmLRik2bNhEWFsbKlSsJDg5m2bJlhIaGEhsbi6ura43PWzZfUYKaQf4unE3K4Z1t55m74wIlD5m4amosxcveAm9HS/ycrfBztsLX2YpmzlZ42ltgpMNNzwXB0I3v5k1Hb3te3XiGmJQ8Zqw/xTMhTXlneBvMTRpu3db6SqVS8/rmaPKKS+jsY88rA/T/GdDU0ZJihbLcvHKhflCqYPn+OFYcuI5SpaZ7M0dWPRWInWXDqo35XJ/mtHGz5uWfT5KQVcS4lZE837c5rw1qiZmx4b/P1ShZHDt2LEFBQbz11lvlji9atIiTJ0+yZcsWrQRXE0uWLGHGjBlMnToVgJUrV7Jz505Wr17N22+/XePzWpka8/4If85fuMjEIG82Rd0i6U4RJSo1jlameDtaYmlihLGRhCK5kgK5kuxCOam5xchLVFzPKOB6RgEHr6SXO6+pkRRvRwv8nK3xc7bE924y6edshbO12X23MVKr1eQWl5BdKCe7UEFWoZysfDmZBTIyC8r+v/RfVoEMmeLfkVFLUyOcrM1wszWjtZstbTxsCG7mhJ1Fw+qchizqZhaHrmQwradfg3tTrInW7jbsmNWTz/bE8t0/N1gfeZMTN7L4alLnerMCsrHYdCqRY9ezsDQ1Yun4Thjrcau1Mt9PDkQiEV+665srqXksvWBEYkFp2aMxXZqwcEyHepE81UT3Zo683VHJ8RIftp25zTcH4tgfk8bSCZ1o42H78BPoUY2SxUOHDvHBBx9UOD5s2DA+//zz2sZUY3K5nKioKObMmaM5JpVKGTRoEJGRkZU+RiaTIZP9O0+qbFsohUJRbvN5UylM7OqBc9YFLI3h95dCuHg7F29HCzztzO/7RiUvUZGSW8yt7CISsoq4kVHAzcxC4jMLSbhThLxERVx6AXHplc9/NDGSYGVqjLmJFKVKTcndf4VyJcpaLMWPzyxdzb3rfOl+v8ZSCSHNHBnW3p0RHdwwkag1r0NjUNZOXbdXpVKzNvImi/ZeRalSc+JGJuunBj4wpsbCzNiId0e0pVdLF8I2RROTksfI5UeY/2g7xnX1EsmAAcjMl/HJXzEAvD6kNb7OhrFCVfxt1C/FCiVfRlzl20PXKVFJsLMw5sNH2zOqo2eD/11aGMOiUe0JbefBO9vOE5OSx6NfHWH24FY816eZwV5prFGyeL8SOSYmJnrdgzMjIwOlUombW/n5M25ubsTExFT6mIULFzJ//vwKx/fu3YulZeUrsMLDwzX/nwWcrWJ8NkAAEOAAOIBKDXdkkF4sIb347n+LSv+bKQOVWoJCqSa7SAH3mbdtKlVjaQxWxmBtosbaBKxNwMZEjbUxd39WY3r3y78akCkhXyEhSwa3CiUk5EtILYJ/rmXyz7VMPvzjAt1c1PT3KN/WxkCX7c2SwYZrUq7m/jsSE3k9i62/78K8kp5YWNg4yzP1beXCX6/2ZvbmaI5cy+TNX89x+GoGHz/WvkHttVofffJXDDlFCtp62DI5pKm+wxHqoX+upvPutgua8nMdHFR8M70HXk6N6wrC0PbudG3qwDvbzhN+KZVPd8fwd0wqS8Z3wtvR8FZ/1yhZ7NChA5s2bdIU8S2zceNG2rZtq5XA6sqcOXMICwvT/Jybm4u3tzdDhgzB1rb8sLBCoSA8PJzBgwfrfK/REqWKArmSQrmSfFkJxQolRlIJJlIpxkYSLEyNcLAwwUxLc7puZBSw52Iqv56+zc2sQv5JkXA0VcLjXZowa0AL3G3r94q0h9H173bX+RQ+33GJfFkJFiZS3hramq/2x5GRL6dFl54EeFVcGKbPL1765mprzo/TgvnmYBxLwq/w+9nbRCdms2R8RwINfAeHhupkfBZbopIA+Oix9gZx+VmoPzLzZXz45yV2RN8GwN3WnLkj/FHEn8KtgX++3I+LjRnfPt2VLVFJfPjHJU7G32HoskPMG2V4V1NqlCy+//77jBkzhri4OAYMGABAREQEv/zyi17nKzo7O2NkZERqavnVlKmpqbi7u1f6GDMzM8zMKq64MjExuW/S8KDbtMXEBCzqsP+08rCnlYc9Mwe04khcBt8cuMbRuCw2Rd1mx7kUJof40tLNhtTcYrIK5OQWKbAwNcLF2oxOPvZ083VsEIsRtP27LVYo+WjnJX46lgBAZx97lozvhJ+zFbsvppKRn8XNO8V09XOuNJbGTCqVMLN/C7o3c+SVX6JJuLujw4w+zQgb3KrBzmsyRCqVmv/9eQmAJ7p508VHd1v56dMHH3xQ4UpT69atNVemiouLef3119m4cSMymYzQ0FC+/vrrClezhPJ2nU/m/e0XyCyQI5XA5B6+vD6kNWZSNbvi9R2dfkkkEsYHehPSzImwzdGcjL/Dm7+eI+JyKgse64CTtWGsCK9Rsjhy5Ei2b9/OggUL+PXXX7GwsCAgIIB9+/bRt29fbcdYZaampnTt2pWIiAjNPrYqlYqIiAhmzZqlt7jqE6lUQu+WLnT3tefLX3ZxJN+Z0wnZrDp0/YGPMzeRMrpTE17q10IvhXkNUWa+jBnrT3E6IRuAl/o1J2xwK82ITAtXa45dz+Ka2Bv5gbo2dWTXq72Z/8dFtp6+xaqD1zkQk87n4zvSvon+S3U1BjvPJ3MuKQcrUyPeCG2t73B0ql27duzbt0/zs7Hxvx+Ts2fPZufOnWzZsgU7OztmzZrFmDFjOHLkiD5CNXjZhXLe33GRP86Wjia2drNh0eMBdPS2BxrfvOwH8Xa0ZONzIXx76DpLwmPZczGVqJvZfDq2AwPb6P/LSI1L54wYMYIRI0Y88D6//PILo0aNwsqq7iZBh4WFMXnyZAIDAwkKCmLZsmUUFBRoVkcLVdfCDl5+ohsHrmbx+9nb5BQpcLUxx9naFFsLEwrlJdy6U8Sx61mk5Baz8WQiW0/fYtaAFszs38JgJ+rWhfiMAqasOUF8ZiF2FiZ8ObEzfe/uVlKmuYs1ztZmSA3oUoOhsrMwYcn4ToS2c+edreeJTc1j9IojvDqwJS/2ay4uieqQvETF4j2xQGn5D2cDGenQFWNj40qvROXk5PDDDz+wYcMGzRW1NWvW0KZNG44dO0b37t3rOlSDdvBKOm/+epbUXBlGUgkv9WvOrAEtxBWBBzCSSnixX3P6tHJm9qZorqTm8+y6U0wM8uG9EW2wMqtVtcNa0ekzP//88wQHB9OsWTNdPk05EyZMID09nblz55KSkkKnTp3YvXu3uExQQxKJhCHt3BnSrvLL+FBaxufUzTt8GXGVf65msCT8Cifjs/j6yS6NckFCbEoeT35/jIx8OV4OFqydGkQLV+sK95sc4svUnn56iLD+Cm1XOin83W3n2XMxlc/Dr7Dvciqfjeuotx1EGroNx2+SkFWIi40Z03s3/L/Xq1ev4unpibm5OSEhISxcuBAfHx+ioqJQKBQMGjRIc19/f398fHyIjIy8b7JY1YobZfZdSuGXOCm9CouxrYcXaYrkShbtvcJPxxMBaOZsyeKxHUrnZatVKO4p41ZXVSgMRVXb28rFkq3PB7Nk3zVWH73JLycSOHItnc/GdqCzj71OYnoYnSaL+tq5ZNasWeKycx2SSCR083Vk/bQgtp25xXvbL/DP1QwmfXecn6YHN6r6jbEpeUz67hiZBXLaedqyZmo3XG0qn3wqbcQjr7XhbG3Gyqe6sj36FvN2XORsUg4jvjzMa4Nb8lzvZmKUUYsK5SUs/7t0P9vXBrXU68hGXQgODmbt2rW0bt2a5ORk5s+fT+/evblw4QIpKSmYmppib29f7jFubm6kpKTc95zVrbjxaqQxIGXO+gOM8FFVuN2Q3cyHn64akVZc+t7W213FKJ9cks4dIenc/R8nqm5UriMws62En69JScgqYsJ3xxncRM1QLxXaepuratWNht3zhTolkUgY08WLlq42TFlzgvO3cpix7hTrnw1qEItfHuZqah4TvztGVoGcDk3s+OnZYFFwW0ckEgmPdfYipJkz72w7z98xaSzaXTrP57PHA8Qoo5b8fCyBzAI5TZ0sGR/ore9wdG7YsGGa/w8ICCA4OJimTZuyefNmLCwsanTO6lTcAHg1cm/p/UydGD68W42es67JSlR8c/A6K4/fQKlS42pjxiePtaN3y4oL9+5VlxVGDEFN2jscmFak4MOdMew4m8zeWxJuq+357PEONHep/RS/qlbdEMmioHUdvOz4aXow41dGciI+i/l/XGLhmA76DkunbmcX8czqEyJRrGPudub8MDmQX6OS+PDPS5xNzGbE8sPMHtSKGb39xChjLRTJlaw6VLqzxsz+Le67m1RDZm9vT6tWrbh27RqDBw9GLpeTnZ1dbnTxQdU2oGYVNwCyChT1IoGKunmHt347p1moNyLAg49Ht8fesmIt5vupiwojhqS67XUyMeGLiV0Y3O427267wIXbuTz6dSRhg1sxrZdfrfpmVeNofL1fqBNtPGz5+qkuSCTwy4kEdkTf0ndIOpNTqGDy6hMk5xTTwtWa9dOCRKJYhyQSCeMCvQmf3Zd+rV2Ql6j4dHcMj6+MFCvNa2HDiQTNvNvHOjfRdzh6kZ+fT1xcHB4eHnTt2hUTExMiIiI0t8fGxpKQkEBISIhWnk91z65c6fmyB9xT/wpkJXzw+0UeX3mUa2n5OFub8tWkznw1sXO1EkWh6h4J8GTPa33o3dIZWYmKhX/FMHL5YaJu3tH5c4tkUdCZ3i1dmNW/BQDvbD1P0p2GtyNJsULJ9PUnuZqWj5utGeumBeFgJd4o9cHdzpw1U7qx6PEAbMyMiU7MZviX/7DqYFyttsZsjIoVSlYebHyjim+88QYHDx4kPj6eo0eP8thjj2FkZMTEiROxs7Pj2WefJSwsjP379xMVFcXUqVMJCQnR2krovOISzf/fKVRQojS8OYtqtZo/z91m8JKDrD0aj1oNY7t4ET67L48ENPzt+vTN3c6c9dOCWPx4AA6WJsSk5PH4yqO8u+08OYW6WyhUrXeAQ4cOUVJS8vA73tW0adNGNbQsVPTqwJYENnWgQK5k/h+X9B2OVqnVat7+7Rwn4+9gY27MumlBNLGv2bwmQTvKCtzuDetD31alo4wL/4rRjH4IVbPpZCLpeTKa2FswtouXvsOpM0lJSUycOJHWrVszfvx4nJycOHbsGC4upWWvli5dyiOPPMLYsWPp06cP7u7ubN26VWvPn1NU/sM+8c599nnVk8vJuTzx7TFmbTjD7ZxivBwsWD8tiM/HdxRfkutQ2dWUiNf78XhXL9Rq+Pl4Av0+28+6o/EodPAlo1rJYv/+/cnKyqry/S9cuIC3d8OfFC3cn7GRlAVjOmAslRB+KZXwS6kPf1A9sfpIPNujb2MklbDq6a74u1ecrC7oh4edBWundmPR2NJRxjMJpaOM3x4So4wPIy9RaUYVX+zXHFPjxjGqCKVb1t6+fRuZTEZSUhIbN26kefPmmtvNzc1ZsWIFWVlZFBQUsHXr1gfOV6yu7CJ5uZ8N5QvOrewi3v7tHCO+/IfjN7IwM5Yye1Ar9oX1pc9/6scKdcfRypTPxnXklxndaelqzZ1CBfN+v0joskPsiL6l1aSxWu8C+iqFI9RvrdxsmN67tNbmB79fRFai1HNEtXc0LoMFuy4D8N6INvRo/uBVf0Ldk0gkjO/mzZ7Zfehzd5Rxwa4Yxq08yvV0w/gQNkR/nL1Nck4xrjZmjAtsPKOKhuC/I4tXUvP0FEmptLxiPvj9Iv0XH2DjyURUahjewZ2I1/vy6qCWjaLKRX0Q0tyJv17tzUej2+NkZcr19AJe3RhNx/l7CdscTbGi9p+51f7KKOYjCDXxysAWuNmacSu7iI0nEvUdTq3cyi5i1oYzKFVqxnRuwpQevvoOSXgAT3sL1k3txidjOmBtZszphGxGLj/MznPJ+g7N4KjVar77p3Rrzyk9fcVuG3Xsv8liZFymXuK4lpbPnK3n6f3pftYejUeuVBHSzInfXgzh6ye74uVQD6uFN3DGRlKe6t6U/f/Xj9mDWuFiY0ahXMnW07c0OzDV6vzVfcCUKVMqLQNwL23O4RAaBktTY14e0JL3tl9g+d/XGBfohaVp/avcVKxQ8vyPp8i6W3R7wZgO4gtUPSCRSHgiyIferVyYvSmaEzeymLnhNKdu+jJnWJtGdan1QQ5dzSAmJQ8rUyOeDG6q73Aaney7CxTcLNSkFkk4cSOLtLziww8hhQAAJTpJREFU+xb21yZZiZK/L6ex6VQiB2LTNcc7+9jzxpDW9Gwhrp7UB7bmJrw6qCUvD2jBd/9cZ+FfMRy7XvsvHdX+tLaxsalxcVKhcRsf6M23h66TkFXI2qPxvNSvhb5Dqha1Ws07285z4VYujlamrHq6q7gMU880sbdgw/RgPtt7hZUH41hzJJ6zidmsfKorrra6/0A2dN/eras4oZtPo9p5yVCM7eJFiJ89Bw8c4LdUBy7ezuORLw8T2s6dvq1cCGnupNVddGQlSiLjMtl3OZU/zyVrklWJBAa1cWNG72Z083UQX4jrIalUQmg7dxb+FcO1tHyUKjVGtdg1rNp/dV9++SWurq41fkKh8TI1ljJ7cEtmbzrL9//cYFpPv3qVbK07Gs/W07cwkkr4alJncSmmnjI2kvL2MH+6NnUgbHM0pxOyGb3iCKundmvUi5Qu3MrhyLVMjKQSpvXy1Xc4jZKFqRE+jpY4mcPiMR2Yuj6K1FwZPx67yY/HbmJiJCGwqSM9mjvR3suO9p52uNg8+ErfvfKKFVy4lcuZxDucvnmHo3GZFMr/nc/mZmvGmC5ejA/0xs+59ruDCPrl7WiJuYmUYoWKhKzCWv1Oq5Usim8XQm2NDPDk871XSLpTxJaoJJ7uXj8udR27nsn/dpYuaJkzzF8saGkABrd1449ZvZi27iTX0wt4/JtIvprUmX6tG+eX4W8Plc5VfCTAQ3wRMgAt3aw5+H/9+edqBoeupHPwSjoJWYVEXs8k8p7Lig6WJnjaW+Bpb4GjpSlmJlLMjKWUqNTkF5eQLyshOaeYhKxCsgrkFZ7H1caMgW1cGdreg14tnGs1+iQYFiOphJauNpy/lUNsSl7dJYtiNbRQW8ZGUmb0bsa83y/y3aHrTOzmbfBbst3OLmLmz6dRqtQ82smTZ3v56TskQUt8na3Y+mIPXvgpimPXs5i29iQfPtqep+rJlxhtSbpTyM7zpQt+ZtytXCDon7mJEYPbujG4rRsA8RkFHLySzpmEO5y/lcP1jALuFCq4U6jg4u2q7fHrYWdOFx8HOvvYE+znRDtPW6QiQWywpvf2Q1aioqO3Xa3OU61kcf/+/Tg6OtbqCQVhfKA3y/ZdISGrkN0XU3gkwFPfId1XsULJCz9FkVkgp62HLZ+MCRAj7A2MvaUp66cF88628/walcR72y+QV1zCi/2aP/zBDcTqw/EoVWp6tnCifZPafagIuuPrbIWvsxWT71ZgKJCVkJBVSHJOEbeyi8ktUiArUSFTKDGSSrAyM8bG3BhnazN8HC1p6mSJjbmYi9qYPNpJO1t1VitZ7Nu3LyUlJSxevJhffvmFK1euANCqVSsmTZrEq6++KnZsER7KwtSIp0N8+TLiKmuPxBtssqhWq3lv+wXOJeVgb2nCqqe7YmFaf+ZYClVnaixl8eMBeNiZs/zva3y6O4ZCeQlhg1s1+C8HOUUKNp5MAOC5Po0nQW4IrMyMaeNhSxuPxjvXVqgb1br+V1RURL9+/Xj77bdxcXFh+vTpTJ8+HRcXF9566y0GDhxIcXGxrmIVGpCngn0wlko4dfMOl6p4+aSu/XTsJr9GJSGVwFcTu+DtKOZxNWQSiYTXh7TmzaGtAVj+9zU+2nm5wU+/+eVEAoVyJa3dbOjTUszFFQShomqNLH7yySckJiZy5swZAgICyt129uxZRo0axSeffMIHH3ygzRiFBsjV1pzQ9u7sPJfMj8fiWTgm4OEPqkNH4zI0e1m/PcyfXuJDtNF4qV8LLE2M+OCPS/xw+AZKlZp5I9s2yBFGeYmKtUfigdK5TQ2xjYIg1F61RhY3btzIkiVLKiSKAB07duSzzz5jw4YNWgtOaNieubuIYPuZ2xV2LtCnm5kFvPTzaUruLmhpzBP+V6xYga+vL+bm5gQHB3PixAl9h1QnpvT049OxHQBYezSez/de0XNEurHz/G1ScotxsTFjVCfDnA4iCIL+VStZvHnzJkFBQfe9vXv37iQkJNQ6KKFxCPJzpLWbDUUKJb9FJek7HADyikt4dt0psgsVdPS259OxjXdBy6ZNmwgLC2PevHmcPn2ajh07EhoaSlpamr5DqxMTuvnwv0fbAfDV/mus2H9NzxFpl1qt5vt/bgAwOaSp2NpPEIT7qlayaGtr+8APipSUFGxsbGodlNA4SCQSng4pHV386dhNVCr9zg1TqWH2lnNcS8vH3dac7xr5Di1LlixhxowZTJ06lbZt27Jy5UosLS1ZvXq1vkOrM0+H+DJnmD8Ai/fEsvbIDT1HpD2R1zO5eDsXcxOp2NpPEIQHqtacxf79+7NgwQJ+++23Sm//5JNP6N+/v1YCExqHxzo34dO/YrieUcCRuAx6t3TRWyx/3JRyMDkDcxMp3z0T2Ki3f5PL5URFRTFnzhzNMalUyqBBg4iMjKxwf5lMhkwm0/ycm1u6aEmhUKBQVJxiUHasstsMzbQePuQWyVlx4Dof/HEJewtjRnRwr/LjDbWt3x4s3dpvTGdPrE0lWovPENtrSLEIQn1UrWRx3rx5BAcH0717d8LCwvD390etVnP58mWWLl3KpUuXOHbsmK5iFRogKzNjxnb1Yu3ReNZH3tRbsvjb6Vv8nVw60P7ZuI508GrcteYyMjJQKpW4ubmVO+7m5kZMTEyF+y9cuJD58+dXOL53714sLe+/ijw8PLz2wdaBlmro4y7lUIqU17ecJe7CaVpU80/EkNqaWgQHrhgjQY2fPJ5du+K1/hyG1N7CwkJ9hyAI9Vq1ksW2bdsSHh7Os88+yxNPPKGZy6VWq/H392fv3r20a9dOJ4EKDddT3X1YezSeiMup3Mouoom9RZ0+/9nEbN7/vXTl86x+zQy27qMhmzNnDmFhYZqfc3Nz8fb2ZsiQIdjaVqwBp1AoCA8PZ/DgwfWmNutQlZpXNp1l76U01l03Z+P0IFq6WT/0cYbY1vd2XAKSGODvypSxnbV6bkNsb9lItyAINVOtZBFKF7FcvHiRM2fOcPXqVaC0KHenTp20HZvQSLRwtaFHcyeOxmXyy/EE3ghtXWfPXSAr4dWNZ1Ao1QQ4qni5vyhKDODs7IyRkRGpqanljqempuLuXvESrJmZGWZmZhWOm5iYPDBheNjthsQE+HJiF576/jinbt5h+o+n2TazJ25VnK5gKG3NzJexPfo2UFqEW1cxGUp7AYOJQxDqqxpvytu5c2cGDBjAgAEDRKIo1NrTd8vobDyZgKxEWWfP+9HOy8RnFuJua8bE5iqxR+pdpqamdO3alYiICM0xlUpFREQEISEheoxMv8xNjPjumUCauVhxO6eYKWtOkldcv+bD/XQsAVmJig5N7AjyE9u3GprPPvuMWbNmkZiYqO9QBEGj2iOL2dnZvPvuu2zatIk7d+4A4ODgwBNPPMFHH32Evb29tmMUGoHBbd1wszUjNVfG7gspWtvP8kF2X0jmlxMJSCSweGwHsmLEfNt7hYWFMXnyZAIDAwkKCmLZsmUUFBQwdepUfYemVw5WpqybGsRjXx/lcnIuL/18mtVTumFiVOPv3nWmWKHkx2PxgCjCbajeeecdoLT/bd++Xb/BCMTExHDhwgWSk5NJTk4mNTWVnJwccnNzycvLIzc3l4KCAgDNbk8BAQH88ccfmnPMnDmToqIi3n77bc2xqKgooqKisLCwwMrKCkdHR5ydnXFycsLJyQlTU9O6behDVCtZzMrKIiQkhFu3bvHkk0/Spk0bAC5dusTatWuJiIjg6NGjODg46CRYoeEyNpIyKagpS/dd4cfImzpPFm9lF/Hmr+cAeK53M7o3c2RXxXUbjdqECRNIT09n7ty5pKSk0KlTJ3bv3l1h0Utj5O1oyZop3Ri/KpJ/rmbw7rbz9aIm5/Yzt8jIl+NpZ87wDh76Dkf4D5VKpfn/yqoOCNolk8k002dUKhVDhw7l1q1bHDp0CCcnJwC++uorVqxYUa3zNmtWfiOHzZs3k5GRwcsvv6w5tnPnTubNm3ffc9ja2uLh4YG3t7fmX6tWrXjyySerFYu2VCtZ/PDDDzE1NSUuLq7CB8aHH37IkCFD+PDDD1m6dKlWgxQah4lB3iz/+6pmv+i2nhUXRmhDiVLFq7+cIbe4hI7e9rw+pDWo6+7Sd30ya9YsZs2ape8wDFIHLztWPNmZ6etOsflUEl4OlrwysKW+w7ovpUrNyrvlcqb29KsXI6GNze3btzX/n5aWRnJyMh4eIqnXppKSEnbs2MEXX3yBm5sbW7ZsAUpLg505c4aMjAxu376tSRbbt29Pjx498PDwwMPDA3d3d+zt7bG1tdX8s7CwQCqVar4s2tmVL5Xw0UcfcefOHTw9PTUbl7Rs2ZJHH32UwsJCCgoKyMzM1PxTq9Xk5uaSm5tLbGys5jwdO3YslyyOGDECuVzOsmXLNIuLCwoKMDEx0frIZLWSxe3bt7Nq1apKRxbc3d1ZtGgRL7zwgk6SxY8//pidO3cSHR2Nqakp2dnZFe6TkJDAiy++yP79+7G2tmby5MksXLgQY+NqX20X9ODe/aJXH7nBZ+M66uR5Fu+J5dTNO9iYGbP8ic6YGktRKESyKFTfAH83Pny0Pe9tv8CS8Cs0sbdgbFcvfYdVqV3nk4nPLMTOwoRJwT76DkeoxI0b5Yu+b926lZkzZ+opmoZFrVazbds23nrrLa5dK92NydbWFrlcrkmsfvjhBywtLfH19dU87oUXXuCFF16o1XM///zzQPl6nxMnTmTixIkV7qtSqcjOziY9PZ1bt26RlJREYmIiiYmJeHp6lrvf/v37KSoqKpcYLlmyhHnz5uHt7Y2vry/t2rXj/fffr/WXjmplUcnJyQ8sjdO+fXtSUlJqFdD9yOVyxo0bR0hICD/88EOF25VKJSNGjMDd3Z2jR4+SnJzMM888g4mJCQsWLNBJTIL2Te/lx85zyeyIvkXY4FZ4armMzq9RSaw6dB2AhWM74ON0/xqAglAVT3VvStKdIlYejOOt387hbmdOzxbONT5fRr6MA7HpXEnNI6+4BHtLEzo0saNvKxeszGr2xVetVmu2K5za07fG5xF0y9nZmVmzZvH9999TXFzMnDlziI+Pp3PnzvTs2ZOmTcVOOzVx+vRpwsLCOHjwIABOTk48//zzvPTSS+USrVGjRukrRA2pVIqjoyOOjo60bv3gyiB79+7l6tWr5ZLbGzduoFarSUhIICEhgUOHDnHmzBmOHj1aq2ky1XrHcHZ2Jj4+Hi+vyr8537hxA0dH3ayuKyv4u3bt2kpv37t3L5cuXWLfvn24ubnRqVMn/ve///HWW2/xwQcfGNxkUaFynX0c6N7MkWPXs/jh8A3ef6St1s59Kj6Ld7aeB+DlAS1EPUVBa94Mbc2t7CL+OHubGetPsWR8J4a2r/ouLwAJmYV8Hh7Ln+eSUVay9aWlqRETunkzq38LnKwrlil6kP2xacSk5GFpasSUHr7VeqxQd9q0acOSJUvo27cvn376KadOneKzzz4DSkeMZs+eDZR+1q5bt44uXboYRIJjqG7fvs27777LunXrUKvVmJub88Ybb/DWW29hbf3wGqmGTCqV0qtXL3r16lXu+A8//MDChQu5ceMGFy5cYPbs2QQFBSGTyTA3r/muZNVKFkNDQ3n33XcJDw+vkHzJZDLef/99hg4dWuNgaiMyMpIOHTqUu0QeGhrKiy++yMWLF+ncufLCs9XZpswQt7HSFX229blevhy7nsUvJxJ4vndTHCxrn+jHpuQxY/0p5EoVoW1dmdXXr1zbDPF3a0ixCA8mlUr4bFwAOUUKDl1J54Wfoggb3IqXB7R46GNVKjVrjsazeE8MxYrSBQ7tm9gS2NQRB0tTUvOKOXotg/jMQtYciWdH9G0WjulAaLuqJaNqtZqv/i4dVXyqe1PstdCfBN0yMTFh//79/Pbbbxw7dozz58/TpUsXze3Hjh1j/vz59OzZs1yy+Nxzz+Ho6Ejbtm1p06YNbdq0qfdJUU3k5OSwePFilixZQlFREQCTJk1i4cKF+Pg07CkYEokENzc33Nzc6N69O0888YRW/gaqvcAlMDCQli1bMnPmzHLb/X399dfIZDJ+/PHHWgdVEykpKZVuTVZ22/3UZJsyQ9rGStf00Va1GrysjEgqUPLqD38zoZmK2iwyTSmE5ZeMyFdIaGqtZqD1bXbvvl3pfQ3pdyu2KKtfzIyNWD05kI92Xmbt0XiWhF8hNiWPhaPvPzquUql5b8cFNhwvnfQe0syJd0e0oX2T8hPk1Wo1/1zNYMGuy8Sk5PH8j1FM6eHLeyPaYPyQhSrHb2RxOiEbUyMp03v51b6hQp0wMzNj8uTJTJ48ucJtPj4+TJs2rdxlyqKiIr7//ntN+ZZ771uWON6bRJYt4GhI7ty5w7fffsvixYvJzMwEoEePHixZsoTg4GA9R6cf2vqyUK1k0cvLi8jISF566SXmzJmj+aOUSCQMHjyYr776Cm9v7yqf7+233+bTTz994H0uX76Mv79/dcKslupsU2aI21jpir7bau+fyZS1UUSmSbF2cufTMe2xMa/+PKuom3eY93M0+QoFbT1sWD81EDuLiu3Rd3srI7Yoq3+MjaR8MKod/u42vL/jAjvPJ3MjI59xlcwtV6nUvLv9gqbW57xH2vJMiG+lheElEgl9WrkQ3MyRJeFXWHXwOmuPxnMzs4Dlk7pgfZ85iGq1mk93l9aEGhfohWsVd5sRDFvPnj3p2bNnuWMqlYovv/ySy5cvc+nSJS5fvkxqaqpm7tqePXvK3d/FxYU2bdqwbNkyzZU3uVyOiYlJnZWAysvL48KFC8TExHD69GkSEhLw9PSkc+fOBAcHExQUVGFl8YNER0drahm2bt2aTz75hEcffdTgS1rVB9X+9PXz8+Ovv/7izp07mu3+WrRoUaO5iq+//jpTpkx54H3+W6/oftzd3Tlx4kS5Y2VblVW2PVmZmmxTZkjbWOmavtraz9+dT8Z0YO6Oi4RfTiPu2+OseqorLd1sqvR4tVrNhhMJzP/jEvISFR297VkzpRuOVg++BGdIv1tDiUOovieCfGjmYs2LP0VxKTmPpRlGdA7OpVPT0tGc0kTxPL+cSEQigc/HdWRMl4evojYzNmLOsDZ09LJn9qZo9semM25lJN890xUvh4pXQnaeT+ZMQjYWJka8asBlfeqjFStWsHjxYlJSUujYsSPLly8nKChIb/FYWVlVKHOVlZVVLnks+3fz5k3S09NJT08v9/m3dOlSPv74Y1555RU++ugjoPS9tLbz3Srz6KOP8scff1QYCYXSVeBQ+iXJ39+fLl264OHhwahRo+jduzcAJ06c4M0338THx4f169cD0K9fP5544glCQ0N56qmnRCUULarWK3n9+nX8/Eqr/js4ONS6Y7i4uPx/e/ce1NTZ5wH8exJENAQKIgpqqW5QiygoyEWqMAsrFe2rtTPFFTtaXbva4GiddjvttDK1F5lOt2WcKtLtW62za6W6VcbL6wxDKY5t1ZgIW0ZBq+uCFwKOlwSFIuHsHw7pG02EQJJzknw/Mxl7Dkn4PcFv+fmcc56DkSNHDuo9eqWnp+Pjjz9Ga2srIiMjATw8pBgSEoK4ONddJEGesyTlaUyOCsHa/9Tjcts9LNr2MzbkTMQr6TEIGqJ0+LrfW8346Mh5/NTYBuDh3WG2LpmOYYGOX0Pkainjw1FRmIGVO3W40NqOpX/VYdvSGcicOBLvHvgNe3XNUAjAv7+cgBenO7fcTt7UKESFBmH17jM4f8OERdt+xo5lSUh+5s9/tF+704H3D9YDAFbPmcBZRRcqLy/Hxo0bsWPHDqSmpqKkpAS5ublobGy0/v6Rg/DwcLuzkO3t7WhsbMT58+eh0fx5Xm1DQwPMZrNNA9nU1ASNRoMpU6YgOTkZM2fOxKxZsxAXFwelsu//p96+fRvr1q1DbW0t6urqrK8JDQ2FKIqIiIjAc889h9TUVGg0GjQ3N0On0+HUqVO4fPmytcEFHh7d7G0WOzo6UFNTg6ioKIiiCEEQIAgCvvvuu0F/bvQ4p5rF2NhY3LhxwxqG/Px8bN261SN3dGhqasKtW7fQ1NQEi8WC2tpaAA9nNYODgzF37lzExcXhlVdewaeffoqWlha899570Gq1dmcOyTskjnsKh9Y9h8I9Bpy8fAsfHz2Pv574X7w4Ywz+KW4UYiODETREiZvtf6C26Q4O/c91/K2+BaIIBAYo8G+5k7AyYzzv+UySGBs2HHtXz8SSL6tw4S6w6lsdYiPVaDSaoRCAL/ITB3y3oulPh+GgNgOrd+tx/oYJ//wfJ7E2S4OC1Kdh6niAdd+dxe37DxA/JgSvZ/2Di0fm3z7//HOsXr3aeuvLHTt24MiRI/jmm29sbukmV8HBwUhKSkJSUpLN/rKyMrz11ls2p2CdPXsW3d3dqKurQ11dnXXpupCQEKSmpmLWrFmYNWsWZsyYgWvXruHEiRNQKpXWtQlDQkJw6NAhmEwm1NXVWS/U+fDDD/HJJ59Ar9cjLy/P7pGU1tZWnD59GvX19Whra7OZoIqPj8fOnTv99lxET3OqWXx0uvjo0aPYsmWLSwtyZNOmTfj222+t273nWFRXVyMrKwtKpRKHDx/G2rVrkZ6eDpVKheXLl2Pz5s0eqY/cJyJ4KP7rX9Lw3/qr+LzyAlpMnSj96RJKf7rk8DW5U0bhrdxJ0ET277A1kbuog4bgXyf34Oeusfjh7HU0Gs0IVCrw2csJ+EvC4JZvGhs2HPvXpOPNfXX4W30LtlZdxNaqi9avRwQPRWlB0hNn4sk5XV1d0Ov1eOedd6z7FAoFcnJy7N6iz5kVN3r3//2fniQIAmJjY22+f15eHn7//XcYDAYYDAbrrJ/JZEJlZaXdiwInTJiAVatWWbdLSkoQHR0NjUZjfd/o6Og+xxoWFobc3Fzk5uZa9/U+NyQkxHo3k+7u7sEO3SO8edUNrzmgv2vXLodrLPaKiYnB0aNHPVMQeZRSIeDlmePwl8Ro/NjQioraa9D/323cbO8CACgEIDZSjdmxEXgpaSyejXLPrQKJBiJAARS/OAULEqJx5eZ9ZE0aiQkjXXOVompoALYXzMCx+haU1lxC/bW7EAQB/zg5EkUvxNk9l5EG7ubNm7BYLHZX32hoePwG8wNZcQOQ18oMABAYGIi0tDSkpaXh9ddfR1NTExoaGqwPo9GI4cOHIzY2FlOmTMGhQ4esh5zDw8PR2dmJ6upqu+8tt7G6m5zG299VN5xqFnvPCXh0H5GnBA1RIm9qFPKmPry8tKPLgs4HFqiDAvpcQoRISg8bOPecsiMIAuZNjcK8qVG439UNhSBwNlEmnFlxA5Dnygz90d7eDpVK5VRP4K1jHSg5jre/q244fRh6xYoV1nMAOzs7sWbNGqhUKpvn9V7J5I16D7Xb+wAfPHiA+/fvw2QyyeYH7S7eNFYlgPv3Bvcechxv799Be1cLyt2TcgTI8/N2F6nG2tXhsW9lQ44/W1dmKSIiAkql0rraRi+j0Wh35Y1HV9zoraGjo8Pu59P7+XV0dHjN4VUAUCqV6OzsdOo13jrWgZLjeHsXLe8rG041i48uDrps2TIny5I/s9kMAE6tF0nkTmaz2am1xuSAOSI5ckWWAgMDkZSUhKqqKixatAjAwzUOq6qqHlu6xlENALNB8tJXNgTRjdMWV69eRXR0NBQK7zk82NPTg+vXr0OtVj82nd57+KC5udnu4QNf4k9jBeQ5XlEUYTabvS5DwJNzBMjz83YXfxorIM/xujpL5eXlWL58OcrKypCSkoKSkhJ8//33aGho6HN1EGbjT/40VkCe4+1vNtx6gUtcXBxqa2v7vbC2HCgUCowd++Q1z0JCQmTzg3Y3fxorIL/xetuMYq/+5AiQ3+ftTv40VkB+43VllvLz89HW1oZNmzahpaUFiYmJOHbsWL+WkWM2HudPYwXkN97+ZMOtzaI3nmtFRETUl8LCwn4ddibyBd51bIuIiIiIPIrNohOGDh2KoqIiv7gjjD+NFfC/8UrNnz5vfxor4H/jdTV/+vz8aayAd4/XrRe4qNVq1NXVedU5i0RERET0J7fOLHLBbiIiIiLv5tZmkRe4EBEREXk3lzeL+/fvt/73uXPnEBMT4+pvQUREREQe4nSz2N3djfr6ely4cMFmf0VFBRISElBQUGDdN27cOOuNxImIiIjI+zjVLNbX10Oj0SAhIQHPPvssFi9eDKPRiMzMTKxcuRLz5s3DpUuX3FUrEREREXmYU83i22+/DY1Gg4qKCixZsgQHDx5EVlYWXnjhBVy9ehXFxcX9WpneG23btg3PPPMMgoKCkJqaitOnT0tdklts2bIFM2fOhFqtRmRkJBYtWoTGxkapy/KI4uJiCIKADRs2SF2KT2OWfB+zNDDMhu/z1mw41SzqdDp89tlnWLBgAbZv3w4AePfdd/Hmm29i2LBhbilQDsrLy7Fx40YUFRXBYDAgISEBubm5aG1tlbo0l6upqYFWq8XJkydRWVmJBw8eYO7cubh3757UpbmVTqdDWVkZpk2bJnUpPo1ZYpbIPmaD2ZA10QmCIIhGo9G6HRwcLF64cMGZt/BKKSkpolartW5bLBYxOjpa3LJli4RVeUZra6sIQKypqZG6FLcxm81ibGysWFlZKWZmZorr16+XuiSfxSwxS2Qfs8FsyJlTM4uCIMBsNsNkMuHu3bsQBAEdHR0wmUw2D1/S1dUFvV6PnJwc6z6FQoGcnBz8+uuvElbmGXfv3gUAhIeHS1yJ+2i1WsyfP9/mZ0yuxywxS2Qfs8FsyF2AM08WRRETJ0602Z4+fbrNtiAIsFgsrqtQYjdv3oTFYsGoUaNs9o8aNQoNDQ0SVeUZPT092LBhAzIyMhAfHy91OW6xd+9eGAwG6HQ6qUvxecwSs0T2MRvMhtw51SxWV1e7qw6SIa1Wi/r6epw4cULqUtyiubkZ69evR2VlJYKCgqQuh3wYs0RkH7PhHZxqFv9+FtFfREREQKlUwmg02uw3Go0YPXq0RFW5X2FhIQ4fPozjx4/77BXuer0era2tmDFjhnWfxWLB8ePH8eWXX+KPP/7gOqEuxCwxS2Qfs8FsyJ1T5yw+9dRTCAsL6/PhSwIDA5GUlISqqirrvp6eHlRVVSE9PV3CytxDFEUUFhbiwIED+PHHHzF+/HipS3Kb7Oxs/Pbbb6itrbU+kpOTUVBQgNraWq8IsDdhlpglso/ZYDbkbsCHoUVRRF5eHr7++muMGTPG5YXJycaNG7F8+XIkJycjJSUFJSUluHfvHl599VWpS3M5rVaLPXv2oKKiAmq1Gi0tLQCA0NBQn1seSa1WP3aOjEqlwogRI3z23BmpMUvMEtnHbDAbcuZUs5iZmWmzrVQqkZaWhgkTJri0KLnJz89HW1sbNm3ahJaWFiQmJuLYsWOPnYzsC0pLSwEAWVlZNvt37tyJFStWeL4g8inMErNE9jEbzIacCaIoigN9sVqtRl1dnc83i0RERET+yqlzFomIiIjIvwy6WRQEwRV1EBEREZEMOXXO4uLFi222Ozs7sWbNGqhUKpv9P/zww+ArIyIiIiLJOdUshoaG2mwvW7bMpcUQERERkbwM6gIXIiIiIvJtvMCFiIiIiBxis0hEREREDrFZJCIiIiKH2CwSERERkUNsFmnQMjMzIQiCzUOpVKK9vV3q0oi8CrNEZB+zIS1eDU2DIooiQkNDUVRUhIKCAut+hUKByMhICSsj8i7MEpF9zIb0nFpnkehRFy9ehNlsxpw5czB69GipyyHyWswSkX3MhvR4GJoGRa/XIyAgANOmTZO6FCKvxiwR2cdsSI/NIg2KwWCAxWLBiBEjEBwcjODgYGRkZEhdFpHXYZaI7GM2pMdzFmlQsrOzMXr0aHzwwQfWfSqVClFRURJWReR9mCUi+5gN6XFmkQbFYDBg9uzZ0Gg01kdvgDMyMnDq1CkAwKpVq/DFF19IWSqRrDnK0tmzZ5Gbm2t9XkVFBV577TUJKyXyrCf9nsnMzERiYiISExOhVCpx5swZiav1TbzAhQbs8uXLuHPnDqZPn2736++//z6Ki4sxe/ZsKBQKvPHGGx6ukMg7PClLU6dOxblz5wAA3d3d2Lx5Mw4fPuzpEokk0dfvmZqaGgBAUVERMjMzkZyc7Mny/AZnFmnA9Ho9lEqlw5OOn3/+eTQ1NeHIkSPYvn27h6sj8h5PylJAQADGjRuHK1eu4KuvvsL8+fN5+I38Rl+/ZwCgpKQEV65cQUlJiecK8zOcWaQBMxgMmDx5MoYNG2b36zqdDrdu3UJMTAyGDBni4eqIvEdfWUpJSUF1dTVKS0vxyy+/eLg6Iun0lY1du3bh+PHj2LdvHwRB8HB1/oMXuJBbXLt2DXl5eTh48CBeeukl7N69G/Hx8VKXReSV9uzZg3Xr1mHz5s3QarVSl0MkCwcOHEBZWRkqKiowdOhQqcvxaWwWyeU6OjqQnZ2N4uJizJkzB/v27cP+/ftRXl4udWlEXunMmTNYunQpzp07h4AAHhAiAoCwsDCMHDkSw4cPBwB89NFHWLBggcRV+SY2i0REMrdy5UosXLgQCxculLoUIvJDvMCFiEimLl26hEmTJkGlUrFRJCLJcGaRiIiIiBzizCIREREROcRmkYiIiIgcYrNIRERERA6xWSQiIiIih9gsEhEREZFDbBaJiIiIyCE2i0RERETkEJtFIiIiInKIzSIREREROcRmkYiIiIgcYrNIRERERA79P6WEUm4vMxDQAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 12 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/AklEQVR4nO3dd3gU5d7G8e/sbrLpvZOE0BN670iVrghYQCwgByygR1GPWI79FT12sWIBC6DC8aCggvQaWqSHhBZaKhDS22b3ef+IRCMhBEgy2eT3ua69ILMzO/eMMbmZ8oymlFIIIYQQQohyGfQOIIQQQghRm0lZEkIIIYSogJQlIYQQQogKSFkSQgghhKiAlCUhhBBCiApIWRJCCCGEqICUJSGEEEKICkhZEkIIIYSogJQlIYQQQogKSFkSQoir1K9fP/r166d3DCFENZOyJIS4YkePHuXee++lcePGODk54eHhQa9evXj33XfJz88vM6/FYuG9996jS5cuuLu74+bmRpcuXXjvvfewWCwXfXZERASapjFo0KBy1/3pp5+iaRqaprFz584Kc8bGxvL8889z/Pjxq95WPX344YfMmzdP7xhC1HuaPBtOCHElfv75Z2655RbMZjN33XUXrVu3pqioiE2bNvHf//6XiRMnMmfOHAByc3MZMWIE69evZ+TIkQwdOhSDwcDy5cv56aef6Nu3Lz///DOurq6lnx8REUFqaipFRUUkJiYSFBRUZv39+vVj27ZtFBQUsGPHDjp37nzJrIsXL+aWW25h7dq11XIEqKioCABHR8cq/2yA1q1b4+fnx7p166rl84UQlSNHloQQlZaQkMC4ceNo2LAhsbGxvPvuu0yZMoVp06axcOFCYmNjadWqVen8M2bMYP369cyePZulS5cybdo07r//fn788Ufef/991q9fz2OPPXbRenr16oWbmxvfffddmemnT59m48aNjBgxosq3TSl10VGxy3F0dKy2olRdCgoKsNlsescQwr4oIYSopPvuu08BavPmzZed99SpU8poNKoBAwZccp7+/fsrk8mkTp06VTqtYcOGasSIEWrixImqa9euZeb/z3/+o3x9fdWcOXMUoHbs2HHJz547d64CLnqtXbu2zHqWL1+uOnXqpMxms3r77beVUkp98cUXqn///srf3185OjqqqKgo9eGHH160jr59+6q+ffuWmVZQUKCeffZZ1aRJE+Xo6KhCQ0PV448/rgoKCi5a/uuvv1ZdunRRzs7OysvLS/Xp00etWLGiNN/fs/91XUePHlU333yz8vb2Vs7Ozqpbt25q2bJlZT5/7dq1ClALFy5UTz/9tAoJCVGapqmYmBgFqLfeeuuiTJs3b1aAWrBgwSX3rRD1jUmPgiaEsE9Lly6lcePG9OzZ87Lz/vrrr1itVu66665LznPXXXexdu1ali9fzj/+8Y8y791+++0MHjyYo0eP0qRJEwAWLFjAzTffjIODw2XXf9111/HQQw/x3nvv8dRTTxEVFQVQ+idAfHw848eP595772XKlCm0aNECgI8++ohWrVpx4403YjKZWLp0KQ888AA2m41p06Zdcp02m40bb7yRTZs2MXXqVKKioti3bx9vv/02hw4dYsmSJaXzvvDCCzz//PP07NmTF198EUdHR7Zt28aaNWsYPHgw77zzDg8++CBubm48/fTTAAQGBgKQmppKz549ycvL46GHHsLX15cvv/ySG2+8kcWLFzN69OgyuV566SUcHR157LHHKCwsJDIykl69ejF//nweeeSRMvPOnz8fd3d3Ro0addl9LES9oXdbE0LYh8zMTAWoUaNGVWr+hx9+WAFq165dl5zn999/V4CaMWNG6bQLR3yKi4tVUFCQeumll5RSSsXGxipArV+/vvSoUUVHlpRSatGiRWWOJv3VhSM3y5cvv+i9vLy8i6YNGTJENW7cuMy0vx9Z+vrrr5XBYFAbN24sM9/HH39c5ojc4cOHlcFgUKNHj1ZWq7XMvDabrfTvrVq1uujIlVJ/7tu/ric7O1s1atRIRURElH7mhSNLjRs3vmibPvnkEwWogwcPlk4rKipSfn5+6u67775onULUZ3LNkhCiUrKysgBwd3ev1PzZ2dmXnf/Cexc++6+MRiO33norCxcuBEqOeISFhdGnT58ryl2RRo0aMWTIkIumOzs7l/49MzOTs2fP0rdvX44dO0ZmZuYlP2/RokVERUURGRnJ2bNnS18DBgwAYO3atQAsWbIEm83Gs88+i8FQ9sewpmmXzf3LL7/QtWtXevfuXTrNzc2NqVOncvz4cWJjY8vMf/fdd5fZJoBbb70VJycn5s+fXzptxYoVnD17ljvuuOOyGYSoT6QsCSEqxcPDA/izBF3OhSJU0fyXK1S33347sbGx7NmzhwULFjBu3LhKlYnKatSoUbnTN2/ezKBBg3B1dcXLywt/f3+eeuopgArL0uHDhzlw4AD+/v5lXs2bNwcgLS0NKBl6wWAw0LJly6vKfeLEidJThn914RTjiRMnykwvbzu9vLy44YYbWLBgQem0+fPn06BBg9JyJ4QoIdcsCSEqxcPDg5CQEPbv31+p+S/84t67dy/t27cvd569e/cCXLI0dOvWjSZNmvDwww+TkJDA7bfffuXBK/D3oy1QUmQGDhxIZGQkb731FmFhYTg6OvLLL7/w9ttvV3gnmc1mo02bNrz11lvlvh8WFlZl2a9EedsJJdeMLVq0iC1bttCmTRt++uknHnjggYuOdglR30lZEkJU2siRI5kzZw7R0dH06NGjwnmHDRuG0Wjk66+/vuRF3l999RUmk4mhQ4de8nPGjx/Pyy+/TFRU1CVL16VczVGopUuXUlhYyE8//UR4eHjp9Aun0CrSpEkT9uzZw8CBAytcd5MmTbDZbMTGxla4TZf6jIYNGxIfH3/R9Li4uNL3K2Po0KH4+/szf/58unXrRl5eHnfeeWellhWiPpF/PgghKu1f//oXrq6u/OMf/yA1NfWi948ePcq7774LlBxFmTRpEqtWreKjjz66aN6PP/6YNWvWMHnyZEJDQy+5zn/84x8899xzvPnmm1ec98JglxkZGZVexmg0AiXjLl2QmZnJ3LlzL7vsrbfeSmJiIp9++ulF7+Xn55ObmwvATTfdhMFg4MUXX7zoSNVf1+vq6lpu9uHDh7N9+3aio6NLp+Xm5jJnzhwiIiIqfXrPZDIxfvx4vv/+e+bNm0ebNm1o27ZtpZYVoj6RI0tCiEpr0qQJCxYs4LbbbiMqKqrMCN5btmxh0aJFTJw4sXT+t99+m7i4OB544AGWL19eegRpxYoV/Pjjj/Tt2/eyJahhw4Y8//zzV5W3ffv2GI1GXnvtNTIzMzGbzQwYMICAgIBLLjN48GAcHR254YYbuPfee8nJyeHTTz8lICCA5OTkCtd355138v3333Pfffexdu1aevXqhdVqJS4uju+//54VK1bQuXNnmjZtytNPP81LL71Enz59GDNmDGazmR07dhASEsKsWbMA6NSpEx999BEvv/wyTZs2JSAggAEDBjBz5kwWLlzIsGHDeOihh/Dx8eHLL78kISGB//73v1d0Gu2uu+7ivffeY+3atbz22muVXk6IekXv2/GEEPbn0KFDasqUKSoiIkI5Ojoqd3d31atXLzV79uyLBl8sLCxUb7/9turUqZNydXVVLi4uqmPHjuqdd95RRUVFF332haEDKlLZoQOUUurTTz9VjRs3VkajsdxBKcvz008/qbZt2yonJycVERGhXnvtNfXFF18oQCUkJJTOV96glEVFReq1115TrVq1UmazWXl7e6tOnTqpF154QWVmZpaZ94svvlAdOnQona9v375q5cqVpe+npKSoESNGKHd390sOSunl5aWcnJxU165dLzko5aJFiyrcR61atVIGg0GdPn26wvmEqK/k2XBCCHGV+vTpg9lsZtWqVXpHuSYdOnTAx8eH1atX6x1FiFpJrlkSQoirlJycjJ+fn94xrsnOnTvZvXt3hSOtC1HfyTVLQghxhbZs2cIPP/zA0aNHeeKJJ/SOc1X2799PTEwMb775JsHBwdx22216RxKi1pIjS0IIcYU+/fRTvvnmGx5++GEmTZqkd5yrsnjxYiZNmoTFYmHhwoU4OTnpHUmIWkuuWRJCCCGEqIAcWRJCCCGEqICUJSGEEEKICsgF3lXAZrORlJSEu7t7lT7kUwghhBDVRylFdnY2ISEhFQ7mKmWpCiQlJen2gEwhhBBCXJtTp05V+NglKUtVwN3dHSjZ2R4eHjqnEUIIIURlZGVlERYWVvp7/FKkLFWBC6fePDw8pCwJIYQQduZyl9DIBd5CCCGEEBWQsiSEEEIIUQEpS0IIIYQQFZCyJIQQQghRASlLQgghhBAVkLIkhBBCCFEBKUtCCCGEEBWQsiSEEEIIUQEpS0IIIYQQFZCyJIQQQghRAbsrSx988AERERE4OTnRrVs3tm/fXuH8ixYtIjIyEicnJ9q0acMvv/xS5n2lFM8++yzBwcE4OzszaNAgDh8+XJ2bIIQQQgg7Yldl6bvvvmPGjBk899xz/P7777Rr144hQ4aQlpZW7vxbtmxh/PjxTJ48mV27dnHTTTdx0003sX///tJ5/vOf//Dee+/x8ccfs23bNlxdXRkyZAgFBQU1tVlCCCGEqMU0pZTSO0RldevWjS5duvD+++8DYLPZCAsL48EHH2TmzJkXzX/bbbeRm5vLsmXLSqd1796d9u3b8/HHH6OUIiQkhEcffZTHHnsMgMzMTAIDA5k3bx7jxo2rVK6srCw8PT3JzMyUB+kKYadsNoXFaqXYYqG4qIBiSyG24iJslgJwcMLgFoiDUcNo0HAwGjAZSv6u2ayQnw5uAXpvghDiClX297epBjNdk6KiImJiYnjyySdLpxkMBgYNGkR0dHS5y0RHRzNjxowy04YMGcKSJUsASEhIICUlhUGDBpW+7+npSbdu3YiOjr5kWSosLKSwsLD066ysrKvdLCHENcgrtHDuTAqZZxLJzzpLcV4GLX01PLUCKMzmVEoqCYkpGC05OFhycLDm4mTLxdmWhwMW/Jw1zBSDtQhVXIjZZsFcznq+Le7HzOKp5Wb4YrADAzbcAg6uFBpdSCl0oNDgQpHBBYvJhWKTK1YHN6xmLxqGhhLaIBScfcg2uHM42xFP30B8/QLwdDFf9snnQgh92E1ZOnv2LFarlcDAwDLTAwMDiYuLK3eZlJSUcudPSUkpff/CtEvNU55Zs2bxwgsvXPE2CCEqJzsvn+STR8g5c5r888m09SrAvTgdclJJTjxB5plEPK3n8SWDMM1K2CU+J+yP1yXl//lXYzlv25RGESbQLn3Fgnv+SUADSy5mSy4NAax/vCx/mzkZ2PHHckDHPyZblUYGbmQZPMgzepDn6EdAaGPCIpqBRwNynYM4VuRFYEhD/D1cpFQJUcPspizVJk8++WSZI1ZZWVmEhVX4I1kI8RfFxVYoyMCUeQLOH+f4kVgSE2JxyzuNryWZIHWW5pqt3GWD/3jxl76QiTs5BncKjW74+fnj4ekNZg/OW80czzaiObljcPbA5OyBo6sXDi7uGBxc8PN0w9nJGUyOFCojhcqEydEJk4MZk4MZg8kBJ2AccJtSFNsUVpvCYrVRbFVYbDbczQ4waBzkpJKTnUFK2lmK8rIoys+iOC8TW0E2FGajFWbQ1K0Qb3IgL52CrDPYcs/hQgFGTeFNNt4qG4oToRg4tBEOlWyfK9AGKFYGUvAi3RRArjmQYrcQNO+GhDdrQ4OmbcEjFAx2dSmqEHbBbsqSn58fRqOR1NTUMtNTU1MJCgoqd5mgoKAK57/wZ2pqKsHBwWXmad++/SWzmM1mzObyDtYLIf4qJ7+AE4f3kXF8D8XJsThnHMKrMJEgawoeWl7pfBF/vEppUIgD6QZfchx88AsKxzsgFNwCyTJ6k2LzxNW3AV4Bobh4BeLp4IRnOev3/uNVGeY/XpeiaRoORg0HIzg5/P04lBuY3XDzhaYR5S19MacLfykupDD7LBnnUslOTyX3fBqWjCSamjPwKj4DmYkUnDuJKS8Fk2YjmHSCremQFwd5QBoQ/8dnmZzJc2/I7jw/8j0aYfRvjmdYS0KbtsXPz1+OSAlxleymLDk6OtKpUydWr17NTTfdBJRc4L169WqmT59e7jI9evRg9erVPPzww6XTVq5cSY8ePQBo1KgRQUFBrF69urQcZWVlsW3bNu6///7q3Bwh6pSCIgsnj8URVJiAR9ZhSDtIxok9OGceo5VWfPECF35nuwWBdwTZLqEcLvLFwa8x7sFN8A9vgatPKMHlHCXx+ONVZ5jMmL0bEOjdgMBLzOIEYLNSlJnC2cRjZKYmkHfmJNaMU5izT9HCIRWnrBNQnI/L+Th6ApzZBGeAWGAFnMWTVMdwfBp3IjiyGwS1Rfk1RzM51tCGCmG/7KYsAcyYMYO7776bzp0707VrV9555x1yc3OZNGkSAHfddRcNGjRg1qxZAPzzn/+kb9++vPnmm4wYMYJvv/2WnTt3MmfOHKDkX4oPP/wwL7/8Ms2aNaNRo0b8+9//JiQkpLSQCSHKKiiycCxuN2fjo9ESY/DNiqWh9QTNtcIy83kBaJCHE8mODcnyaAb+kbgGR+Id2hzfBk0xmF2BstfviEswGHH0bkCIdwNCWve5+H1rMWScIP3kAZKP7sd65hBOmcfwKTyJnzqPH5n4Fe2DuH0QNw8Am8GRQyqMNNfm2ALb4tm4E41adsXbu7LH44SoH+yqLN12222cOXOGZ599lpSUFNq3b8/y5ctLL9A+efIkhr/8S7Rnz54sWLCAZ555hqeeeopmzZqxZMkSWrduXTrPv/71L3Jzc5k6dSoZGRn07t2b5cuX4+TkdNH6hahvbDZFYUYSzmm7ITGGzCNb0ZJ20fIvp9AA0KAIE9lujfFt1B4CorD4tiDPszmewU1oItfRVD+jCXyb4OPbBJ8ON5Z5qyDnPIlHS06Htjacwnx2P6Tsw1iYRRRHico5Cjm/wlGw/qZxwtCANLdIGncaiG/kdRAQBYbyLoEXon6wq3GWaisZZ0nUFXkFBcT9vomsuLW4pO0iPD+OIO3cRfMV4MgpczOyfdvjFNGZwOZd8AmLRDM66JBaXBWbjdy0o6TEbyfneAwOafsJzDuErzp/8bxmT5I92rDfGIlzk94069iXQF+fms8sRBWr7O9vKUtVQMqSsFs2KwWnfmfb6h9xS9lKi8L9uGn5ZWfBgCEgChp0hAadSPNojX/jdnKtSx2VlXaaE7FbKTyxnU5aPNrpnVCUU2YeizJy1NiYsz4dcWrck4hOg/ALDNUpsRBXT8pSDZKyJOxFQWER8bu3YE7cQmTBHjixBQrLDqqahSsn3TtgadAV76bdCW3VA5OzfF/XW9ZiSN3PoZ2rsCREE5i5Cz/bxUcbbUFtMTQZAE0GUBDcBSdnFx3CCnFlpCzVIClLorZSSnHiRAInty3BKWEVLfJ346nllp3J7MkJ93ac9+9GULvrCWreWa5PEZemFFmpCZzYtYaCY5vxS/+dRtbjZWYpwJG9pjZkhfQhoP0wWrbtgskk31Oi9pGyVIOkLIlaxWaD5N3s+G0h7qfWEGk7UubtHJw54dqO5t2H4dD4OghuJ+VIXJPizBRMJzbA0TXYjqzGkFv24eap+HDMoxumZgNo1mMUXn6XGiRBiJolZakGSVkSejtz7iyHtvxEj+KdGI6shL/9sjrm0JzMsAEEdBhBSMseciG2qD5KkXliD6d3/owxYS0Rubtx+stzX6wYMDa+DiJHoiJHgHuwDJYpdCNlqQZJWRJ6OH3qJEc3LMDz+K+0LNqHo2b9801HN7Ib9OG4T28a9xyNq28D/YKKes1amMfRmJVk7FtBQOpGImwny7y/X2tGcvAgArvdTOs2nTAYpDiJmiNlqQZJWRI15dyZFPav/gbPo0tpXbQX01+en5ZkCMHWbDChXW+Chj3BJI/kEbWPOncULW4ZHFwGp7eXee+YFkZi0ED8utxMZPteaDI+l6hmUpZqkJQlUZ1seRkYDv0C+39AHV2Lpv58fMgxh2ZkNR5JWM9b8G3YSseUQly5/HOnObFlEVrcMhrn7MLhL0dHE7VAnDuOw6fHneDXTMeUoi6TslSDpCyJqnbm3Dni1n2H06Ef6VAUg0n9ec3HaXMTzoQPp+F1E/AJi9IxpRBVpzD7HIc2/RfbgaU0y96Gy18fnxPSkSPBI7G1GkPzxo30CynqHClLNUjKkqgKhRYLuzcso/j3+bTP2YDrX35ZKL9ItNZjoNVo8G+uY0ohql9BXjapO/5Hw9NL4chqUCVHnCzKyO+OHcltcTNtB47Dz9tL36DC7klZqkFSlsQ1SU9g+5L3CT35IyGcKZ2cZAghNXw4DXpPIKCpPGZW1FM5aRTsXkTKxi+JKIwvnZytnNnj0RfHjrfToc9IHGQcJ3EVpCzVIClL4kpl5+bicmwFxl1fwrF1f07HhSMBg/HvPYnQNn1BbqkWolTmyQOcWPcFQcd/JMD25z8szjqG4nfdFGg/Adz8dUwo7I2UpRokZUlU1sEDu0ld+zFtzvyMr3bhMSMaBeF9ORZ6Ey363obRLI+JEKJCNhun9qzm3JavaHpmJW788TxDgwM5jQYTGzyGDv1uwsFk0jenqPWkLNUgKUuiIoUWCzGrvsf8++d0ssSUTs8y+eLR8x7ocCd4N9QxoRD2y5KfhSn2f2i/fwWJO0unHyeE441vp9Xw+/D3k6NNonxSlmqQlCVRnqLsdDYvfptmJ74jlFQAbEojzq0rpq6TadZ7jIykLURVStnH/p/eJSJpWenRphzlxC7vofj0n0bLtl1ktHBRhpSlGiRlSZSRfgy2foTa9Q2aJQ+ALFw5GjqahkMfxCc0UueAQtRthbkZxK34DJ8D8wizniqdvtepC21veQoa95frAQUgZalGSVkSNquNnZt+wbj1Qzrmb0Gj5H+rHM8WHG96B5HX34PJyU3nlELUM0qRsONXcjd+SFTWJozaH7/uAlqhejxAbvPRuLm66ptR6ErKUg2SslR/FVmK2b5iAd6/v08r25+3NdP0eug5HRrJHW1C1AbnTsXhuusznPYtAEsuAGfw4kD4HbS5aQa+Pr46JxR6kLJUg6Qs1T95BQXsWPoZYbEf01iVHOYvxIGD/sNpMGwG/o3b6xtQCFG+/Az4/Usy1r2PlyUNgEzlyu6gm2l242OENAjXN5+oUVKWapCUpXqkuIj8nV+TvvxVGlDygzYHZw6H30azGx/HzS9U54BCiMqwWQo5sOJzvHd9QKj1NAD5ypEdvqNoNOopwho21jmhqAlSlmqQlKW6z1JUgMO+b2HDm5B5EoDzeHKi+V1E3jADJ3cfnRMKIa6GshYTv/5bHKPfobHlMACFOOLYbTJa74fBPUjfgKJaSVmqQVKW6q7cvHy2L5lNi0Nz/nwUiVsg+V2n49BVLtoWos5QiiPRP8L612haGFsyzeREcceJJLe5n7CwCF3jieohZakGSVmqewotFrb+OIfG+98jjBQAchx8cRv4OHSaCA7O+gYUQlQPpVBH16CtexVObwcgT5nZHngrLW/+NwEBgToHFFVJylINkrJUd1itNqKXzydw5xs0U8cBSMeTU63uo9UN/8TkJLcZC1EvKAXH1nJy8VOE5x8EIEO5siv8bjrc/ARenl765hNVQspSDZKyVDfYTu4g7qt/0rL4AFDyUNujze6h1ZgncHCW/65C1EtKEb/+O5w3vkK49QQAaXgT2+JBuo95ECezo84BxbWQslSDpCzZufPHYfWLsP+/ABTgQFz47bQY+yzOnn76ZhNC1ArKWkzsb5/ju+MNgmwld8ImmRsTcssb0HSgzunE1ZKyVIOkLNmnM2fSOPDts1x3/r8YbEWARnHbceT1egqPQBlrRQhxMWtRAfuWvEnj2A/xIKdkYpOBqMEvoQW20jecuGJSlmqQlCX7UmixsOW/s2lz8B38tEwAVKO+aINfhuC2OqcTQtgDS845HDa9CdvngM2CDSObvG8icvwrBATIcAP2QspSDZKyZD9iNv+Gy+qniLKVjKeSaGxA/oCXaNpzjDyWRAhx5c4dpfDXZzAf+QWAdOXO3hb/pMfN/8TsKNcz1XZSlmqQlKXaLzHxFMcWPkafnOVAyajbx1pOo/Xof2FwMOucTghh745tW4bptycJt5YMWhtvaEzeoNfp0HOQzslERaQs1SApS7WYzQa751P469OYLSWn3Pb4jaDJuP/Io0mEEFXKZili349v0nj/e7iTh01pbPK6kZZ3vIGff4De8UQ5pCzVIClLtVPOqb24rfwXnIwGINW5KZahbxDarr/OyYQQdVnOuSSOzn+EduklR7KtLv4Yh86CNjfL6f5aRspSDZKyVLtk5eSw86unuC7tG0xYwcEV+j8F3e4Do0nveEKIeiJhx6/4r38St5yEkglNBnKm/2v4hzbTN5goJWWpBklZqj12bFyO3+pHaUTJU8RTggcSNO498JRTbkIIHRQXwub3YMPrYC0kV5nZ3uQheo2fiaOD/ONNb1KWapCUJf2lnz/P3q8e5br0HzBoinTNi7PX/R/N+9+hdzQhhICzhzk+9x4icvcCsN8Yhemm94ls01nnYPVbZX9/G2owkxDVYvuGX8l5tzv9zv8Xg6bY6zccl0dipCgJIWoPv2Y0fHQde9v9m1ycaG09SMTioayd9zxFlmK904nLkCNLVUCOLOmkuBDW/h+2zbMxYOOM5kf2kLdo3H2U3smEEOKSMpKPkfz1VKLydgCw19Qa11s/oUnz1jonq3/kyJKo02xJe2BOP9j8LgZsHAgYgfuMHVKUhBC1nldwY6IeX8m+9s+Th5m2xftp+P31EPMlyPGLWkmOLFUBObJUc4osxWz8+iX6nvoAk7KAqz+MfAeiRuodTQghrti5U3FYFt9HUOaukglRN2Ab+R4GVx99g9UTcoF3DZKyVDNOHD/GufmT6Wj5HYDzYYPwHvcJuPrpnEwIIa6BzQrR78Pql8Bm4YzmS0Kft+g64Ca9k9V5de40XHp6OhMmTMDDwwMvLy8mT55MTk5OhcsUFBQwbdo0fH19cXNzY+zYsaSmppa+v2fPHsaPH09YWBjOzs5ERUXx7rvvVvemiKuw8ZcFuM3tS0fL7xTgwIEOz+N9z2IpSkII+2cwQq9/wj9Wcs4chr86R+f1E1n7wXQKCgv1Tiewo7I0YcIEDhw4wMqVK1m2bBkbNmxg6tSpFS7zyCOPsHTpUhYtWsT69etJSkpizJgxpe/HxMQQEBDAN998w4EDB3j66ad58sknef/996t7c0Ql5RUUsGb2/fTZfj++WhYnTI3IvmsVrUY9IiPhCiHqlpAOuP9zC3v8b8SgKfqf+Zoj/+nHiYTDeier9+ziNNzBgwdp2bIlO3bsoHPnkjEpli9fzvDhwzl9+jQhISEXLZOZmYm/vz8LFizg5ptvBiAuLo6oqCiio6Pp3r17ueuaNm0aBw8eZM2aNZXOJ6fhqklWEvHv30KLov0A7Am+ldaT3sPo6KxzMCGEqF5xq78kdOMTuJFPunInvtfb9Bh8i96x6pw6dRouOjoaLy+v0qIEMGjQIAwGA9u2bSt3mZiYGCwWC4MG/fnE58jISMLDw4mOjr7kujIzM/HxkQvrdHd0DXzcmxZF+8nFmfjr3qfdvZ9KURJC1AuRA++mcNIaEkxN8NGy6bZ5CgfmP1FyfZOocXZRllJSUggIKPvEZpPJhI+PDykpKZdcxtHRES8vrzLTAwMDL7nMli1b+O677y57eq+wsJCsrKwyL1E1LMVWUn+ZBd+MhbxzENQG0/0baTHgTr2jCSFEjfJt2JKwxzexO3A0Bk3R6vDHsOBWyD+vd7R6R9eyNHPmTDRNq/AVFxdXI1n279/PqFGjeO655xg8eHCF886aNQtPT8/SV1hYWI1krOvOnjtHzBs3Erj9VVA26HAHTF6FOVAeOimEqJ9MZhfa3z+Pohs/BpMzHFmFmtOPk7Hb9Y5Wr+j6FL9HH32UiRMnVjhP48aNCQoKIi0trcz04uJi0tPTCQoKKne5oKAgioqKyMjIKHN0KTU19aJlYmNjGThwIFOnTuWZZ565bO4nn3ySGTNmlH6dlZUlhekaHTywG/PiO+iuTmFRRo53fZ5mwx+Ui7iFEAJw7DgeglvBd3egnT+O33cj2dDuRfqMvhdNfk5WO13Lkr+/P/7+/pedr0ePHmRkZBATE0OnTp0AWLNmDTabjW7dupW7TKdOnXBwcGD16tWMHTsWgPj4eE6ePEmPHj1K5ztw4AADBgzg7rvv5v/+7/8qldtsNmM2mys1r7i8Lat+oOXG6XhpuZzVvCkYM49mbfvpHUsIIWqX4LaoqeuI/+BWInN3cN3eJ1iTepA+U97EwaTrr/M6zy7uhgMYNmwYqampfPzxx1gsFiZNmkTnzp1ZsGABAImJiQwcOJCvvvqKrl27AnD//ffzyy+/MG/ePDw8PHjwwQeBkmuToOTU24ABAxgyZAivv/566bqMRmOlStwFcjfc1bHZFKvnv0a/I//BQbNy1DGSwKmLcfOTo3RCCHEpylrMnnmP0P7UVwBsc+pNi/u+wcvLW+dk9qdO3Q0HMH/+fCIjIxk4cCDDhw+nd+/ezJkzp/R9i8VCfHw8eXl5pdPefvttRo4cydixY7nuuusICgrihx9+KH1/8eLFnDlzhm+++Ybg4ODSV5cuXWp02+olazGHv5rG9Udn4aBZ2e87mIjH1klREkKIy9CMJtpPns2BLq9iUUa6FWwi9b0BHJfxmKqN3RxZqs3kyNIVKsqFxffAoeUA7GvxIG3GvSTXJwkhxBU6sWsVHj9OwpssUvHBZdL/cG/YXu9YdqPOHVkSdUNK4knUvBElRcnkhLrlS9qMf1mKkhBCXIWGHQah/rGaU8YwAknHfcENcHSt3rHqHClLosYc2LeT4k8HoiXtQjn7wF0/obW6Se9YQghh13xCmxP0yAZo2BsKs2D+zeTv+Bo5cVR1pCyJGrFz80pCFt9EKGkkG4IpuHs5hJd/J6MQQogr4+DmA3f+AK3Hgq0Y55+ns+azp6QwVREpS6LabV6xiKjfJuCtZXPMsQWeD67FOaiF3rGEEKJuMZlhzGccaT4ZgIGJH7Lu/fspLpZHpFwrKUuiWq394VM6b7kPV62QeNdOhD2yChfvYL1jCSFE3WQw0PT2t9jT8nEA+p9byNZ3b6egsFDnYPZNypKoNmsWvMl1ex7HrBVzwKs/zf75Cw7OcregEEJUt3a3PsOBLrOwKo3e2cvZ8/Zocv8ytI64MlKWRPXY8RkDDr2IUVPsCxxNywcXY3B00juVEELUG61GPMCR/h9RqBzoVrCZg++MIisnW+9YdknKkqh6Wz+Cnx8FIKPdP2hz31w0owzFL4QQNa1Fv/GcHvoFBTjQuWg7jt/fAZZ8vWPZHSlLosoopdg479+wfGbJhF4P43XTGzKGkhBC6KhJjxtJHvE1NpMzTifXwfxbSgYHFpUmZUlUCaUUKz9/hj7H3wOguM+/YNDzUpSEEKIWaNRlGIY7/weO7nB8IxlfjCUzM0vvWHZDypK4ZkopVs59kcGn3wdgf/NpmAY+LUVJCCFqk4Y94M7/UWxyxSslmmPvjyJbrmGqFClL4pqt+vpVBp98C4D9TabQ+vZXdE4khBCiXGFdSBzxFfmY6WD5nfj3xshdcpUgZUlck1Xfvsv1x14FYF/Du2l9x+s6JxJCCFGRhh0GkTLiy9KLvve/dzMFhUV6x6rVpCyJqxb969f0O/g8APsajKPNxHfl1JsQQtiBRl2GkTh0LkXKRLeCzex4/y4Z6bsCUpbE1Tm+me47H8Ok2TjgN4w2kz+SoiSEEHakSfcbSOj3Hlal0Sf7VzZ8PF2eJXcJUpbElUveCwvHoVkLKG46lJb3fQUG+VYSQgh706L/BOK6vATAgLMLsG16V+dEtZP8hhNX5NChgxR8OQYKs6BhL0y3zUMzOeodSwghxFVqNfJBErs8CYBx9XOwb7HOiWofKUui0lJSUzAuvAWngjNkeTSD8QvBwVnvWEIIIa5RgxEzofs0ANSS+0nYuULnRLWLlCVRKVm5uaTMuYUm6hRnNR+YsBicPPWOJYQQoqoMfhlr5A1o1iJ8lk7iwJ7teieqNaQsicsqLray54O7aW/dSw7OWG9fhEdghN6xhBBCVCWDAXXTJxw2t8JTy8X7f7eTePqk3qlqBSlL4rLWzH2WPnkrKVYGzg6dQ2CzznpHEkIIUQ1MTq6E3Pc/kgzBhHCG83NvIydXniMnZUlUaN3Sbxh0+gMADnV4mojuN+qcSAghRHVy9Q7EdOf3ZONCa2ssuz+ahNVq0zuWrqQsiUtLi6PHrscxaIr9wWNoOepRvRMJIYSoAQGN2pI6+EOsSqN3zgrWf/mc3pF0JWVJlK8gE769HbMtj8zAbrSa/IkMOimEEPVI056jiW3zBAB9T8zmzN7fdE6kHylL4iJFlmJsP9wH6UfBMwzPuxbKWEpCCFEPtRk7k/igGzBqCv/l90Pmab0j6ULKkrjI2s+fwnDoF5TRDLd+Ba6+ekcSQgihB02jxeRPIagN5J2F7++G4kK9U9U4KUuijI0rFjMoeQ4Ahzo/Bw066pxICCGErhyc4davwckLEney45P76t0z5KQsiVIJxxOI3DIDo6bYHziKFsOm6R1JCCFEbeDTiNyRH2NTGl3O/MCGHz/TO1GNkrIkACgospD+zUT8tUxOmiKIuudjvSMJIYSoRVxbD2NvxEQAOu76N4fj9usbqAZJWRIAbJj7NJ2Kd1OAI64TvsJodtE7khBCiFqm3Z3/4Yi5Je5aPsXfTyQ3L0/vSDVCypJg64YVDEj6FIAT3V7At1E7nRMJIYSojTSTI353f0MWrkTZDrP9i/ox/p6UpfquKJcOO5/ApNmI9b2eFkPv1zuREEKIWswrpAkp/d4AoO+ZhWxbt0znRNVPylJ999u/MWcloNxDaDJRBp4UQghxec373c4e/5EYNEWTTY9CQZbekaqVlKV6LO/Ar7DzcwC00R9hdpfxlIQQQlRO5MT3yXFugF9xCqx4Uu841UrKUj2VmJJMzqKSU262bvdB4376BhJCCGFXzK7euI37DNBg1zdwaIXekaqNlKV6SCnF4a8fJoDzJBkbwID6/YBEIYQQV6lhT+hRMiZf1uLpnDl7RudA1UPKUj20Yfki+uUuB0DdOBuDDBMghBDiavV/mjSHBngUpXHwq0f0TlMtpCzVM2fOnaPptqcA2BdyKw3aDdQ5kRBCCLvm6ELekLcBuC5rKVtX/0/nQFVPylI9s+ebp2jAGdIM/kTd8YbecYQQQtQBEZ2HsDtwDAAhG58kOydH50RVS8pSPfL7js30TV8EQP6g1zC5eOqcSAghRF0RecdbnNO8CSeZHQue1ztOlZKyVF8oReiWZ3DQrBz0vI6GPcfqnUgIIUQd4uTuTVqPZwHomTiP+IN7dU5UdeymLKWnpzNhwgQ8PDzw8vJi8uTJ5FzmMF9BQQHTpk3D19cXNzc3xo4dS2pqarnznjt3jtDQUDRNIyMjoxq2QGd7FhJw/ndsJmdCb39P7zRCCCHqoKjrJxHn0hEnzULekrrzKBS7KUsTJkzgwIEDrFy5kmXLlrFhwwamTp1a4TKPPPIIS5cuZdGiRaxfv56kpCTGjBlT7ryTJ0+mbdu21RFdf4XZsLJkeABDvydwD2ykcyAhhBB1kqbhd+tsijUTHQq3w+GVeieqEnZRlg4ePMjy5cv57LPP6NatG71792b27Nl8++23JCUllbtMZmYmn3/+OW+99RYDBgygU6dOzJ07ly1btrB169Yy83700UdkZGTw2GOP1cTm1Lid3/wbctPApzF0n6Z3HCGEEHWYX0RrTD3+eM7oiqfAatE3UBWwi7IUHR2Nl5cXnTt3Lp02aNAgDAYD27ZtK3eZmJgYLBYLgwYNKp0WGRlJeHg40dHRpdNiY2N58cUX+eqrrzAYKrc7CgsLycrKKvOqrWJj99Lm5DcAnOnxbzA56pxICCFEnXfd4+DiB2cPkbnxY73TXDO7KEspKSkEBASUmWYymfDx8SElJeWSyzg6OuLl5VVmemBgYOkyhYWFjB8/ntdff53w8PBK55k1axaenp6lr7CwsCvboBqilOL8j09j1iwccu2Ef+fRekcSQghRHzh5UnRdyfPi1NpZJKeUfxbIXuhalmbOnImmaRW+4uLiqm39Tz75JFFRUdxxxx1XvFxmZmbp69SpU9WU8Nps3bSSXoUbsCkN3zGvg6bpHUkIIUQ94dDlbk6aIvDScolb/KLeca6JSc+VP/roo0ycOLHCeRo3bkxQUBBpaWllphcXF5Oenk5QUFC5ywUFBVFUVERGRkaZo0upqamly6xZs4Z9+/axePFioORIDICfnx9PP/00L7zwQrmfbTabMZvNldlE3VhtCsd1LwNwMGAYrZp00jmREEKI+kQzOlDU/1lYeQ89ziwm4dgMGjVurnesq6JrWfL398ff3/+y8/Xo0YOMjAxiYmLo1Knkl/6aNWuw2Wx069at3GU6deqEg4MDq1evZuzYkjGF4uPjOXnyJD169ADgv//9L/n5+aXL7Nixg3vuuYeNGzfSpEmTa908XW1asYi+1j1YMBI+9mW94wghhKiHmvYcw+GNb9GsYD+nlrxAoxnz9Y50VezimqWoqCiGDh3KlClT2L59O5s3b2b69OmMGzeOkJAQABITE4mMjGT79u0AeHp6MnnyZGbMmMHatWuJiYlh0qRJ9OjRg+7duwPQpEkTWrduXfpq1KhR6fr+fo2UPSm0FOO//TUA4kJvxT3IvoufEEIIO6VpmIeWnILrmfkLB/f/rnOgq2MXZQlg/vz5REZGMnDgQIYPH07v3r2ZM2dO6fsWi4X4+Hjy8vJKp7399tuMHDmSsWPHct111xEUFMQPP/ygR/waZTy6ipbqCAWamWY3P693HCGEEPVYePuBHHDrgUmzce7XWXrHuSqaunChjrhqWVlZeHp6kpmZiYeHh75hlILPBkHiTuj5EAx+Sd88Qggh6r3EA5tpsGg4xRjIm7IVjwYt9I4EVP73t90cWRKVdHRNSVEyOUPPB/VOI4QQQtCgVS/OBffFhA2PnbP1jnPFpCzVIcVWG/HflzzE0NppErjZ73VXQggh6hbf4c+U/GXPQsg4qW+YKyRlqQ7ZtuFXWhTtpwgTRV0f0DuOEEII8aewrtCoL9iKObvybb3TXBEpS3WEUgpjdMmhzfiAETj71s5RxYUQQtRfuV2nA+C8fz7JKck6p6k8KUt1xJ49O+laWPKA4LARj+ucRgghhLiYa+T1nDA1wlUrJG7pO3rHqTQpS3VExup3MGiKOI+eeDVso3ccIYQQ4mKaRm6nkstEWp/+luzcXJ0DVY6UpTrgdHIyXbNWAuAx4BGd0wghhBCXFnX93ZzVfPDXMti1/Cu941SKlKU64OCvn+CiFXLa1JCQdtfrHUcIIYS4JM1k5nTj2wDwjv0SexjuUcqSvbPZ6J2xBICcdpNA0/TNI4QQQlxG02HTsCgjbawH2b1zk95xLkvKkr1LWI9zVgI4uhM5+B96pxFCCCEuy80vjDjvvgBYt865zNz6k7Jk737/43xvu9vA7K5vFiGEEKKSAgdMA6BT9hooqt0XektZsmMnT5+mOHZpyRcd7tQ3jBBCCHEFAtoMBO9GaEU5EPuT3nEqJGXJjh1aPReTsnDSoTEEt9M7jhBCCFF5mgYdJgBg+/3rWn2ht5QlO2W1KRoc/x8AOVG3yYXdQggh7E+78Sg0DCc3Exe7V+80lyRlyU7t2b2DKHUUC0aaDJykdxwhhBDiynmGEufSCYCUzd/oHObSpCzZqXPbFgJw1K0LZs9AndMIIYQQV8fWaiwA4Um/YrXVzlNxUpbsUJHFSpPUFQAY247VOY0QQghx9Zr2HUcRJppwiv27ovWOUy4pS3Zod8xmGpNIIQ407n2r3nGEEEKIq2Z28+GQe3cA0rct0DlN+aQs2SHnIz8DcMyzO0YXL33DCCGEENfI2KbkLElE2hpstfBUnJQlO9QmZzMADXvdpnMSIYQQ4to16TkaizLSiERi9/+ud5yLSFmyNxknIWUfaAZcWg3XO40QQghxzRzdvEn0KrkrLjR1rc5pLiZlyc7k7v1jxO6w7uDqq28YIYQQoopE9Cq5Btfr5G86J7mYlCU7E7thEQApwf11TiKEEEJUoRZ/nC05tR3y0vXN8jdSluxI8rnztLHsB8Cl1VCd0wghhBBVyLMBVr9IQHF42896pylDypIdid++EifNwjmDLx5hbfSOI4QQQlSpveaOAKT8/ovOScqSsmRHig+tBiDZt4c8C04IIUSd49F6CABNsrZTXGzVOc2fpCzZCaUUDc5vB8A5cpDOaYQQQoiqF9HxeoowEaKd5dDBPXrHKSVlyU4kJKXQXCUAENpBypIQQoi6x2h25YQ5EoAzB2rPEAJSluzEyd3rMGqKVGMQZp8wveMIIYQQ1SInqAsAptPbdE7yJylLdiKyqOQuuJzALjonEUIIIaqPR/PrAAjL2V1rHn0iZclOBGWWnLtt0klOwQkhhKi7wtv3x6Y0wknl+IljescBpCzZB5sNknaX/D1UjiwJIYSouxxcvcn3agJAROEhndOUkLJkB5KP7YOibJTJGfxa6B1HCCGEqFauESUHBgzJu/UN8gcpS3Zg/871ACSYmoDRpHMaIYQQopqFlAxOSdLv+ub4g/zmtQOG5F0A5PrJqN2i9rFarVgsFr1jiGvg4OCA0WjUO4YQpYoC2+IIZB/bgbPVhsmo77EdKUt2wDvnCADm0Pb6BhHiL5RSpKSkkJGRoXcUUQW8vLwICgpCk6cDiFrAFNQaAHfreRJOnaRRRIS+eXRdu7isAouVsOIToIFf47Z6xxGi1IWiFBAQgIuLi/yStVNKKfLy8khLSwMgODhY50RCgMHJjRRDIEG2VNKO7pKyJCqWcPIkUVomAN4N5TScqB2sVmtpUfL19dU7jrhGzs7OAKSlpREQECCn5EStcM61CUHZqeQlHgBG65pFLvCu5c4c2w1AmjEQzeyubxgh/nDhGiUXFxedk4iqcuG/pVx/JmqLIp+Su79NZ+N0TiJlqdYrSDkMQIZzQ52TCHExOfVWd8h/S1HbOAaWlCX3vBM6J5GyVOt1dM8AwD2kub5BhBBCiBrk2aDk956/JRml9H3sid2UpfT0dCZMmICHhwdeXl5MnjyZnJycCpcpKChg2rRp+Pr64ubmxtixY0lNTb1ovnnz5tG2bVucnJwICAhg2rRp1bUZV8zPkgRAcESUzkmEqL+UUkydOhUfHx80TWP37t16RxKizvMLiwQgiLNkZOfqmsVuytKECRM4cOAAK1euZNmyZWzYsIGpU6dWuMwjjzzC0qVLWbRoEevXrycpKYkxY8aUmeett97i6aefZubMmRw4cIBVq1YxZMiQ6tyUK3P+eMmf3hF6phCiXlu+fDnz5s1j2bJlJCcn07p1a70jCVHnOXmHYDM5YdQU3paLD3TUJLu4G+7gwYMsX76cHTt20LlzZwBmz57N8OHDeeONNwgJCblomczMTD7//HMWLFjAgAEDAJg7dy5RUVFs3bqV7t27c/78eZ555hmWLl3KwIEDS5dt27Z23KJfWGyFcycwAzbPMPtptkLYkaKiIhwdHSuc5+jRowQHB9OzZ8+rXo9SCqvVislkFz92hdCfpmHwaghn4yHjJPg20S2KXfz+jY6OxsvLq7QoAQwaNAiDwcC2bdvKXSYmJgaLxcKgQYNKp0VGRhIeHk50dDQAK1euxGazkZiYSFRUFKGhodx6662cOnWqwjyFhYVkZWWVeVWH1PRszIXpAGgeFxdCIcSV69evH9OnT+fhhx/Gz8+PIUOGsH//foYNG4abmxuBgYHceeednD17FoCJEyfy4IMPcvLkSTRNI+KP8V5sNhuzZs2iUaNGODs7065dOxYvXly6nnXr1qFpGr/++iudOnXCbDazadOmSi+3evVqOnfujIuLCz179iQ+Pr7MdixdupQuXbrg5OSEn58fo0f/eWt1YWEhjz32GA0aNMDV1ZVu3bqxbt266tupQlQXjz/G/crR98iSXZSllJQUAgICykwzmUz4+PiQkpJyyWUcHR3x8vIqMz0wMLB0mWPHjmGz2XjllVd45513WLx4Menp6Vx//fUUFRVdMs+sWbPw9PQsfYWFhV3bBl7C+bSS0mbBhObqVy3rEKKq5RUVX/JVYLFW+bxX48svv8TR0ZHNmzfz6quvMmDAADp06MDOnTtZvnw5qamp3HrrrQC8++67vPjii4SGhpKcnMyOHTuAkp8DX331FR9//DEHDhzgkUce4Y477mD9+vVl1jVz5kxeffVVDh48SNu2bSu93NNPP82bb77Jzp07MZlM3HPPPaXv/fzzz4wePZrhw4eza9cuVq9eTdeuXUvfnz59OtHR0Xz77bfs3buXW265haFDh3L48OGr2l9C6CXF5g3A3oP6Dh+g6/HgmTNn8tprr1U4z8GDB6tt/TabDYvFwnvvvcfgwYMBWLhwIUFBQaxdu/aS1y49+eSTzJgxo/TrrKysailM2WdPA3De4EOA3NYr7ETLZ1dc8r3+LfyZO+nPX+qdXlpF/t9K0QXdGvnw3b09Sr/u/dpa0nMv/kfM8VdHXHHGZs2a8Z///AeAl19+mQ4dOvDKK6+Uvv/FF18QFhbGoUOHaN68Oe7u7hiNRoKCgoCSIzevvPIKq1atokePkoyNGzdm06ZNfPLJJ/Tt27f0s1588UWuv/76K17u//7v/0q/njlzJiNGjKCgoAAnJyf+7//+j3HjxvHCCy+Uzt+uXTsATp48ydy5czl58mTpJQqPPfYYy5cvZ+7cuWW2U4jaLtnmRRCQkXpS1xy6lqVHH32UiRMnVjhP48aNCQoKKh2K/4Li4mLS09NLf3j9XVBQEEVFRWRkZJQ5upSamlq6zIVh/Vu2bFn6vr+/P35+fpw8een/MGazGbPZXGHuqlB4PhmAXEcZIVmIqtSpU6fSv+/Zs4e1a9fi5uZ20XxHjx6lefOLh+04cuQIeXl5pSXogqKiIjp06FBm2l8vH7iS5f567eSFn1VpaWmEh4eze/dupkyZUu627du3D6vVelHuwsJCGW1d2B2DRyAAjgVpl5mzeulalvz9/fH397/sfD169CAjI4OYmJjSH3Jr1qzBZrPRrVu3cpfp1KkTDg4OrF69mrFjxwIQHx/PyZMnS/9F16tXr9LpoaGhQMkQBWfPnqVhQ/0HgSzOLbleqcjBU+ckQlRe7IuXvpvU8LcjpDH/HnSJOS+ed9MT/a8t2F+4urqW/j0nJ4cbbrih3KPcl3pO2oVhS37++WcaNGhQ5r2//0Pq7+uq7HIODg6lf78wYKTNZgP+fDzJpbIZjUZiYmIuemxJeYVQiNrMwdUHAHNxtq457OK2jKioKIYOHcqUKVP4+OOPsVgsTJ8+nXHjxpUeZk5MTGTgwIF89dVXdO3aFU9PTyZPnsyMGTPw8fHBw8ODBx98kB49etC9e3cAmjdvzqhRo/jnP//JnDlz8PDw4MknnyQyMpL+/avuB/NVy88AoNjspWsMIa6Ei2Plf6xU17xXomPHjvz3v/8lIiKi0neqtWzZErPZzMmTJ8ucOquu5f6ubdu2rF69mkmTJl30XocOHbBaraSlpdGnT5+rXocQtYGje8nRUGerlKVKmT9/PtOnT2fgwIEYDAbGjh3Le++9V/q+xWIhPj6evLy80mlvv/126byFhYUMGTKEDz/8sMznfvXVVzzyyCOMGDECg8FA3759Wb58eZl/1elFKyh5gK7NLEeWhKgu06ZN49NPP2X8+PH861//wsfHhyNHjvDtt9/y2WeflftQWXd3dx577DEeeeQRbDYbvXv3JjMzk82bN+Ph4cHdd99d7rqudrm/e+655xg4cCBNmjRh3LhxFBcX88svv/DEE0/QvHlzJkyYwF133cWbb75Jhw4dOHPmDKtXr6Zt27aMGHHl13gJoRenP8qSq63iQairm92UJR8fHxYsWHDJ9yMiIi4aDt3JyYkPPviADz744JLLeXh48Pnnn/P5559XWdaq0s5fwTkICgjUO4oQdVZISAibN2/miSeeYPDgwRQWFtKwYUOGDh2KwXDpG4Zfeukl/P39mTVrFseOHcPLy4uOHTvy1FNPVbi+q13ur/r168eiRYt46aWXePXVV/Hw8OC6664rfX/u3Lm8/PLLPProoyQmJuLn50f37t0ZOXJkpdchRG3g4llSltxVDjabwmDQ52YnTen9wJU6ICsrC09PTzIzM/Hw8Ki6D/5xGuz6BgY+B31mXH5+IWpIQUEBCQkJNGrUCCcnJ73jiCog/01FbZSbloDrh+0pUA7wTCpODhcf6b0Wlf39bTdHluolS0HJnyb5wSWEEKL+cXEpuUHCSbOgjPoNoWMXg1LWV+mZJSOD5yv9r58SQgghapr2l4MFmrVQtxxXXJbuvvtuNmzYUB1ZxN8cSSp53EJijpwpFUIIUQ85/GWYDEu+bjGuuCxlZmYyaNAgmjVrxiuvvEJiYmJ15BKARsmYKpqhas/RCiGEEHbB8OfVQmezC/SLcaULLFmyhMTERO6//36+++47IiIiGDZsGIsXL8ZisVRHRiGEEELUczmFV/csyKpwVdcs+fv7M2PGDPbs2cO2bdto2rQpd955JyEhITzyyCPysEYhhBBC1BnXdIF3cnIyK1euZOXKlRiNRoYPH86+ffto2bIlb7/9dlVlFMg1S0IIIYRerrgsWSwW/vvf/zJy5EgaNmzIokWLePjhh0lKSuLLL79k1apVfP/997z44ovVkbdeUVrJtUrKqt+hRyGEEEI31j8v7zGa9Lsz/IrHWQoODsZmszF+/Hi2b99O+/btL5qnf//+eHl5VUG8+q3YUPJgTWuRfncACCGEEHpRljwujK5kdnLRLccVH1l6++23SUpK4oMPPii3KAF4eXmRkJBwrdnqvbCAkqctBzjLaTghaoPjx4+jaRq7d+++5s/SNI0lS5Zc8+cIUZcVF5XcAWdTGmaz82Xmrj5XXJbuvPNOGQq/hoT5ewPg7WjVOYkQ4mo9//zz5f7DMjk5mWHDhtV8ICHsSGF+bsmfOGB21G8YHXncSW3mWDLMO0W5+uYQQlS5oKAgvSMIUeu5UDJqt6OzGwaTfg8dkced1GLZlJSlrPNndU4iRN2yePFi2rRpg7OzM76+vgwaNIjc3FxsNhsvvvgioaGhmM1m2rdvz/Llyy/5OfPmzbvo+swlS5agaVrp+y+88AJ79uxB0zQ0TWPevHnAxafh9u3bx4ABA0ozTZ06lZycnNL3J06cyE033cQbb7xBcHAwvr6+TJs2Tca3E3WaoTADAKOLd+n/V3qQI0u12OYkG0OB08lJtNQ7jBCXoxRY8vRZt4MLVPIHaXJyMuPHj+c///kPo0ePJjs7m40bN6KU4t133+XNN9/kk08+oUOHDnzxxRfceOONHDhwgGbNml1xrNtuu439+/ezfPlyVq1aBYCnp+dF8+Xm5jJkyBB69OjBjh07SEtL4x//+AfTp08vLVcAa9euJTg4mLVr13LkyBFuu+022rdvz5QpU644mxB2IT+j5E9nLz1TSFmqzQx/fHM4FGXpG0SIyrDkwSsh+qz7qaQ/T1tfRnJyMsXFxYwZM4aGDRsC0KZNGwDeeOMNnnjiCcaNGwfAa6+9xtq1a3nnnXf44IMPrjiWs7Mzbm5umEymCk+7LViwgIKCAr766itcXUu24/333+eGG27gtddeIzAwEABvb2/ef/99jEYjkZGRjBgxgtWrV0tZEnXW6eQkQoHkQieCdcwhp+FqMaObLwCORRn6BhGiDmnXrh0DBw6kTZs23HLLLXz66aecP3+erKwskpKS6NWrV5n5e/XqxcGDB6s108GDB2nXrl1pUbqwXpvNRnx8fOm0Vq1aYTT+eZFrcHAwaWlp1ZpNCD2dS0sG4Hieo6455MhSLebsXdKj3YvP6ZxEiEpwcCk5wqPXuivJaDSycuVKtmzZwm+//cbs2bN5+umnWbly5RWv1mAwoFTZoT2q8xoiB4eyg/JpmobNZqu29QmhN1t2CgBFzv665pAjS7WYm38YAJ62DJBRvEVtp2klp8L0eF3hhZ+aptGrVy9eeOEFdu3ahaOjI6tXryYkJITNmzeXmXfz5s20bFn+VYP+/v5kZ2eTm/vnHat/H4PJ0dERq7Xi4T+ioqLYs2dPmc/ZvHkzBoOBFi1aXNG2CVGXGHNTAbC56Xv3qJSlWsw3oAHFyoARGyonVe84QtQJ27Zt45VXXmHnzp2cPHmSH374gTNnzhAVFcXjjz/Oa6+9xnfffUd8fDwzZ85k9+7d/POf/yz3s7p164aLiwtPPfUUR48eZcGCBWUuyAaIiIggISGB3bt3c/bsWQoLCy/6nAkTJuDk5MTdd9/N/v37Wbt2LQ8++CB33nln6fVKQtRH5vwzABg9dboe8g9Slmoxfw8XzuAFQGbaCX3DCFFHeHh4sGHDBoYPH07z5s155plnePPNNxk2bBgPPfQQM2bM4NFHH6VNmzYsX76cn3766ZJ3wvn4+PDNN9/wyy+/0KZNGxYuXMjzzz9fZp6xY8cydOhQ+vfvj7+/PwsXLrzoc1xcXFixYgXp6el06dKFm2++mYEDB/L+++9Xxy4Qwm64WUquyXPy0vPybtDU30+4iyuWlZWFp6cnmZmZeHh4VOlnJ711HSFZe8gf9SnOHW6t0s8W4moVFBSQkJBAo0aNZET/OkL+m4pax2bF8mIADhQTP24LLSJbVfkqKvv7W44s1XIhjUqulXDOPqlzEiGEEKLm5J09hQPFFCkjweFNdM0iZam2825U8uf547rGEEIIIWqSS27JQQLlFY6Hi75HO6Us1XJ5rqEAZCUd0jmJEEIIUYPSEwAw++t7VAmkLNV6Mbl+ANjS4i8zpxBCCFGHnP3jIIFvU31zIGWp1gtu2h4AL5WByjmjbxgh/kbuD6k75L+lqG1OxMUAkOgYoW8QpCzVeg2D/TmlAgA4m7BH5zRClLgwknRenk4PzhVV7sJ/y7+PEi6EXlwySo4sJdeCsiSPO6nlHIwGTjtEEFacRnrCbvzbDNI7khAYjUa8vLxKn0vm4uKCdoWjaIvaQSlFXl4eaWlpeHl5lXn2nBB6Kc49j78qedRXUNMOOqeRsmQXsjybw7ntWBPlyJKoPYKCSh4/IA9yrRu8vLxK/5sKobfEuO00BJKUHyG1YBR7KUt2wNCgI5z7Bvfz+/WOIkQpTdMIDg4mICCgWh8eK6qfg4ODHFEStUrG4W00BE45RxJi0P+otZQlO+DXvDvsheCi41CUB46Vf8K6ENXNaDTKL1ohRJXSUnYDkOfXVt8gf5ALvO1A86bNyXf0xYQNlbJX7zhCCCFEtfLPigXAOaKTzklKSFmyA65ODjhHdAVAO71T5zRCCCFE9bFmpxFsS8amNEJb9tQ7DiBlyX6Edy/582S0vjmEEEKIamQ8tRUAq38kDYKDdU5TQsqSncgNLjmylH9kI9hsOqcRQgghqskfBwUcInrWmiFJpCzZiQyvVuQrR5yLM8lLjtU7jhBCCFEt1InNJX9pWDtOwYGUJbvRwNeTWGNzAE7//pvOaYQQQoiqV5iTji15HwCZAZ11TvMnKUt2JM2/pGWro2t1TiKEEEJUveM7fsWIjQQa4O7fUO84paQs2RG3loMBCM3YAVYZBFAIIUTdkn9wJQCnvLtjqAWDUV5gN2UpPT2dCRMm4OHhgZeXF5MnTyYnJ6fCZQoKCpg2bRq+vr64ubkxduxYUlNTy8yzY8cOBg4ciJeXF97e3gwZMoQ9e2rnY0Vad+pDunLDlXzSD23RO44QQghRdZQi+GzJ7zZj89r1HFS7KUsTJkzgwIEDrFy5kmXLlrFhwwamTp1a4TKPPPIIS5cuZdGiRaxfv56kpCTGjBlT+n5OTg5Dhw4lPDycbdu2sWnTJtzd3RkyZEitfHyDt5sT+80dAUjZuVTnNEIIIUTVST8ZS6AtlSJlpFnXIXrHKcMuytLBgwdZvnw5n332Gd26daN3797Mnj2bb7/9lqSkpHKXyczM5PPPP+ett95iwIABdOrUiblz57Jlyxa2bi0ZwyEuLo709HRefPFFWrRoQatWrXjuuedITU3lxIkTNbmJlZYXcT0A/kmrdU4ihBBCVJ2TWxYBsN+xHQG+vjqnKcsuylJ0dDReXl507vznlfGDBg3CYDCwbdu2cpeJiYnBYrEwaNCfh/IiIyMJDw8nOrpkDIcWLVrg6+vL559/TlFREfn5+Xz++edERUURERFRrdt0tboOvg2lGfHPPwbpx/SOI4QQQlQJt+MrAMgMH6xzkovZRVlKSUkhICCgzDSTyYSPjw8pKSmXXMbR0REvL68y0wMDA0uXcXd3Z926dXzzzTc4Ozvj5ubG8uXL+fXXXzGZLv2M4cLCQrKyssq8aoqPXyBaRK+SL+J+qbH1CiGEENUmJ40mhQcBCOsx5jIz1zxdy9LMmTPRNK3CV1xcXLWtPz8/n8mTJ9OrVy+2bt3K5s2bad26NSNGjCA/P/+Sy82aNQtPT8/SV1hYWLVlLFfkSACssT/V7HqFEEKI6hD3MxoKQjrQtGkLvdNc5NKHT2rAo48+ysSJEyucp3HjxgQFBZGWllZmenFxMenp6QQFBZW7XFBQEEVFRWRkZJQ5upSamlq6zIIFCzh+/DjR0dEYDIbSad7e3vz444+MGzeu3M9+8sknmTFjRunXWVlZNVqYzocPwZMnMJ7eRsG5Ezj51p6xKIQQQogrduCHkj9bjtI3xyXoWpb8/f3x9/e/7Hw9evQgIyODmJgYOnXqBMCaNWuw2Wx069at3GU6deqEg4MDq1evZuzYsQDEx8dz8uRJevToAUBeXh4Gg6HMs2cufG2r4PlrZrMZs9lc6e2sap6BDdmjRdFBxXJi/Te0GPO0blmEEEKIa5F77jQuCRvRAFrVvlNwYCfXLEVFRTF06FCmTJnC9u3b2bx5M9OnT2fcuHGEhIQAkJiYSGRkJNu3bwfA09OTyZMnM2PGDNauXUtMTAyTJk2iR48edO/eHYDrr7+e8+fPM23aNA4ePMiBAweYNGkSJpOJ/v3767a9l2MwaKSEjwDAOX6JvmGEEEKIa3B07TdoKGKNLcC7dp4psYuyBDB//nwiIyMZOHAgw4cPp3fv3syZM6f0fYvFQnx8PHl5eaXT3n77bUaOHMnYsWO57rrrCAoK4ocffih9PzIykqVLl7J371569OhBnz59SEpKYvny5QQHB9fo9l2p8N7jKFYGwgsPkZMoD9YVQghhn1wP/Q+A1PCROie5NE0ppfQOYe+ysrLw9PQkMzMTDw+PGlmnUoptLw+kuzWG2CaTaXnnWzWyXiGEEKKqnE3Yg9+X11GsDJyeFENEROMaXX9lf3/bzZElUZamaWRGllyAHpTwP7AW65xICCGEuDKn1nwKwC6nrjVelK6ElCU71mHQONKVGz62dJJ+/1nvOEIIIUSlqeIiGp4ueXRXQevxOqepmJQlOxbg7cGx4JILvQMOf6dzGiGEEKLyjmz+AR+VwVnlSYeBt+kdp0JSluxc5zGPAGA6vBwyE3VOI4QQQlSOy565AOz3H46bi7POaSomZcneBURBw96grBAzV+80QgghxOWdPUKD9K0oNCJveFjvNJclZakOKOgwCYCszZ9BcZHOaYQQQojL2Pk5AFqzwQQ1jNQ5zOVJWaoDchoNJVV542E9z/FNC/SOI4QQQlySJS8T6+/flHzRdYq+YSpJylId4OfpRkxAyRDxhuj3QYbOEkIIUUsd/OVDjEVZnHEMhSYD9Y5TKVKW6oimw/9JvnIkvPAwqXtW6h1HCCGEuIiyWgg88AUABxreBQb7qCH2kVJcVvNGDdnkPhSArDUymrcQQojaJ37NNwSqNM4pD9qPvE/vOJUmZakO8R7wMFal0SwrmsyEXXrHEUIIIf6kFE7b3wdgb8iteHl66hyo8qQs1SGdOnRks7kPAClLX9Q5jRBCCPGnI5v/S4TlCLnKTPORj+gd54pIWapDNE3D1P9fALRIXwOpsTonEkIIIQClMGz4DwDb/W+mQYNQnQNdGSlLdUzPHn0g6saSLza8rm8YIYQQAsg+sJzGRfHkK0eajnpC7zhXTMpSXdS35OgSB/4nR5eEEELoSynco98A4GzUHYSFNdQ50JWTslQXBbWhoNlIQHH4W/tr8EIIIeqQuJ8hcSc4uBA2Yqbeaa6KlKU6ak+z6SV3xp3fwLmDG/WOI4QQoh5S1mJyf3225IvuD4B7oL6BrpKUpTqqa5furHMZDEDmsmdkVG8hhBA17uCKT3HNOkq25o6tx4N6x7lqUpbqKE3T8Bv5LIXKgca5u0nasUTvSEIIIeqR4oIc/HeUXKu0M2wiBhcvfQNdAylLdVi7Vq1Z4zUWAO23Z8Bq0TmREEKI+mL/4lfwV2dJxo+OY/+ld5xrImWpjmt52wucVR4EF5/m8M9v6x1HCCFEPZCVdpIWRz4D4HDbx/H09NA50bWRslTHNQwJYlujaQAE73oXcs/pnEgIIURdl/Ddv3CmkAPGSHreOEXvONdMylI90OfWh0l1aYabyoE18hgUIYQQ1efknrW0O/crAIWDXsFkMuqc6NpJWaoHPFycCLztvZIvYr6EUzv0DSSEEKJushYTuOFJADa6DaVjj4E6B6oaUpbqi4Y9of0EQJH3v4fAWqx3IiGEEHXN9k8wnzuIcvam/T3v6p2mykhZqkdsA18gx+COS3osh39+S+84Qggh6hCVmQhrXwFAG/QC7j5BOieqOlKW6hGDuz/rw+4HoMHvb5KXlqBzIiGEEHWCUhz8fCoU5WBr0AU63Kl3oiolZame6Tf+cfZoUbhQQNLXU2VkbyGEENcsbtU8WmZtokgZOdjlZTDUrXpRt7ZGXJarkyNFI96lUDnQNHs7Cas+1TuSEEIIO5Z7PoXAzSXPf9scPJFW7bvrnKjqSVmqh7p07saqwHsA8Nv8PAXpp3VOJIQQwl4d+2oa3mRxRGtI17te1jtOtZCyVE/1vusFYrUmuJPL6XmT5XScEEKIKxa/ah5tzq/CqjSyBr+Nq4uL3pGqhZSlesrTzZnsobMpxJGmWVth5+d6RxJCCGFHslJPErzpaQDWB91dZ8ZUKo+UpXqsW7deGAe/UPLFimfg7BF9AwkhhLAPNhu2JffjQQ7xhiZ0n/iq3omqlZSles7U/T5o1BeK8yn6/h5UcaHekYQQQtR22+fglbwJm9EJw82f4uLsrHeiaiVlqb4zGOCmjyh08MAxbQ+H5j+udyIhhBC1WdJuWPlvAAyDX6JZy0765qkBUpYEeDZgdfOS2z5bJHxJ4vYl+uYRQghRKxXmZpD6xe1gLYIWI6DrFL0j1QgpSwKAoWP/wW9uowBw+3U6BedO6ZxICCFEraIUhz6fQmBxIsn4kTvsXdA0vVPVCClLAgCDQaPD5PeJoxGeKpvkz8ejiov0jiWEEKKW2L/0Pdqk/0axMnB6wGxcvfz1jlRjpCyJUv7eHuTe+CnZyplGefs49M0jekcSQghRC5zev5HmMS8CsD70PrpcN1znRDVLypIoo1PHLmxsUzICa4vj35C86WudEwkhhNBT7vkUHP87EUetmG3mnlw3qW6O0l0RKUviIsPGTuZXrwkABK3/F6Ts1zmREEIIPSirhVOfjidAneUEITSZ8jUOJqPesWqc3ZSl9PR0JkyYgIeHB15eXkyePJmcnJwKl5kzZw79+vXDw8MDTdPIyMioks+t6zRNY8j096DJADRLHnw7HnLP6h1LCCFEDbOteIbIvN/JVWZybpqLn5+f3pF0YTdlacKECRw4cICVK1eybNkyNmzYwNSpUytcJi8vj6FDh/LUU09V6efWBwaTCcZ+Dt6NIOMkaZ/dIgNWCiFEfRIzD+P2jwE4P2Q2rdp31zmQfjSlav8TVA8ePEjLli3ZsWMHnTt3BmD58uUMHz6c06dPExISUuHy69ato3///pw/fx4vL68q+9wLsrKy8PT0JDMzEw8Pj6vbyFqqOOUghZ8MwFXlER8ymhZT5tabW0WFEKK+Ort/Nb4/3IpmK4YBz8B1dXPA4sr+/raLI0vR0dF4eXmVFhqAQYMGYTAY2LZtW41/bmFhIVlZWWVedZUpKIqN7f6DVWm0SPofh5fM0juSEEKIanT2RCymxXej2YqxRI2GPo/pHUl3dlGWUlJSCAgIKDPNZDLh4+NDSkpKjX/urFmz8PT0LH2FhYVddQZ7MGTUHfwc/CAAzfa8xokN83VOJIQQojrknE+h6MsxeJFNnKEZeUPfk7MJ6FyWZs6ciaZpFb7i4uL0jFiuJ598kszMzNLXqVN1e7RrTdMY9o/nWeF2EwBBa/5J6v61+oYSQghRpYoLckj5aBQhtmROE4DrpMV4etatS0uulknPlT/66KNMnDixwnkaN25MUFAQaWlpZaYXFxeTnp5OUFDQVa//aj/XbDZjNpuver32yMFkpOcDn7D57RR6WbbivPhOsjxX4BHWSu9oQgghrpGyFhP/4ThaFcWRodzIvvlbosIi9I5Va+halvz9/fH3v/xw6T169CAjI4OYmBg6dSp5uvGaNWuw2Wx069btqtdfXZ9bV7m7ONHk3oXs/2AwrdVhLN/dDFNWgmeo3tGEEEJcLaXY98k9tM3aSKFy4PCAOXRp00nvVLWKXVyzFBUVxdChQ5kyZQrbt29n8+bNTJ8+nXHjxpXesZaYmEhkZCTbt28vXS4lJYXdu3dz5MgRAPbt28fu3btJT0+v9OeKsoL8fHC+ezFFXk1wyEmCr0dD7jm9YwkhhLhKOb/8m7ZpP2JVGts6vkqXviP0jlTr2EVZApg/fz6RkZEMHDiQ4cOH07t3b+bMmVP6vsViIT4+nry8vNJpH3/8MR06dGDKlCkAXHfddXTo0IGffvqp0p8rLtYkIgLHiT+CRwM4e4iCeaOx5tfdOwKFEKLO2vwebjtmA7Cl5b+5btQ/dA5UO9nFOEu1XV0eZ6lCZw5h+XQwDkXnOebanoiHfsFgdtU7lRBCiEoo3PYF5l//eGD6oOehd/17eHqdGmdJ1FL+zdnaaw7ZypnGubtJeP9GlCVf71RCCCEu48DPH/1ZlHo+VC+L0pWQsiSuSZ++g9nZew65ykyT7J0cmT0aZSnQO5YQQohLiF3xKVHbnwRgi+/NcP2LOieq/aQsiWvW//ob2dr9I/KVI82yojnywc1SmIQQohaKW/UlLbY8jkFTbPC4ga73z5FBJytBypKoEgOHjWVTl/cpUA40y9jI0fdHyyk5IYSoRWJXfEqzjf/EqCk2ug2l+4PzMJmMeseyC1KWRJW5fuRtbOw8m3zlSNPMLbBwPBTlXX5BIYQQ1erAzx8SueXx0qLU9aGvcXTQdahFuyJlSVSp628YT/ygL1AOrmjH1sKCW6EwR+9YQghRb6kdX9Bqx5Mlp948b6T7w/MxOzrqHcuuSFkSVa59nxvQ7vwBHN3h+EbOfDgUS44MXCmEEDVu87toP5fc6banwXh6PjgPB5McUbpSUpZE9QjvDnf9SJ7RA//MfaS+O4D8c3X7gcNCCFFrKMXp7x+Hlc+WfN3rYdr94yO5RukqSVkS1Se0E/sGf0uq8ibUcpysDwaSnRindyohhKjTlNXC3g/vIjT2j6dRDHoBrn9B7nq7BlKWRLXq1q0XKTf/xHGCCbSlUvzZEM7Gb9E7lhBC1EmWghwOvDOatmd+wqo01jT/N/R+WO9Ydk/Kkqh27dq0pejOn4mjEd4qA9eFN3Fq2w96xxJCiDol53wKJ94aROvsjRQqE1s6vsmA2x/TO1adIGVJ1IjmTZrgdt9vbDd2wJlCQn6dTNHWz/SOJYQQdcK5EwfJnN2PpkUHyVCu7B3wJX1GTdY7Vp0hZUnUmNCgAFo8/AtrXIZgxIbj8kfht2fAZtU7mhBC2C1LQjTGuYNpYEsmkQCSb/6RLn1H6h2rTpGyJGqUp7sL/R/7Fvo/UzJhy2zyvx6PNT9L32BCCGGPdi/A4Zsb8SKLeEMTbPf8RlSbLnqnqnOkLIkapxkM0PdxGPMZymjGOWEFSW/3JTctQe9oQghhF5S1mPxfnoEl94O1CKJuIHzGOsLCG+kdrU6SsiT00/YWYgZ8wxnlSVjRMYo+6kfq/rV6pxJCiFqtMPc8se/ciPP22SUT+jwGt3yFs5uHvsHqMClLQledew0m9bZfif/jTjmfxWM5vOwtUErvaEIIUeucObaHM2/1plX2ZgqVA7u7vA4D/w0G+XVenWTvCt21btkKj2mr2Oh4HQ5YabbzBeI+vhMlD+EVQohSh9YtwOWrwYRaT5OKDweGfEv7EVP1jlUvSFkStUKwvx9dHvsfy4KmYVUakalLOTd7AJw/rnc0IYTQlbJa2DNvBs3X3Y8rBewztcYyeR0dew7SO1q9IWVJ1BpOjiZG3Pt/rO36CVmaB37ZB+GT6yDuZ72jCSGEPrJTSJk9hHbHPwdgnffNNH10NaFhDXUOVr9IWRK1iqZpDBpxG64PbYbQLlCQCd/ezsmFj6CKi/SOJ4QQNefYevi4N8EZMeThxLrWs+j70Gc4OzvpnazekbIkaiWjdzhM/AW6TwMgPP4Ljr/ZT4YXEELUecpazPH//hv11SjIPQMBrTDdv4F+Nz+AJg/D1YWUJVF7mRxh6CusaPMmWcqFRvkHsH3Yk+Prv9Y7mRBCVIuMpKMc/k9fIva9h4aCDnfCP1bhGNhC72j1mpQlUesNGfsPEm5ezn6tOe7kEbF2Ogc/ukNG/RZC1ClxK+dhnNOb5oX7yVHObGz9fzDqfXB00TtavSdlSdiFdm3aETZjPb/43IlVaUSlLiXtjW6kHdysdzQhhLgmhbnn2fv+eCI3/xN38og1tCBp/G/0uXm63tHEH6QsCbvh6e7CsAdns6HnXJKVL8HWJPy/HwmrXwS5+FsIYYeO7/iVjDe60PbsL1iVxprAiTR6fAPNI9vqHU38haaUDJV8rbKysvD09CQzMxMPDxluviacPJ2ItvxfhJ1eVjIhsA2FN3yIOVR+wAgh7EBRHqx6HrZ/AsBpAknq9xZd+43UN1c9U9nf31KWqoCUJR0dWALLHoH8dCyYOBL1AJFj/41mctQ7mRBClCvn8Ebcfv0npB8FICHiNjxunIWvj6/OyeofKUs1SMqSzrJT2ffxRNrkbgHgpGMTnG/+EP/m3XUOJoQQfyrKzST260dpn7KoZIJ7CIyaDU1lJG69VPb3t1yzJOyfeyAtHl7G8uYvkq7cCC86ivf8YcR++TC2Qnm+nBBCf0c3/0DGGx1Li9LegFHwQLQUJTshR5aqgBxZqj2OJiSQ+O0/ua5wPQApxmCsQ1+nQZcbdE4mhKiPss+e5vj8h2lzfiUApwngVO9X6T5wjAwwWQvIabgaJGWpdrHaFGt+nEeb3S8SpKWXTGw1Boa8Ah7B+oYTQtQPNiuxP71N+O43cSMPq9LY5Hszbe98HW9vb73TiT9IWapBUpZqp8SUVJKWPEvn1O/RlA0c3cntPRPXXveB0aR3PCFEXZW0q+TGk6RdAMQZmpI/+A06dO+vczDxd1KWapCUpVoueU/JD67EGABOOTTCYcTrBLW/XudgQoi6JDc9meKVL+J5cCGgUGZ3tjaaTofRM3Ayyx26tZGUpRokZckO2KzE/TKbwB2v463lAHDQZyDh497CNSBC32xCCLumiovYt+QtGu1/F3f+uKmkza0w+GVwD9Q3nKiQlKUaJGXJfhw7eYqj3z/FgOylGDVFAY4caz6ZyDFPY3By1zueEMLOHI1egsOqZwm3ngDgkNYY9zFvEdxGTrnZAylLNUjKkn1RSrEtegPmVU/SwXYAgHTNG9ehz2LufJdczySEuKyUQzs5v2QmUXk7ADiv3Nnd/CF63PywnHKzI1KWapCUJftUUFTMhh8/J3L/m4RrqSUT/aPg+heh2fUgt/UKIf4uK5msX5/HLfY7DJqiSBnZ4juWFre+SHCQ3G1rb6Qs1SApS/YtPSsHh98/x33rW1CQAcAxl3a4jXiJgFZ99Q0nhKgVVF462uZ3YNscKM4HINrpOnxG/R8touSZlPZKylINkrJUR+Sfhw1vYNk6BwdVBEC8Ry8CRr+Md6OOOocTQujBkp/FgR9eo9nhL3C9cPF2WDdy+z2PS+MeMrCknZOyVIOkLNUt+2IPcGbZi/TNXYFRU9iURrzfIBrc9DweYa31jieEqAHF+VnELn2P0Ng5+JAJwBnXZvjf+DI0HyKn6euIOvdsuPT0dCZMmICHhwdeXl5MnjyZnJycCpeZM2cO/fr1w8PDA03TyMjIKPP+8ePHmTx5Mo0aNcLZ2ZkmTZrw3HPPUVRUVI1bImq7Ni1b0f/xb9l14wo2OvbBoCmizq3E7bPeHP7wNjgTr3dEIUQ1Kc7LYP+3z5L7Wkvaxr6OD5mcIoj1rWfh8XA0tBgqRakespvbfiZMmEBycjIrV67EYrEwadIkpk6dyoIFCy65TF5eHkOHDmXo0KE8+eSTF70fFxeHzWbjk08+oWnTpuzfv58pU6aQm5vLG2+8UZ2bI2o5TdPo3KkbquNSNm9eh7b+VXpattIsbTl8sAJaj4E+j0FgS72jCiGqQl461uiPyN/4Aa3JBeAkgRxpcS/dRj1AmIuzzgGFnuziNNzBgwdp2bIlO3bsoHPnzgAsX76c4cOHc/r0aUJCQipcft26dfTv35/z58/j5eVV4byvv/46H330EceOHat0PjkNV/fZbIroLevoeuJTHA7/XDo93rM3PkNm4t+yj47phBBXqygzFccdH8H2z6AoG4BjNOBo1H30uHEqbs5OOicU1amyv7/t4shSdHQ0Xl5epUUJYNCgQRgMBrZt28bo0aOrbF2ZmZn4+PhUOE9hYSGFhYWlX2dlZVXZ+kXtZDBo9OrdH3r3h+S9sPENbLE/0SJzE3w/kqMu7XEe+DghHUfIIXoh7ED22VMc/d8sIhMXAX9cehHYmpxuDxPQchSNnWSsJPEnu7hmKSUlhYCAgDLTTCYTPj4+pKSkVNl6jhw5wuzZs7n33nsrnG/WrFl4enqWvsLCwqosg7ADwW1Rt3zJ7zesYK3zYCzKSJO83YQsncDpVzpw9LdPUJYCvVMKIcqRciiG3bNvxzy7Pe0T5+NEEaedI2HcQrh3I24db8FNipL4G13L0syZM9E0rcJXXFxcjWRJTExk6NCh3HLLLUyZMqXCeZ988kkyMzNLX6dOnaqRjKL2uHBNU/8nFhF320ZWeowhV5kJtSTQZMu/yH4tCta/DnnpekcVQijFkegfif3PQIIWDKD9uZ9x1IrZb4xic/ePCXx0C0QOB4NdHD8QOtD1NNyjjz7KxIkTK5yncePGBAUFkZaWVmZ6cXEx6enpBAUFXXOOpKQk+vfvT8+ePZkzZ85l5zebzZjN5mter6gb2rRsRZuWczl28jSHfp1Nh6TvCCxOh7Uvw8Y3sLQcS067e/Bu0vnyHyaEqDqFObD3O9T2OTQ9U/IPb6vSiHHpjan3g3ToOVjGSRKVomtZ8vf3x9/f/7Lz9ejRg4yMDGJiYujUqRMAa9aswWaz0a1bt2vKkJiYSP/+/enUqRNz587FIP+yEFepcXgoje99jfSsf1N8bBmmrR9Ayl4c9s7He+98Epxbo3WdQkSf28Ekh/mFqC5njh8gaeVs2p5dhlaYjQZYjM5s9RxO8JAZdG0h46WJK2MXd8MBDBs2jNTUVD7++OPSoQM6d+5cOnRAYmIiAwcO5KuvvqJr165AybVOKSkp7Ny5kylTprBhwwbc3d0JDw/Hx8eHxMRE+vXrR8OGDfnyyy8xGo2l67uSI1ZyN5wol1Jwahs7F71Gu6z1OGhWAM5rXiQ1GkvE4PtxDWqmc0gh6gabpZCD679Di5lHy/yYP9/waQJdp0C78eDspVs+UTvVuRG809PTmT59OkuXLsVgMDB27Fjee+893NzcgJIBJhs1asTatWvp168fAM8//zwvvPDCRZ81d+5cJk6cyLx585g0aVK567uS3SJlSVzOgfh4Tq/6iA5p/yNAyyidftS9M42HTEOLHClHm4S4CmdPxHJi5Uc0Pr0Eb0ruTLYpjV1OXXDpdT9RvW+Sa5HEJdW5slSbSVkSlZWelUvMbwvwOLiALsW7MGh//O/n7AOtx5LdYizuTbrL8ANCVCT/PBxYQtGub3FM3Fo6OQ1v4gJvIHTgvTRuLqfaxOVJWapBUpbElVJKsXvfXsKOL8bv8CLITi59L8XUgOzmY2jY/x4c/RvrmFKI2kNZCjixbQmm/YsIPbMBrCVjI1kxsMfcicK2d9Fh0G04yc034gpIWapBUpbENbEWQ8I6Dq/6ggbJq3DR/hzw9LhLa4pb3UZE3wmY3Hx1DCmEDmw2Tu1Zw/mt39Ao9Tfc/3gMCQCBraHtreS3uAlnv4b6ZRR2TcpSDZKyJKrK4dMpxK1ZgH/CErrY9mL84zSdBROFjQbi1mUCNL0eHF10TipENVGK5CO7Ob3hK8JOLyNI/TlsTIryYZ/vENoO/QeBzWUoDnHtpCzVIClLoqoVW23sOnCQtOj5NEn+mUiO//mmyZm0wF7kNB5GRPexGFy9dcspRJWw2VCJO9HilsHBZZB+tPStHOXMLvfroM2ttO8zEncXeVabqDpSlmqQlCVRnSxWG0nxMTRMXAoH/gcZJ0vfK8bISfeOaFEjCe1xMw7eoTomFaLyVHEhSbtXkfH7DwSnrMHH9udo98royG6HDhRE3UzLfuPw9JSfq6J6SFmqQVKWRI1RityTu9i8dC4RZ9bSXCv7qJ0EpyiKm42gWd/x4NdUp5BClK8wL5Nj0T9i2b+URuc34U5e6Xv5mgvOrYZB5Ehodj2Y3XVMKuoLKUs1SMqS0EOBxcqO33dyPuYHGqatoR2Hys7g0wRr4/4k+fYgtMP1aE6e+gQV9ZdSkLofjq7BemQ1xQlbMGMpffus8mSfW0+sLUbSrs+N+HvLz09Rs6Qs1SApS0JvVptif3w8qdt/oFvhFjxTosFWXPp+MUZOubamOKIfwR1H4NaoMxiMFXyiEFenKCOZ0zE/Uxi3itDz23AvLvsw6dMEcsyvP+Y2N9K66yBcneVWf6EfKUs1SMqSqHUKMuH4Jo5E/4Tp+DoitJQyb2drbpzy6kpgh2H4th0KXuE6BRX2zlKQS8Lvq8mN/Q3f1M2EW46VeV+ZXNAa9YEm/ckM7o17aCsMRhlRW9QOUpZqkJQlUZsVWKzs2ruLtF3L8U7ZRHvLHjy0vLIzeYSS4deRNK/2hLYfgEtoWznyJMpVnJWK8fQ2tFPb4NQ2ihN3YVJ/HsW0KY04rRGnvLvj2GIQXfoMxc3VVcfEQlyalKUaJGVJ2JO0jBzifl+P9dBq+pn2oyXuBGUtM0+e5kyyexssDbriE3kd/pE90eSC2/pHKbJOHyB53zqsJ7bic+53gooTL5otFR+OuHelOKIfDToOo0lEQzR5ZI+wA1KWapCUJWHXCnMgcSeb1izDMWkHUdZ43LX8MrMUY8AQ1AZDeDcIaktRQBscg1rKw3/rEqUgOwVS9pISv40z8dGE5+zDk+wys9mURqZ7E7xb9IHw7hSFdMXkEyGn1oRdkrJUg6QsibokMT2HuD3R5B/dgvuZGJoWHKCBdvai+SyYSDE3Is+nJQ6h7fFp2hmviI5gdtMhtbgiNhv5qYdIO7SDvJO7MKXto6HlKI4F5y6aNV85Em9sTpp3ewjrRmjbvrSICMdokCNHwv5JWapBUpZEXVZYbOVc4jFCsvZA0i5syXvITvgdTy33onltaJx1DCWgWRcIag2+zSjwbIxTYDMwyV1PNe7C0aJzh8lKjOPI/u24nz9Ig8IjuFBw8fyaAfyaYwlozdb8MNya9qJRmx54uUsBFnWTlKUaJGVJ1DeZuUXEHzrA2cM7sCbtwTc7jkbFxwjW0sud34qBc8YAst0isHg1xRTQHPcGUfg0bImDVwOQ61uuiSrM4fypg2SciqUwJR4t/QjOWQkEFyfiaL241AIUKAeOaA1JcSkpRw0iu9G2Y0957qCoV6Qs1SApS0JAfpGVhBMncEk/QITlCKTFYUk7RH5y3MV33/2Voxv4NEJ5NCA21x2DZxgu/uH4BDfCLaAhmkeD+n1tlFKQl07BuZOcSzqGY24S/razkJVI8flTnE88gr+6+DRpKc0AXg1Rfs2IzvChOLAN7o06EtasHX4ecpeaqN+kLNUgKUtCXFpmXhEJJxI4c/wA+clxOGYcwzPvOEGWUzTUzmDAWuHyNjQyDF4Uu4YQENoYPBpgc/YlLsuEi2cAbt4BePgE4OjuDy4+4OBcQ1t2DWxWKMjEmnuOrHMpkJeOt5YD+elYc86xLz4e5/wU3AtT8bGewYmiy37kOeVOoqEB6U7h5Hk0whjQnODGbWnbpp2cAhXiEqQs1SApS0JcOZtNUVRUiFPOKUhPICvtONt27cUhNwm3wlR8rWcI0dIxa5bLf9hfFOCIxdEbd58AcPbB6uDKwbMWcHBBc3DG6OiCZnYBkxM4OOPu7kGIX0nJsmkmTqTnY9Q0jAYwGg0YNbCpklHSnRwM+LiWFA+btZjDSWfBkg+WPJSlAK04H1tRHraiPDxMVsLcAEs+tqJcjp1KxKU4EzdbFm4qBwNX9qP3jPIgTfPD6hZC25atwLMBeDQgNs8LtwaRBAWF4GiSO9KEuBJSlmqQlCUhql6BxcqZrALSzyaTm3aCEEM6EabzkJVIbuYZ9h5KwNmSgastEy9y8CIHB63io1S1TZZyJgM3rGZvGoWHg7MPuPgQnWak0CUEB+9QnP3C8QhsiL+XB57ODnpHFqJOkbJUg6QsCaEfpRQZeRYy8orIyz5PQeYZ/E25hDsVQF46+blZbI47jbUoD4ryoLjkCJDJVoijrYAGrtDIywCWfKzFRRxKzaHkp6JCKUqP/2gaeDo5EOpdcppPaRr7Ugsp0pywaGaKDGaKDU5YjWaUgzO+np50btYAHEqOYm1NtqKcfXBw88Xs6Y+zhx8eri74uDpikjGKhNCFlKUaJGVJCCGEsD+V/f0t/5wRQgghhKiAlCUhhBBCiApIWRJCCCGEqICUJSGEEEKICkhZEkIIIYSogJQlIYQQQogKSFkSQgghhKiAlCUhhBBCiApIWRJCCCGEqICUJSGEEEKICkhZEkIIIYSogJQlIYQQQogKSFkSQgghhKiAlCUhhBBCiAqY9A5QFyilAMjKytI5iRBCCCEq68Lv7Qu/xy9FylIVyM7OBiAsLEznJEIIIYS4UtnZ2Xh6el7yfU1drk6Jy7LZbCQlJeHu7o6maXrHAUraclhYGKdOncLDw0PvOLWG7JeLyT4pn+yXi8k+uZjsk/LZy35RSpGdnU1ISAgGw6WvTJIjS1XAYDAQGhqqd4xyeXh41OpvVL3IfrmY7JPyyX65mOyTi8k+KZ897JeKjihdIBd4CyGEEEJUQMqSEEIIIUQFpCzVUWazmeeeew6z2ax3lFpF9svFZJ+UT/bLxWSfXEz2Sfnq2n6RC7yFEEIIISogR5aEEEIIISogZUkIIYQQogJSloQQQgghKiBlSQghhBCiAlKW7Fh6ejoTJkzAw8MDLy8vJk+eTE5OToXLFBQUMG3aNHx9fXFzc2Ps2LGkpqZeNN+8efNo27YtTk5OBAQEMG3atOrajCpVnfsE4Ny5c4SGhqJpGhkZGdWwBdWjOvbLnj17GD9+PGFhYTg7OxMVFcW7775b3Zty1T744AMiIiJwcnKiW7dubN++vcL5Fy1aRGRkJE5OTrRp04ZffvmlzPtKKZ599lmCg4NxdnZm0KBBHD58uDo3ocpV5T6xWCw88cQTtGnTBldXV0JCQrjrrrtISkqq7s2oclX9vfJX9913H5qm8c4771Rx6upVHfvk4MGD3HjjjXh6euLq6kqXLl04efJkdW3CtVHCbg0dOlS1a9dObd26VW3cuFE1bdpUjR8/vsJl7rvvPhUWFqZWr16tdu7cqbp376569uxZZp4333xThYSEqPnz56sjR46oPXv2qB9//LE6N6XKVNc+uWDUqFFq2LBhClDnz5+vhi2oHtWxXz7//HP10EMPqXXr1qmjR4+qr7/+Wjk7O6vZs2dX9+ZcsW+//VY5OjqqL774Qh04cEBNmTJFeXl5qdTU1HLn37x5szIajeo///mPio2NVc8884xycHBQ+/btK53n1VdfVZ6enmrJkiVqz5496sYbb1SNGjVS+fn5NbVZ16Sq90lGRoYaNGiQ+u6771RcXJyKjo5WXbt2VZ06darJzbpm1fG9csEPP/yg2rVrp0JCQtTbb79dzVtSdapjnxw5ckT5+Pioxx9/XP3+++/qyJEj6scff7zkZ+pNypKdio2NVYDasWNH6bRff/1VaZqmEhMTy10mIyNDOTg4qEWLFpVOO3jwoAJUdHS0Ukqp9PR05ezsrFatWlW9G1ANqmufXPDhhx+qvn37qtWrV9tVWaru/fJXDzzwgOrfv3/Vha8iXbt2VdOmTSv92mq1qpCQEDVr1qxy57/11lvViBEjykzr1q2buvfee5VSStlsNhUUFKRef/310vczMjKU2WxWCxcurIYtqHpVvU/Ks337dgWoEydOVE3oGlBd++X06dOqQYMGav/+/aphw4Z2VZaqY5/cdttt6o477qiewNVATsPZqejoaLy8vOjcuXPptEGDBmEwGNi2bVu5y8TExGCxWBg0aFDptMjISMLDw4mOjgZg5cqV2Gw2EhMTiYqKIjQ0lFtvvZVTp05V7wZVgeraJwCxsbG8+OKLfPXVVxU+bLE2qs798neZmZn4+PhUXfgqUFRURExMTJltMRgMDBo06JLbEh0dXWZ+gCFDhpTOn5CQQEpKSpl5PD096datW4X7p7aojn1SnszMTDRNw8vLq0pyV7fq2i82m40777yTxx9/nFatWlVP+GpSHfvEZrPx888/07x5c4YMGUJAQADdunVjyZIl1bYd18q+fuqLUikpKQQEBJSZZjKZ8PHxISUl5ZLLODo6XvSDKzAwsHSZY8eOYbPZeOWVV3jnnXdYvHgx6enpXH/99RQVFVXLtlSV6tonhYWFjB8/ntdff53w8PBqyV6dqmu//N2WLVv47rvvmDp1apXkripnz57FarUSGBhYZnpF25KSklLh/Bf+vJLPrE2qY5/8XUFBAU888QTjx4+v9Q9SvaC69strr72GyWTioYceqvrQ1aw69klaWho5OTm8+uqrDB06lN9++43Ro0czZswY1q9fXz0bco2kLNUyM2fORNO0Cl9xcXHVtn6bzYbFYuG9995jyJAhdO/enYULF3L48GHWrl1bbeutiN775MknnyQqKoo77rij2tZxNfTeL3+1f/9+Ro0axXPPPcfgwYNrZJ2i9rJYLNx6660opfjoo4/0jqOrmJgY3n33XebNm4emaXrHqRVsNhsAo0aN4pFHHqF9+/bMnDmTkSNH8vHHH+ucrnwmvQOIsh599FEmTpxY4TyNGzcmKCiItLS0MtOLi4tJT08nKCio3OWCgoIoKioiIyOjzBGD1NTU0mWCg4MBaNmyZen7/v7++Pn56XaXgt77ZM2aNezbt4/FixcDJXdBAfj5+fH000/zwgsvXOWWXRu998sFsbGxDBw4kKlTp/LMM89c1bZUJz8/P4xG40V3OJa3LRcEBQVVOP+FP1NTU0v/n7nwdfv27aswffWojn1ywYWidOLECdasWWM3R5WgevbLxo0bSUtLK3NU2mq18uijj/LOO+9w/Pjxqt2IKlYd+8TPzw+TyVTm9wxAVFQUmzZtqsL0VUjvi6bE1blw0e7OnTtLp61YsaJSF+0uXry4dFpcXFyZi3bj4+MVUOYC73PnzimDwaBWrFhRTVtTNaprnxw5ckTt27ev9PXFF18oQG3ZsqXW3rnxV9W1X5RSav/+/SogIEA9/vjj1bcBVaBr165q+vTppV9brVbVoEGDCi9QHTlyZJlpPXr0uOgC7zfeeKP0/czMTLu7wLsq94lSShUVFambbrpJtWrVSqWlpVVP8GpW1fvl7NmzZX5+7Nu3T4WEhKgnnnhCxcXFVd+GVKHq+F7p0aPHRRd433TTTZe9S1cvUpbs2NChQ1WHDh3Utm3b1KZNm1SzZs3KfKOdPn1atWjRQm3btq102n333afCw8PVmjVr1M6dO1WPHj1Ujx49ynzuqFGjVKtWrdTmzZvVvn371MiRI1XLli1VUVFRjW3b1aquffJXa9eutau74ZSqnv2yb98+5e/vr+644w6VnJxc+qqNvyS//fZbZTab1bx581RsbKyaOnWq8vLyUikpKUoppe688041c+bM0vk3b96sTCaTeuONN9TBgwfVc889V+7QAV5eXurHH39Ue/fuVaNGjbK7oQOqcp8UFRWpG2+8UYWGhqrdu3eX+Z4oLCzUZRuvRnV8r/ydvd0NVx375IcfflAODg5qzpw56vDhw2r27NnKaDSqjRs31vj2VYaUJTt27tw5NX78eOXm5qY8PDzUpEmTVHZ2dun7CQkJClBr164tnZafn68eeOAB5e3trVxcXNTo0aNVcnJymc/NzMxU99xzj/Ly8lI+Pj5q9OjR6uTJkzW1WdekuvbJX9ljWaqO/fLcc88p4KJXw4YNa3DLKm/27NkqPDxcOTo6qq5du6qtW7eWvte3b1919913l5n/+++/V82bN1eOjo6qVatW6ueffy7zvs1mU//+979VYGCgMpvNauDAgSo+Pr4mNqXKVOU+ufA9VN7rr99X9qCqv1f+zt7KklLVs08+//xz1bRpU+Xk5KTatWunlixZUt2bcdU0pf64AEMIIYQQQlxE7oYTQgghhKiAlCUhhBBCiApIWRJCCCGEqICUJSGEEEKICkhZEkIIIYSogJQlIYQQQogKSFkSQgghhKiAlCUhhBBCiApIWRJCCCGEqICUJSGEEEKICkhZEkKIvzlz5gxBQUG88sorpdO2bNmCo6Mjq1ev1jGZEEIP8mw4IYQoxy+//MJNN93Eli1baNGiBe3bt2fUqFG89dZbekcTQtQwKUtCCHEJ06ZNY9WqVXTu3Jl9+/axY8cOzGaz3rGEEDVMypIQQlxCfn4+rVu35tSpU8TExNCmTRu9IwkhdCDXLAkhxCUcPXqUpKQkbDYbx48f1zuOEEIncmRJCCHKUVRURNeuXWnfvj0tWrTgnXfeYd++fQQEBOgdTQhRw6QsCSFEOR5//HEWL17Mnj17cHNzo2/fvnh6erJs2TK9owkhapichhNCiL9Zt24d77zzDl9//TUeHh4YDAa+/vprNm7cyEcffaR3PCFEDZMjS0IIIYQQFZAjS0IIIYQQFZCyJIQQQghRASlLQgghhBAVkLIkhBBCCFEBKUtCCCGEEBWQsiSEEEIIUQEpS0IIIYQQFZCyJIQQQghRASlLQgghhBAVkLIkhBBCCFEBKUtCCCGEEBWQsiSEEEIIUYH/B+AwMSH9OGxNAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"constrained_sol = sol\n",
|
||
"time_lin = np.linspace(0, T, solver.problem.T)\n",
|
||
"fig, axs = plt.subplots(4, 3, constrained_layout=True)\n",
|
||
"for i, frame_idx in enumerate(supportFeetIds):\n",
|
||
" ct_frame_name = rmodel.frames[frame_idx].name + \"_contact\"\n",
|
||
" forces = np.array(constrained_sol[ct_frame_name])\n",
|
||
" axs[i, 0].plot(time_lin, forces[:, 0], label=\"Fx\")\n",
|
||
" axs[i, 1].plot(time_lin, forces[:, 1], label=\"Fy\")\n",
|
||
" axs[i, 2].plot(time_lin, forces[:, 2], label=\"Fz\")\n",
|
||
" # Add friction cone constraints \n",
|
||
" Fz_lb = (1./MU)*np.sqrt(forces[:, 0]**2 + forces[:, 1]**2)\n",
|
||
" # Fz_ub = np.zeros(time_lin.shape)\n",
|
||
" # axs[i, 2].plot(time_lin, Fz_ub, 'k-.', label='ub')\n",
|
||
" axs[i, 2].plot(time_lin, Fz_lb, 'k-.', label='lb')\n",
|
||
" axs[i, 0].grid()\n",
|
||
" axs[i, 1].grid()\n",
|
||
" axs[i, 2].grid()\n",
|
||
" axs[i, 0].set_ylabel(ct_frame_name)\n",
|
||
"axs[0, 0].legend()\n",
|
||
"axs[0, 1].legend()\n",
|
||
"axs[0, 2].legend()\n",
|
||
"\n",
|
||
"axs[3, 0].set_xlabel(r\"$F_x$\")\n",
|
||
"axs[3, 1].set_xlabel(r\"$F_y$\")\n",
|
||
"axs[3, 2].set_xlabel(r\"$F_z$\")\n",
|
||
"fig.suptitle('Force', fontsize=16)\n",
|
||
"\n",
|
||
"\n",
|
||
"comDes = np.array(comDes)\n",
|
||
"centroidal_sol = np.array(constrained_sol['centroidal'])\n",
|
||
"plt.figure()\n",
|
||
"plt.plot(comDes[:, 0], comDes[:, 1], \"--\", label=\"reference\")\n",
|
||
"plt.plot(centroidal_sol[:, 0], centroidal_sol[:, 1], label=\"solution\")\n",
|
||
"plt.legend()\n",
|
||
"plt.xlabel(\"x\")\n",
|
||
"plt.ylabel(\"y\")\n",
|
||
"plt.title(\"COM trajectory\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 111,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Joint FL_hip_joint has id 4\n",
|
||
"Joint FL_thigh_joint has id 5\n",
|
||
"Joint FL_calf_joint has id 6\n",
|
||
"Joint FR_hip_joint has id 1\n",
|
||
"Joint FR_thigh_joint has id 2\n",
|
||
"Joint FR_calf_joint has id 3\n",
|
||
"Joint RL_hip_joint has id 10\n",
|
||
"Joint RL_thigh_joint has id 11\n",
|
||
"Joint RL_calf_joint has id 12\n",
|
||
"Joint RR_hip_joint has id 7\n",
|
||
"Joint RR_thigh_joint has id 8\n",
|
||
"Joint RR_calf_joint has id 9\n",
|
||
"Joint Joint1 has id 13\n",
|
||
"Joint Joint2 has id 14\n",
|
||
"Joint Joint3 has id 15\n",
|
||
"Joint Joint4 has id 16\n",
|
||
"Joint Joint5 has id 17\n",
|
||
"Joint Joint6 has id 18\n",
|
||
"Joint Joint7_1 has id 19\n",
|
||
"Joint Joint7_2 has id 20\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"mujoco_joint_names = \\\n",
|
||
"['FL_hip_joint',\n",
|
||
" 'FL_thigh_joint',\n",
|
||
" 'FL_calf_joint',\n",
|
||
" 'FR_hip_joint',\n",
|
||
" 'FR_thigh_joint',\n",
|
||
" 'FR_calf_joint',\n",
|
||
" 'RL_hip_joint',\n",
|
||
" 'RL_thigh_joint',\n",
|
||
" 'RL_calf_joint',\n",
|
||
" 'RR_hip_joint',\n",
|
||
" 'RR_thigh_joint',\n",
|
||
" 'RR_calf_joint',\n",
|
||
" 'Joint1',\n",
|
||
" 'Joint2',\n",
|
||
" 'Joint3',\n",
|
||
" 'Joint4',\n",
|
||
" 'Joint5',\n",
|
||
" 'Joint6',\n",
|
||
" 'Joint7_1',\n",
|
||
" 'Joint7_2']\n",
|
||
"\n",
|
||
"for joint_name in mujoco_joint_names:\n",
|
||
" joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, joint_name)\n",
|
||
" print(f'Joint {joint_name} has id {joint_id}')\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 112,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Joint FL_HAA_joint has id 2\n",
|
||
"Joint FL_HFE_joint has id 3\n",
|
||
"Joint FL_KFE_joint has id 4\n",
|
||
"Joint FR_HAA_joint has id 5\n",
|
||
"Joint FR_HFE_joint has id 6\n",
|
||
"Joint FR_KFE_joint has id 7\n",
|
||
"Joint HL_HAA_joint has id 8\n",
|
||
"Joint HL_HFE_joint has id 9\n",
|
||
"Joint HL_KFE_joint has id 10\n",
|
||
"Joint HR_HAA_joint has id 11\n",
|
||
"Joint HR_HFE_joint has id 12\n",
|
||
"Joint HR_KFE_joint has id 13\n",
|
||
"Joint Joint1 has id 14\n",
|
||
"Joint Joint2 has id 15\n",
|
||
"Joint Joint3 has id 16\n",
|
||
"Joint Joint4 has id 17\n",
|
||
"Joint Joint5 has id 18\n",
|
||
"Joint Joint6 has id 19\n",
|
||
"Joint Joint7_1 has id 20\n",
|
||
"Joint Joint7_2 has id 21\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"pinocchio_joint_names = \\\n",
|
||
"['FL_HAA_joint',\n",
|
||
" 'FL_HFE_joint',\n",
|
||
" 'FL_KFE_joint',\n",
|
||
" 'FR_HAA_joint',\n",
|
||
" 'FR_HFE_joint',\n",
|
||
" 'FR_KFE_joint',\n",
|
||
" 'HL_HAA_joint',\n",
|
||
" 'HL_HFE_joint',\n",
|
||
" 'HL_KFE_joint',\n",
|
||
" 'HR_HAA_joint',\n",
|
||
" 'HR_HFE_joint',\n",
|
||
" 'HR_KFE_joint',\n",
|
||
" 'Joint1',\n",
|
||
" 'Joint2',\n",
|
||
" 'Joint3',\n",
|
||
" 'Joint4',\n",
|
||
" 'Joint5',\n",
|
||
" 'Joint6',\n",
|
||
" 'Joint7_1',\n",
|
||
" 'Joint7_2']\n",
|
||
"\n",
|
||
"\n",
|
||
"for joint_name in pinocchio_joint_names:\n",
|
||
" joint_id = rmodel.getJointId(joint_name)\n",
|
||
" print(f'Joint {joint_name} has id {joint_id}')\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 116,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"pin_idx_to_mujoco_idx = []\n",
|
||
"for i in range(len(pinocchio_joint_names)):\n",
|
||
" joint_name = pinocchio_joint_names[i]\n",
|
||
" pin_joint_id = rmodel.getJointId(joint_name)\n",
|
||
" mujoco_joint_name = mujoco_joint_names[i]\n",
|
||
" mujoco_joint_id = mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_JOINT, mujoco_joint_name)\n",
|
||
" pin_idx_to_mujoco_idx.append(mujoco_joint_id)\n",
|
||
"\n",
|
||
"pin_idx_to_mujoco_idx = np.array(pin_idx_to_mujoco_idx) - min(pin_idx_to_mujoco_idx)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import mujoco\n",
|
||
"model = mujoco.MjModel.from_xml_path('/home/Go2py/Go2Py/assets/mujoco/go2_with_arm.xml')\n",
|
||
"data = mujoco.MjData(model)\n",
|
||
"viewer = mujoco.viewer.launch_passive(model, data)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 118,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import time\n",
|
||
"for k in range(1000):\n",
|
||
" i = k % len(xs)\n",
|
||
" q0 = xs[i][:27]\n",
|
||
" qx = q0[3]\n",
|
||
" qy = q0[4]\n",
|
||
" qz = q0[5]\n",
|
||
" qw = q0[6]\n",
|
||
" q0[3:7] = [qw, qx, qy, qz]\n",
|
||
" q0[7:] = q0[7:][pin_idx_to_mujoco_idx]\n",
|
||
" data.qpos[:] = q0\n",
|
||
"\n",
|
||
" mujoco.mj_step(model, data)\n",
|
||
" viewer.sync()\n",
|
||
" time.sleep(1/60)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "base",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|