Go2Py_SIM/Go2Py/robot/model.py

183 lines
8.5 KiB
Python

import os
from Go2Py import ASSETS_PATH
import pinocchio as pin
import numpy as np
urdf_path = os.path.join(ASSETS_PATH, 'urdf/go2.urdf')
urdf_root_path = os.path.join(ASSETS_PATH, 'urdf')
class Go2Model:
"""
A model class for the Go2 quadruped robot using the Pinocchio library.
Attributes:
robot (pin.RobotWrapper): The Pinocchio RobotWrapper instance for the Go2 robot.
data (pin.Model.Data): The data structure used by Pinocchio for computations.
ef_frames (list): List of end-effector frame names.
dq_reordering_idx (np.ndarray): Index array for reordering the joint velocity vector.
q_reordering_idx (np.ndarray): Index array for reordering the joint position vector.
ef_J_ (dict): A dictionary storing the Jacobians for the end-effector frames.
"""
def __init__(self):
"""
Initializes the Go2Model class by loading the URDF, setting up the robot model, and calculating initial dimensions.
"""
self.robot = pin.RobotWrapper.BuildFromURDF(urdf_path, urdf_root_path, pin.JointModelFreeFlyer())
self.data = self.robot.data
# Standing joint configuration in Unitree Joint order
self.ef_frames = ['FR_foot', 'FL_foot', 'RR_foot', 'RL_foot']
self.dq_reordering_idx = np.array([0, 1, 2, 3, 4, 5,\
9, 10, 11, 6, 7, 8, 15, 16, 17, 12, 13, 14])
self.q_reordering_idx = np.array([9, 10, 11, 6, 7, 8, 15, 16, 17, 12, 13, 14])-6
self.ef_J_ = {}
ID_FL_HAA = self.robot.model.getFrameId('FL_hip_joint')
ID_FR_HAA = self.robot.model.getFrameId('FR_hip_joint')
ID_RL_HAA = self.robot.model.getFrameId('RL_hip_joint')
ID_RR_HAA = self.robot.model.getFrameId('RR_hip_joint')
ID_FL_HFE = self.robot.model.getFrameId('FL_thigh_joint')
ID_FR_HFE = self.robot.model.getFrameId('FR_thigh_joint')
ID_RL_HFE = self.robot.model.getFrameId('RL_thigh_joint')
ID_RR_HFE = self.robot.model.getFrameId('RR_thigh_joint')
ID_FL_KFE = self.robot.model.getFrameId('FL_calf_joint')
ID_FR_KFE = self.robot.model.getFrameId('FR_calf_joint')
ID_RL_KFE = self.robot.model.getFrameId('RL_calf_joint')
ID_RR_KFE = self.robot.model.getFrameId('RR_calf_joint')
ID_FR_FOOT = self.robot.model.getFrameId('FR_foot')
q_neutral = np.asarray([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
self.robot.framesForwardKinematics(q_neutral)
self.h = np.linalg.norm(self.robot.data.oMf[ID_FR_HAA].translation - self.robot.data.oMf[ID_RR_HAA].translation)
self.b = np.linalg.norm(self.robot.data.oMf[ID_FR_HAA].translation - self.robot.data.oMf[ID_FL_HAA].translation)
self.l1 = np.linalg.norm(self.robot.data.oMf[ID_FR_HAA].translation - self.robot.data.oMf[ID_FR_HFE].translation)
self.l2 = np.linalg.norm(self.robot.data.oMf[ID_FR_HFE].translation - self.robot.data.oMf[ID_FR_KFE].translation)
self.l3 = np.linalg.norm(self.robot.data.oMf[ID_FR_KFE].translation - self.robot.data.oMf[ID_FR_FOOT].translation)
print(self.robot.data.oMf[ID_FR_HAA].translation - self.robot.data.oMf[ID_RR_HAA].translation)
# print(self.h)
# print(self.b)
# print(self.l1)
# print(self.l2)
# print(self.l3)
def inverseKinematics(self, T, feet_pos):
"""
Calculates the inverse kinematics for the robot given a desired state.
Args:
T (np.ndarray): The 4x4 homogenous transformation representing the pose of the base_link in the world frame
x (np.ndarray): A numpy array of size 12 representing foot positions in world frame in FR, FL, RR, RL order.
Returns:
np.ndarray: A numpy array of size 12 representing the joint angles of the legs.
"""
rB = np.asarray(T[0:3, -1]) # Base position (3D vector)
R = T[:3,:3] # Body orientation (quaternion converted to rotation matrix)
sx = [1, 1, -1, -1]
sy = [-1, 1, -1, 1]
joint_angles = np.zeros(12)
for i in range(4):
r_HB = np.array([sx[i] * self.h / 2, sy[i] * self.b / 2, 0]) # Hip offset (3D vector)
rf = np.asarray(feet_pos[3*i:3*i+3]) # Foot position (3D vector)
r_fH = R.T @ (rf - rB) - r_HB # Foot relative to hip in body frame (3D vector)
x = r_fH[0]
y = r_fH[1]
z = r_fH[2]
et = y**2 + z**2 - self.l1**2
# Theta 3 calculation
c3 = (x**2 + et - self.l2**2 - self.l3**2) / (2 * self.l2 * self.l3)
s3 = -np.sqrt(1 - c3**2)
t3 = np.arctan2(s3, c3)
# Theta 2 calculation
k1 = self.l2 + self.l3 * c3
k2 = self.l3 * s3
r1 = np.sqrt(k1**2 + k2**2)
t2 = np.arctan2(-x/r1, np.sqrt(et) / r1) - np.arctan2(k2/r1, k1/r1)
# Theta 1 calculation
zv = self.l2 * np.cos(t2) + self.l3 * np.cos(t2 + t3)
m1 = sy[i] * self.l1
m2 = -zv
r2 = np.sqrt(m1**2 + m2**2)
t1 = np.arctan2(z/r2, y/r2) - np.arctan2(m2/r2, m1/r2)
joint_angles[3*i:3*i+3] = np.array([t1, t2, t3])
# TODO: Implement joint axis direction multiplication from URDF
return joint_angles
def forwardKinematics(self, T, q):
"""
Computes the forward kinematics for the robot given a transformation matrix and joint configuration.
Args:
T (np.ndarray): 4x4 Transformation matrix representing the base pose of the robot.
q (np.ndarray): A numpy array of size 12 representing the joint configurations in FR, FL, RR, RL order.
Returns:
dict: A dictionary containing the poses of specified frames in the robot.
"""
q_ = np.hstack([pin.SE3ToXYZQUATtuple(pin.SE3(T)), q[self.q_reordering_idx]])
self.robot.framesForwardKinematics(q_)
ef_frames = ['base_link','FR_foot', 'FL_foot', 'RR_foot', 'RL_foot']
data = {}
return {frame:self.robot.data.oMf[self.robot.model.getFrameId(frame)].homogeneous \
for frame in ef_frames}
def update(self, q, dq, T, v):
"""
Updates the dynamic and kinematic parameters based on the given joint configurations and velocities.
Args:
q (np.ndarray): A numpy array of size 12 representing the joint configurations in FR, FL, RR, RL order.
dq (np.ndarray): A numpy array of size 12 representing the joint velocities in FR, FL, RR, RL order.
T (np.ndarray): 4x4 Transformation matrix representing the base pose of the robot.
v (np.ndarray): A numpy array of size 6 representing the base velocity in body frame [v, w].
"""
q_ = np.hstack([pin.SE3ToXYZQUATtuple(pin.SE3(T)), q[self.q_reordering_idx]])
dq_ = np.hstack([v, dq[self.q_reordering_idx]])
self.robot.computeJointJacobians(q_)
self.robot.framesForwardKinematics(q_)
self.robot.centroidalMomentum(q_,dq_)
self.nle_ = self.robot.nle(q_, dq_)[self.dq_reordering_idx]
self.g_ = self.robot.gravity(q_)[self.dq_reordering_idx]
self.M_ = self.robot.mass(q_)[self.dq_reordering_idx,:]
self.M_ = self.M_[:,self.dq_reordering_idx]
self.Minv_ = pin.computeMinverse(self.robot.model, self.robot.data, q_)[self.dq_reordering_idx,:]
self.Minv_ = self.Minv_[:,self.dq_reordering_idx]
for ef_frame in self.ef_frames:
J = self.robot.getFrameJacobian(self.robot.model.getFrameId(ef_frame), pin.ReferenceFrame.LOCAL_WORLD_ALIGNED)
# J = self.robot.getFrameJacobian(self.robot.model.getFrameId(ef_frame), pin.ReferenceFrame.LOCAL)
self.ef_J_[ef_frame]=J[:, self.dq_reordering_idx]
def getInfo(self):
"""
Retrieves the current dynamics and kinematic information of the robot.
Returns:
dict: A dictionary containing the robot's mass matrix, inverse mass matrix, non-linear effects, gravity vector, and Jacobians for the end-effectors.
"""
return {
'M':self.M_,
'Minv':self.Minv_,
'nle':self.nle_,
'g':self.g_,
'J':self.ef_J_,
}
def getGroundReactionForce(self, tau_est, body_acceleration=None):
if body_acceleration is None:
grf = {key:np.linalg.pinv(self.ef_J_[key][:3,6:].T)@(tau_est.squeeze() - self.nle_[6:]) for key in self.ef_J_.keys()}
else:
raise NotImplementedError("Ground reaction force with body dynamics is not implemented")
return grf