360 lines
13 KiB
Python
Executable File
360 lines
13 KiB
Python
Executable File
import os
|
|
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import onnxruntime
|
|
|
|
class RunningMeanStd(nn.Module):
|
|
def __init__(self, shape = (), epsilon=1e-08):
|
|
super(RunningMeanStd, self).__init__()
|
|
self.register_buffer("running_mean", torch.zeros(shape))
|
|
self.register_buffer("running_var", torch.ones(shape))
|
|
self.register_buffer("count", torch.ones(()))
|
|
|
|
self.epsilon = epsilon
|
|
|
|
def forward(self, obs, update = True):
|
|
if update:
|
|
self.update(obs)
|
|
|
|
return (obs - self.running_mean) / torch.sqrt(self.running_var + self.epsilon)
|
|
|
|
def update(self, x):
|
|
"""Updates the mean, var and count from a batch of samples."""
|
|
batch_mean = torch.mean(x, dim=0)
|
|
batch_var = torch.var(x, correction=0, dim=0)
|
|
batch_count = x.shape[0]
|
|
self.update_from_moments(batch_mean, batch_var, batch_count)
|
|
|
|
def update_from_moments(self, batch_mean, batch_var, batch_count):
|
|
"""Updates from batch mean, variance and count moments."""
|
|
self.running_mean, self.running_var, self.count = update_mean_var_count_from_moments(
|
|
self.running_mean, self.running_var, self.count, batch_mean, batch_var, batch_count
|
|
)
|
|
|
|
def update_mean_var_count_from_moments(
|
|
mean, var, count, batch_mean, batch_var, batch_count
|
|
):
|
|
"""Updates the mean, var and count using the previous mean, var, count and batch values."""
|
|
delta = batch_mean - mean
|
|
tot_count = count + batch_count
|
|
|
|
new_mean = mean + delta * batch_count / tot_count
|
|
m_a = var * count
|
|
m_b = batch_var * batch_count
|
|
M2 = m_a + m_b + torch.square(delta) * count * batch_count / tot_count
|
|
new_var = M2 / tot_count
|
|
new_count = tot_count
|
|
|
|
return new_mean, new_var, new_count
|
|
|
|
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
|
torch.nn.init.orthogonal_(layer.weight, std)
|
|
torch.nn.init.constant_(layer.bias, bias_const)
|
|
return layer
|
|
|
|
class Agent(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.critic = nn.Sequential(
|
|
layer_init(nn.Linear(45, 512)),
|
|
nn.ELU(),
|
|
layer_init(nn.Linear(512, 256)),
|
|
nn.ELU(),
|
|
layer_init(nn.Linear(256, 128)),
|
|
nn.ELU(),
|
|
layer_init(nn.Linear(128, 1), std=1.0),
|
|
)
|
|
self.actor_mean = nn.Sequential(
|
|
layer_init(nn.Linear(45, 512)),
|
|
nn.ELU(),
|
|
layer_init(nn.Linear(512, 256)),
|
|
nn.ELU(),
|
|
layer_init(nn.Linear(256, 128)),
|
|
nn.ELU(),
|
|
layer_init(nn.Linear(128, 12), std=0.01),
|
|
)
|
|
self.actor_logstd = nn.Parameter(torch.zeros(1, 12))
|
|
|
|
self.obs_rms = RunningMeanStd(shape = (45,))
|
|
self.value_rms = RunningMeanStd(shape = ())
|
|
|
|
def get_value(self, x):
|
|
return self.critic(x)
|
|
|
|
def get_action(self, x):
|
|
action_mean = self.actor_mean(x)
|
|
return action_mean
|
|
|
|
def forward(self, x):
|
|
action_mean = self.actor_mean(self.obs_rms(x, update = False))
|
|
return action_mean
|
|
|
|
class Policy:
|
|
def __init__(self, checkpoint_path):
|
|
self.agent = Agent()
|
|
actor_sd = torch.load(checkpoint_path, map_location="cpu")
|
|
self.agent.load_state_dict(actor_sd)
|
|
onnx_file_name = checkpoint_path.replace(".pt", ".onnx")
|
|
|
|
dummy_input = torch.randn(1, 45)
|
|
with torch.no_grad():
|
|
torch_out = self.agent(dummy_input)
|
|
|
|
torch.onnx.export(
|
|
self.agent, # The model being converted
|
|
dummy_input, # An example input for the model
|
|
onnx_file_name, # Output file name
|
|
export_params=True, # Store trained parameter weights inside the model file
|
|
opset_version=11, # ONNX version (opset) to export to, adjust as needed
|
|
do_constant_folding=True, # Whether to perform constant folding optimization
|
|
input_names=['input'], # Name of the input in the ONNX graph (can be customized)
|
|
output_names=['action'], # Name of the output (assuming get_action and get_value are key outputs)
|
|
)
|
|
|
|
self.ort_session = onnxruntime.InferenceSession(onnx_file_name, providers=["CPUExecutionProvider"])
|
|
ort_inputs = {'input': dummy_input.numpy()}
|
|
ort_outs = self.ort_session.run(None, ort_inputs)
|
|
np.testing.assert_allclose(torch_out.numpy(), ort_outs[0], rtol=1e-03, atol=1e-05)
|
|
print("Exported model has been tested with ONNXRuntime, and the result looks good!")
|
|
|
|
def __call__(self, obs, info):
|
|
#with torch.no_grad():
|
|
# action = self.agent.get_action(self.agent.obs_rms(obs.unsqueeze(0), update = False))
|
|
ort_inputs = {'input': obs[np.newaxis].astype(np.float32)}
|
|
ort_outs = self.ort_session.run(None, ort_inputs)
|
|
return ort_outs[0]
|
|
|
|
class CommandInterface:
|
|
def __init__(self, limits=None):
|
|
self.limits = limits
|
|
self.x_vel_cmd, self.y_vel_cmd, self.yaw_vel_cmd = 0.0, 0.0, 0.0
|
|
|
|
def get_command(self):
|
|
command = np.zeros((3,))
|
|
command[0] = self.x_vel_cmd
|
|
command[1] = self.y_vel_cmd
|
|
command[2] = self.yaw_vel_cmd
|
|
return command, False
|
|
|
|
|
|
class CaTAgent:
|
|
def __init__(self, command_profile, robot):
|
|
self.robot = robot
|
|
self.command_profile = command_profile
|
|
# self.lcm_bridge = LCMBridgeClient(robot_name=self.robot_name)
|
|
self.sim_dt = 0.001
|
|
self.decimation = 20
|
|
self.dt = self.sim_dt * self.decimation
|
|
self.timestep = 0
|
|
|
|
self.device = "cpu"
|
|
|
|
joint_names = [
|
|
"FL_hip_joint",
|
|
"FL_thigh_joint",
|
|
"FL_calf_joint",
|
|
"FR_hip_joint",
|
|
"FR_thigh_joint",
|
|
"FR_calf_joint",
|
|
"RL_hip_joint",
|
|
"RL_thigh_joint",
|
|
"RL_calf_joint",
|
|
"RR_hip_joint",
|
|
"RR_thigh_joint",
|
|
"RR_calf_joint",
|
|
]
|
|
|
|
policy_joint_names = joint_names
|
|
|
|
unitree_joint_names = [
|
|
"FR_hip_joint",
|
|
"FR_thigh_joint",
|
|
"FR_calf_joint",
|
|
"FL_hip_joint",
|
|
"FL_thigh_joint",
|
|
"FL_calf_joint",
|
|
"RR_hip_joint",
|
|
"RR_thigh_joint",
|
|
"RR_calf_joint",
|
|
"RL_hip_joint",
|
|
"RL_thigh_joint",
|
|
"RL_calf_joint",
|
|
]
|
|
|
|
policy_to_unitree_map = []
|
|
unitree_to_policy_map = []
|
|
for i, policy_joint_name in enumerate(policy_joint_names):
|
|
id = np.where([name == policy_joint_name for name in unitree_joint_names])[0][0]
|
|
policy_to_unitree_map.append((i, id))
|
|
self.policy_to_unitree_map = np.array(policy_to_unitree_map).astype(np.uint32)
|
|
|
|
for i, unitree_joint_name in enumerate(unitree_joint_names):
|
|
id = np.where([name == unitree_joint_name for name in policy_joint_names])[0][0]
|
|
unitree_to_policy_map.append((i, id))
|
|
self.unitree_to_policy_map = np.array(unitree_to_policy_map).astype(np.uint32)
|
|
|
|
default_joint_angles = {
|
|
"FL_hip_joint": 0.1,
|
|
"RL_hip_joint": 0.1,
|
|
"FR_hip_joint": -0.1,
|
|
"RR_hip_joint": -0.1,
|
|
"FL_thigh_joint": 0.8,
|
|
"RL_thigh_joint": 1.0,
|
|
"FR_thigh_joint": 0.8,
|
|
"RR_thigh_joint": 1.0,
|
|
"FL_calf_joint": -1.5,
|
|
"RL_calf_joint": -1.5,
|
|
"FR_calf_joint": -1.5,
|
|
"RR_calf_joint": -1.5
|
|
}
|
|
self.default_dof_pos = np.array(
|
|
[
|
|
default_joint_angles[name]
|
|
for name in joint_names
|
|
]
|
|
)
|
|
|
|
self.default_dof_pos = self.default_dof_pos
|
|
|
|
self.p_gains = np.zeros(12)
|
|
self.d_gains = np.zeros(12)
|
|
for i in range(12):
|
|
self.p_gains[i] = 20.0
|
|
self.d_gains[i] = 0.5
|
|
|
|
print(f"p_gains: {self.p_gains}")
|
|
|
|
self.commands = np.zeros(3)
|
|
self.actions = np.zeros((1, 12))
|
|
self.last_actions = np.zeros((1,12))
|
|
self.gravity_vector = np.zeros(3)
|
|
self.dof_pos = np.zeros(12)
|
|
self.dof_vel = np.zeros(12)
|
|
self.body_linear_vel = np.zeros(3)
|
|
self.body_angular_vel = np.zeros(3)
|
|
self.joint_pos_target = np.zeros(12)
|
|
self.joint_vel_target = np.zeros(12)
|
|
self.prev_joint_acc = None
|
|
self.torques = np.zeros(12)
|
|
self.contact_state = np.ones(4)
|
|
self.foot_contact_forces_mag = np.zeros(4)
|
|
self.prev_foot_contact_forces_mag = np.zeros(4)
|
|
self.test = 0
|
|
|
|
def wait_for_state(self):
|
|
# return self.lcm_bridge.getStates(timeout=2)
|
|
pass
|
|
|
|
def get_obs(self):
|
|
cmds, reset_timer = self.command_profile.get_command()
|
|
self.commands[:] = cmds
|
|
|
|
# self.state = self.wait_for_state()
|
|
joint_state = self.robot.getJointStates()
|
|
if joint_state is not None:
|
|
self.gravity_vector = self.robot.getGravityInBody()
|
|
self.prev_dof_pos = self.dof_pos.copy()
|
|
self.dof_pos = np.array(joint_state['q'])[self.unitree_to_policy_map[:, 1]]
|
|
self.prev_dof_vel = self.dof_vel.copy()
|
|
self.dof_vel = np.array(joint_state['dq'])[self.unitree_to_policy_map[:, 1]]
|
|
self.body_angular_vel = self.robot.getIMU()["gyro"]
|
|
self.body_linear_vel = self.robot.getLinVel()
|
|
try:
|
|
self.foot_contact_forces_mag = self.robot.getFootContact()
|
|
except:
|
|
pass
|
|
|
|
ob = np.concatenate(
|
|
(
|
|
self.body_angular_vel * 0.25,
|
|
self.commands * np.array([2.0, 2.0, 0.25]),
|
|
self.gravity_vector[:, 0],
|
|
self.dof_pos * 1.0,
|
|
#((self.dof_pos - self.prev_dof_pos) / self.dt) * 0.05,
|
|
self.dof_vel * 0.05,
|
|
self.last_actions[0]
|
|
),
|
|
axis=0,
|
|
)
|
|
|
|
#return torch.tensor(ob, device=self.device).float()
|
|
return ob
|
|
|
|
def publish_action(self, action, hard_reset=False):
|
|
# command_for_robot = UnitreeLowCommand()
|
|
#self.joint_pos_target = (
|
|
# action[0, :12].detach().cpu().numpy() * 0.25
|
|
#).flatten()
|
|
self.joint_pos_target = (
|
|
action[0, :12] * 0.25
|
|
).flatten()
|
|
self.joint_pos_target += self.default_dof_pos
|
|
self.joint_vel_target = np.zeros(12)
|
|
# command_for_robot.q_des = self.joint_pos_target
|
|
# command_for_robot.dq_des = self.joint_vel_target
|
|
# command_for_robot.kp = self.p_gains
|
|
# command_for_robot.kd = self.d_gains
|
|
# command_for_robot.tau_ff = np.zeros(12)
|
|
if hard_reset:
|
|
command_for_robot.id = -1
|
|
|
|
self.torques = (self.joint_pos_target - self.dof_pos) * self.p_gains + (
|
|
self.joint_vel_target - self.dof_vel
|
|
) * self.d_gains
|
|
# self.lcm_bridge.sendCommands(command_for_robot)
|
|
self.robot.setCommands(self.joint_pos_target[self.policy_to_unitree_map[:, 1]],
|
|
self.joint_vel_target[self.policy_to_unitree_map[:, 1]],
|
|
self.p_gains[self.policy_to_unitree_map[:, 1]],
|
|
self.d_gains[self.policy_to_unitree_map[:, 1]],
|
|
np.zeros(12))
|
|
|
|
def reset(self):
|
|
self.actions = torch.zeros((1, 12))
|
|
self.time = time.time()
|
|
self.timestep = 0
|
|
return self.get_obs()
|
|
|
|
def step(self, actions, hard_reset=False):
|
|
self.last_actions = self.actions[:]
|
|
self.actions = actions
|
|
self.publish_action(self.actions, hard_reset=hard_reset)
|
|
# time.sleep(max(self.dt - (time.time() - self.time), 0))
|
|
# if self.timestep % 100 == 0:
|
|
# print(f"frq: {1 / (time.time() - self.time)} Hz")
|
|
self.time = time.time()
|
|
obs = self.get_obs()
|
|
|
|
joint_acc = np.abs(self.prev_dof_vel - self.dof_vel) / self.dt
|
|
if self.prev_joint_acc is None:
|
|
self.prev_joint_acc = np.zeros_like(joint_acc)
|
|
joint_jerk = np.abs(self.prev_joint_acc - joint_acc) / self.dt
|
|
self.prev_joint_acc = joint_acc.copy()
|
|
|
|
foot_contact_rate = np.abs(self.foot_contact_forces_mag - self.prev_foot_contact_forces_mag)
|
|
self.prev_foot_contact_forces_mag = self.foot_contact_forces_mag.copy()
|
|
|
|
infos = {
|
|
"joint_pos": self.dof_pos[np.newaxis, :],
|
|
"joint_vel": self.dof_vel[np.newaxis, :],
|
|
"joint_pos_target": self.joint_pos_target[np.newaxis, :],
|
|
"joint_vel_target": self.joint_vel_target[np.newaxis, :],
|
|
"body_linear_vel": self.body_linear_vel[np.newaxis, :],
|
|
"body_angular_vel": self.body_angular_vel[np.newaxis, :],
|
|
"contact_state": self.contact_state[np.newaxis, :],
|
|
"body_linear_vel_cmd": self.commands[np.newaxis, 0:2],
|
|
"body_angular_vel_cmd": self.commands[np.newaxis, 2:],
|
|
"torques": self.torques,
|
|
"foot_contact_forces_mag": self.foot_contact_forces_mag.copy(),
|
|
"joint_acc": joint_acc[np.newaxis, :],
|
|
"joint_jerk": joint_jerk[np.newaxis, :],
|
|
"foot_contact_rate": foot_contact_rate[np.newaxis, :],
|
|
}
|
|
|
|
self.timestep += 1
|
|
return obs, None, None, infos
|