Go2Py_SIM/examples/06-CaT-RL-controller.ipynb

608 lines
19 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"RL policy based on the [SoloParkour: Constrained Reinforcement Learning for Visual Locomotion from Privileged Experience](https://arxiv.org/abs/2409.13678). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Flat Ground"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test In Simulation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from Go2Py.robot.fsm import FSM\n",
"from Go2Py.robot.remote import KeyboardRemote, XBoxRemote\n",
"from Go2Py.robot.safety import SafetyHypervisor\n",
"from Go2Py.sim.mujoco import Go2Sim\n",
"from Go2Py.control.cat import *\n",
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from Go2Py.robot.model import FrictionModel\n",
"friction_model = FrictionModel(Fs=3, mu_v=0.05)\n",
"robot = Go2Sim(dt = 0.001, friction_model=friction_model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote = XBoxRemote() # KeyboardRemote()\n",
"robot.sitDownReset()\n",
"safety_hypervisor = SafetyHypervisor(robot)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"class CaTController:\n",
" def __init__(self, robot, remote, checkpoint):\n",
" self.remote = remote\n",
" self.robot = robot\n",
" self.policy = Policy(checkpoint)\n",
" self.command_profile = CommandInterface()\n",
" self.agent = CaTAgent(self.command_profile, self.robot)\n",
" self.hist_data = {}\n",
"\n",
" def init(self):\n",
" self.obs = self.agent.reset()\n",
" self.policy_info = {}\n",
" self.command_profile.yaw_vel_cmd = 0.0\n",
" self.command_profile.x_vel_cmd = 0.0\n",
" self.command_profile.y_vel_cmd = 0.0\n",
"\n",
" def update(self, robot, remote):\n",
" if not hasattr(self, \"obs\"):\n",
" self.init()\n",
" commands = remote.getCommands()\n",
" self.command_profile.yaw_vel_cmd = -commands[2]\n",
" self.command_profile.x_vel_cmd = commands[1] * 0.6\n",
" self.command_profile.y_vel_cmd = -commands[0] * 0.6\n",
"\n",
" action = self.policy(self.obs, self.policy_info)\n",
" self.obs, self.ret, self.done, self.info = self.agent.step(action)\n",
" for key, value in self.info.items():\n",
" if key in self.hist_data:\n",
" self.hist_data[key].append(value)\n",
" else:\n",
" self.hist_data[key] = [value]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"robot.getJointStates()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from Go2Py import ASSETS_PATH \n",
"import os\n",
"# what we tested\n",
"#checkpoint_path = os.path.join(ASSETS_PATH, 'checkpoints/SoloParkour/trainparamsconfigmax_epochs1500_taskenvlearnlimitsfoot_contact_force_rate60_soft_07-20-22-43.pt')\n",
"# new one\n",
"checkpoint_path = os.path.join(ASSETS_PATH, 'checkpoints/SoloParkour/dof_vel_3_10-00-05-00.pt')\n",
"controller = CaTController(robot, remote, checkpoint_path)\n",
"decimation = 20\n",
"fsm = FSM(robot, remote, safety_hypervisor, control_dT=decimation * robot.dt, user_controller_callback=controller.update)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"remote.x_vel_cmd=0.6\n",
"remote.y_vel_cmd=0.0\n",
"remote.yaw_vel_cmd = 0.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pressing `u` on the keyboard will make the robot stand up. This is equivalent to the `L2+A` combo of the Go2 builtin state machine. After the the robot is on its feet, pressing `s` will hand over the control the RL policy. This action is equivalent to the `start` key of the builtin controller. When you want to stop, pressing `u` again will act similarly to the real robot and locks it in standing mode. Finally, pressing `u` again will command the robot to sit down."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"fsm.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"# Assuming 'controller.hist_data[\"torques\"]' is a dictionary with torque profiles\n",
"torques = np.array(controller.hist_data[\"body_linear_vel\"])[:, 0, :, 0]\n",
"\n",
"# Number of torque profiles\n",
"torque_nb = torques.shape[1]\n",
"\n",
"# Number of rows needed for the grid, with 3 columns per row\n",
"n_cols = 3\n",
"n_rows = int(np.ceil(torque_nb / n_cols))\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))\n",
"\n",
"# Flatten the axes array for easy indexing (in case of multiple rows)\n",
"axes = axes.flatten()\n",
"\n",
"# Plot each torque profile\n",
"for i in range(torque_nb):\n",
" axes[i].plot(np.arange(torques.shape[0]) * robot.dt * decimation, torques[:, i])\n",
" axes[i].set_title(f'Torque {i+1}')\n",
" axes[i].set_xlabel('Time')\n",
" axes[i].set_ylabel('Torque Value')\n",
" axes[i].grid(True)\n",
"\n",
"# Remove any empty subplots if torque_nb is not a multiple of 3\n",
"for j in range(torque_nb, len(axes)):\n",
" fig.delaxes(axes[j])\n",
"\n",
"# Adjust layout\n",
"plt.tight_layout()\n",
"plt.savefig(\"torque_profile.png\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"# Assuming 'controller.hist_data[\"torques\"]' is a dictionary with torque profiles\n",
"torques = np.array(controller.hist_data[\"torques\"])\n",
"\n",
"# Number of torque profiles\n",
"torque_nb = torques.shape[1]\n",
"\n",
"# Number of rows needed for the grid, with 3 columns per row\n",
"n_cols = 3\n",
"n_rows = int(np.ceil(torque_nb / n_cols))\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))\n",
"\n",
"# Flatten the axes array for easy indexing (in case of multiple rows)\n",
"axes = axes.flatten()\n",
"\n",
"# Plot each torque profile\n",
"for i in range(torque_nb):\n",
" axes[i].plot(np.arange(torques.shape[0]) * robot.dt * decimation, torques[:, i])\n",
" axes[i].set_title(f'Torque {i+1}')\n",
" axes[i].set_xlabel('Time')\n",
" axes[i].set_ylabel('Torque Value')\n",
" axes[i].grid(True)\n",
"\n",
"# Remove any empty subplots if torque_nb is not a multiple of 3\n",
"for j in range(torque_nb, len(axes)):\n",
" fig.delaxes(axes[j])\n",
"\n",
"# Adjust layout\n",
"plt.tight_layout()\n",
"plt.savefig(\"torque_profile.png\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Extract the joint position data for the first joint over time\n",
"joint_pos = np.array(controller.hist_data[\"joint_pos\"])[:, 0]\n",
"\n",
"# Number of data points in joint_pos\n",
"n_data_points = len(joint_pos)\n",
"\n",
"# Since you're plotting only one joint, no need for multiple subplots in this case.\n",
"# But to follow the grid requirement, we'll replicate the data across multiple subplots.\n",
"# For example, let's assume you want to visualize this data 9 times in a 3x3 grid.\n",
"\n",
"n_cols = 3\n",
"n_rows = int(np.ceil(torque_nb / n_cols))\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))\n",
"\n",
"# Flatten the axes array for easy indexing (in case of multiple rows)\n",
"axes = axes.flatten()\n",
"\n",
"# Plot the same joint position data in every subplot (as per grid requirement)\n",
"for i in range(n_rows * n_cols):\n",
" axes[i].plot(joint_pos[:, i])\n",
" axes[i].set_title(f'Joint Position {i+1}')\n",
" axes[i].set_xlabel('Time')\n",
" axes[i].set_ylabel('Position Value')\n",
"\n",
"# Adjust layout\n",
"plt.tight_layout()\n",
"plt.savefig(\"joint_position_profile.png\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"# Assuming 'controller.hist_data[\"foot_contact_forces_mag\"]' is a dictionary with foot contact force magnitudes\n",
"foot_contact_forces_mag = np.array(controller.hist_data[\"foot_contact_forces_mag\"])\n",
"\n",
"# Number of feet (foot_nb)\n",
"foot_nb = foot_contact_forces_mag.shape[1]\n",
"\n",
"# Number of rows needed for the grid, with 3 columns per row\n",
"n_cols = 3\n",
"n_rows = int(np.ceil(foot_nb / n_cols))\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))\n",
"\n",
"# Flatten the axes array for easy indexing (in case of multiple rows)\n",
"axes = axes.flatten()\n",
"\n",
"# Plot each foot's contact force magnitude\n",
"for i in range(foot_nb):\n",
" axes[i].plot(foot_contact_forces_mag[:, i])\n",
" axes[i].set_title(f'Foot {i+1} Contact Force Magnitude')\n",
" axes[i].set_xlabel('Time')\n",
" axes[i].set_ylabel('Force Magnitude')\n",
"\n",
"# Remove any empty subplots if foot_nb is not a multiple of 3\n",
"for j in range(foot_nb, len(axes)):\n",
" fig.delaxes(axes[j])\n",
"\n",
"# Adjust layout\n",
"plt.tight_layout()\n",
"plt.savefig(\"foot_contact_profile.png\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Extract the joint acceleration data for the first joint over time\n",
"joint_acc = np.array(controller.hist_data[\"joint_acc\"])[:, 0]\n",
"\n",
"# Number of data points in joint_acc\n",
"n_data_points = len(joint_acc)\n",
"\n",
"# Number of feet (foot_nb)\n",
"foot_nb = joint_acc.shape[1]\n",
"\n",
"# Number of rows needed for the grid, with 3 columns per row\n",
"n_cols = 3\n",
"n_rows = int(np.ceil(foot_nb / n_cols))\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))\n",
"\n",
"# Flatten the axes array for easy indexing\n",
"axes = axes.flatten()\n",
"\n",
"# Plot the same joint acceleration data in every subplot (as per grid requirement)\n",
"for i in range(n_rows * n_cols):\n",
" axes[i].plot(joint_acc[:, i])\n",
" axes[i].set_title(f'Joint Acceleration {i+1}')\n",
" axes[i].set_xlabel('Time')\n",
" axes[i].set_ylabel('Acceleration Value')\n",
"\n",
"# Adjust layout to prevent overlap\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Extract the joint jerk data over time\n",
"joint_jerk = np.array(controller.hist_data[\"joint_jerk\"])[:, 0]\n",
"\n",
"# Number of data points in joint_jerk\n",
"n_data_points = len(joint_jerk)\n",
"\n",
"# Number of joints (assuming the second dimension corresponds to joints)\n",
"num_joints = joint_jerk.shape[1]\n",
"\n",
"# Number of columns per row in the subplot grid\n",
"n_cols = 3\n",
"# Number of rows needed for the grid\n",
"n_rows = int(np.ceil(num_joints / n_cols))\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))\n",
"\n",
"# Flatten the axes array for easy indexing\n",
"axes = axes.flatten()\n",
"\n",
"# Plot the joint jerk data for each joint\n",
"for i in range(num_joints):\n",
" axes[i].plot(joint_jerk[:, i])\n",
" axes[i].set_title(f'Joint Jerk {i+1}')\n",
" axes[i].set_xlabel('Time')\n",
" axes[i].set_ylabel('Jerk Value')\n",
"\n",
"# Hide any unused subplots\n",
"for i in range(num_joints, len(axes)):\n",
" fig.delaxes(axes[i])\n",
"\n",
"# Adjust layout to prevent overlap\n",
"plt.tight_layout()\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Extract the foot contact rate data over time\n",
"foot_contact_rate = np.array(controller.hist_data[\"foot_contact_rate\"])[:, 0]\n",
"\n",
"# Number of data points in foot_contact_rate\n",
"n_data_points = foot_contact_rate.shape[0]\n",
"\n",
"# Number of feet (assuming the second dimension corresponds to feet)\n",
"num_feet = foot_contact_rate.shape[1]\n",
"\n",
"# Number of columns per row in the subplot grid\n",
"n_cols = 3\n",
"# Number of rows needed for the grid\n",
"n_rows = int(np.ceil(num_feet / n_cols))\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))\n",
"\n",
"# Flatten the axes array for easy indexing\n",
"axes = axes.flatten()\n",
"\n",
"# Plot the foot contact rate data for each foot\n",
"for i in range(num_feet):\n",
" axes[i].plot(foot_contact_rate[:, i])\n",
" axes[i].set_title(f'Foot Contact Rate {i+1}')\n",
" axes[i].set_xlabel('Time')\n",
" axes[i].set_ylabel('Contact Rate')\n",
"\n",
"# Hide any unused subplots\n",
"for i in range(num_feet, len(axes)):\n",
" fig.delaxes(axes[i])\n",
"\n",
"# Adjust layout to prevent overlap\n",
"plt.tight_layout()\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test on Real Robot (ToDo)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from Go2Py.robot.fsm import FSM\n",
"from Go2Py.robot.remote import XBoxRemote\n",
"from Go2Py.robot.safety import SafetyHypervisor\n",
"from Go2Py.control.cat import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from Go2Py.robot.interface import GO2Real\n",
"import numpy as np\n",
"robot = GO2Real(mode='lowlevel')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"robot.getJointStates()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Make sure the robot can take commands from python. The next cell should make the joints free to move (no damping)."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import time\n",
"start_time = time.time()\n",
"\n",
"while time.time()-start_time < 10:\n",
" q = np.zeros(12) \n",
" dq = np.zeros(12)\n",
" kp = np.ones(12)*0.0\n",
" kd = np.ones(12)*0.0\n",
" tau = np.zeros(12)\n",
" tau[0] = 0.0\n",
" robot.setCommands(q, dq, kp, kd, tau)\n",
" time.sleep(0.02)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote = XBoxRemote() # KeyboardRemote()\n",
"safety_hypervisor = SafetyHypervisor(robot)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"class CaTController:\n",
" def __init__(self, robot, remote, checkpoint):\n",
" self.remote = remote\n",
" self.robot = robot\n",
" self.policy = Policy(checkpoint)\n",
" self.command_profile = CommandInterface()\n",
" self.agent = CaTAgent(self.command_profile, self.robot)\n",
" self.init()\n",
" self.hist_data = {}\n",
"\n",
" def init(self):\n",
" self.obs = self.agent.reset()\n",
" self.policy_info = {}\n",
" self.command_profile.yaw_vel_cmd = 0.0\n",
" self.command_profile.x_vel_cmd = 0.0\n",
" self.command_profile.y_vel_cmd = 0.0\n",
"\n",
" def update(self, robot, remote):\n",
" commands = remote.getCommands()\n",
" self.command_profile.yaw_vel_cmd = -commands[2]\n",
" self.command_profile.x_vel_cmd = max(commands[1] * 0.5, -0.3)\n",
" self.command_profile.y_vel_cmd = -commands[0]\n",
"\n",
" action = self.policy(self.obs, self.policy_info)\n",
" self.obs, self.ret, self.done, self.info = self.agent.step(action)\n",
" for key, value in self.info.items():\n",
" if key in self.hist_data:\n",
" self.hist_data[key].append(value)\n",
" else:\n",
" self.hist_data[key] = [value]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from Go2Py import ASSETS_PATH \n",
"import os\n",
"checkpoint_path = os.path.join(ASSETS_PATH, 'checkpoints/SoloParkour/trainparamsconfigmax_epochs1500_taskenvlearnlimitsfoot_contact_force_rate60_soft_07-20-22-43.pt')\n",
"controller = CaTController(robot, remote, checkpoint_path)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"fsm = FSM(robot, remote, safety_hypervisor, control_dT=1./50., user_controller_callback=controller.update)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"fsm.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "b1-env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}