RoboWaiter/BTExpansionCode/tools.py

565 lines
20 KiB
Python
Raw Permalink Normal View History

2024-01-04 22:51:33 +08:00
import copy
from tabulate import tabulate
import numpy as np
import random
2024-01-05 14:11:54 +08:00
from OptimalBTExpansionAlgorithm import generate_random_state,state_transition
from OptimalBTExpansionAlgorithm import Action,OptBTExpAlgorithm
2024-01-04 22:51:33 +08:00
from BTExpansionAlgorithm import BTExpAlgorithm # 调用最优行为树扩展算法
import time
2024-01-05 14:11:54 +08:00
np.random.seed(1)
random.seed(1)
2024-01-04 22:51:33 +08:00
def print_action_data_table(goal,start,actions):
data = []
for a in actions:
data.append([a.name ,a.pre ,a.add ,a.del_set ,a.cost])
data.append(["Goal" ,goal ," " ,"Start" ,start])
print(tabulate(data, headers=["Name", "Pre", "Add" ,"Del" ,"Cost"], tablefmt="fancy_grid")) # grid plain simple github fancy_grid
#行为树测试代码
def BTTest_old(bt_algo_opt=True,seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
if bt_algo_opt:
print("============= OptBT Test ==============")
else:
print("============= XiaoCai BT Test ==============")
random.seed(seed)
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
literals_num=literals_num
depth = depth
iters= iters
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
total_cost=[]
total_tick=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
error = False
# 实验1000次
for count in range (total_count):
action_num = 1
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
states = []
actions = []
start = generate_random_state(literals_num)
state = copy.deepcopy(start)
states.append(state)
#print (state)
2024-01-05 14:11:54 +08:00
2024-01-04 22:51:33 +08:00
for i in range (0,depth):
a = Action()
a.generate_from_state(state,literals_num)
a.cost = random.randint(1, 100)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
#print(state)
goal = states[-1]
state = copy.deepcopy(start)
for i in range (0,iters):
a = Action()
a.generate_from_state(state,literals_num)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states,1)[0]
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
if bt_algo_opt:
# if count==874:
# algo = OptBTExpAlgorithm(verbose=False)
# else:
algo = OptBTExpAlgorithm(verbose=False)
else:
algo = BTExpAlgorithm(verbose=False)
algo.clear()
#algo = Weakalgorithm()
start_time = time.time()
# if count == 352 : #874:
# print_action_data_table(goal, start, list(actions))
# print_action_data_table(goal, start, list(actions))
if algo.run_algorithm(start, goal, actions):#运行算法规划后行为树为algo.bt
total_tree_size.append( algo.bt.count_size()-1)
# if count==352:
# algo.print_solution()
# algo.print_solution() # 打印行为树
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
current_cost = 0
current_tick_time=0
val, obj, cost, tick_time = algo.bt.cost_tick(state,0,0)#tick行为树obj为所运行的行动
current_tick_time+=tick_time
current_cost += cost
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj,cost, tick_time = algo.bt.cost_tick(state,0,0)
current_cost += cost
current_tick_time += tick_time
if(val == 'failure'):
print("bt fails at step",steps)
error = True
break
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
error = True
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
if error:
print_action_data_table(goal, start, list(actions))
algo.print_solution()
break
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
total_cost.append(current_cost)
total_tick.append(current_tick_time)
print("success:",success_count,"failure:",failure_count)#算法成功和失败次数
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
print("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
print("Average Number of States:",np.mean(total_state_num))#1000次问题的平均状态数
print("Average Number of Actions",np.mean(total_action_num))#1000次问题的平均行动数
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
print("Average Number of Ticks", np.mean(total_tick),"std=",np.std(total_tick,ddof=1))
print("Average Cost of Execution:", np.mean(total_cost),"std=",np.std(total_cost,ddof=1))
# print(total_steps_num) 第21个
if bt_algo_opt:
print("============= End OptBT Test ==============")
else:
print("============= End XiaoCai BT Test ==============")
# xiao cai
# success: 1000 failure: 0
# Total Tree Size: mean= 35.303 std= 29.71336526001515
# Total Steps Num: mean= 1.898 std= 0.970844240101644
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
# our start
# success: 1000 failure: 0
# Total Tree Size: mean= 17.945 std= 12.841997192488865
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
# our
# success: 1000 failure: 0
# Total Tree Size: mean= 48.764 std= 20.503626574406358
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 3.3271877765655518 0.0033271877765655516
def BTTest(bt_algo_opt=True,seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
if bt_algo_opt:
print("============= OptBT Test ==============")
else:
print("============= XiaoCai BT Test ==============")
random.seed(seed)
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
literals_num=literals_num
depth = depth
iters= iters
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
total_cost=[]
total_tick=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
error = False
# 实验1000次
for count in range (total_count):
action_num = 1
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
states = []
actions = []
start = generate_random_state(literals_num)
state = copy.deepcopy(start)
states.append(state)
#print (state)
2024-01-05 14:11:54 +08:00
for k in range(10):
for i in range (0,depth):
a = Action()
a.generate_from_state(state,literals_num)
a.cost = random.randint(1, 100)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
#print(state)
2024-01-04 22:51:33 +08:00
goal = states[-1]
state = copy.deepcopy(start)
for i in range (0,iters):
a = Action()
a.generate_from_state(state,literals_num)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states,1)[0]
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
if bt_algo_opt:
# if count==874:
# algo = OptBTExpAlgorithm(verbose=False)
# else:
algo = OptBTExpAlgorithm(verbose=False)
else:
algo = BTExpAlgorithm(verbose=False)
algo.clear()
#algo = Weakalgorithm()
start_time = time.time()
2024-01-05 14:11:54 +08:00
if count == 0 : #874:
print_action_data_table(goal, start, list(actions))
2024-01-04 22:51:33 +08:00
# print_action_data_table(goal, start, list(actions))
2024-01-05 14:11:54 +08:00
if algo.run_algorithm_test(start, goal, actions):#运行算法规划后行为树为algo.bt
2024-01-04 22:51:33 +08:00
total_tree_size.append( algo.bt.count_size()-1)
2024-01-05 14:11:54 +08:00
# if count==0:
2024-01-04 22:51:33 +08:00
# algo.print_solution()
# algo.print_solution() # 打印行为树
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
current_cost = 0
current_tick_time=0
val, obj, cost, tick_time = algo.bt.cost_tick(state,0,0)#tick行为树obj为所运行的行动
current_tick_time+=tick_time
current_cost += cost
2024-01-05 14:11:54 +08:00
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj,cost, tick_time = algo.bt.cost_tick(state,0,0)
current_cost += cost
current_tick_time += tick_time
if(val == 'failure'):
print("bt fails at step",steps)
error = True
break
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
error = True
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
if error:
print_action_data_table(goal, start, list(actions))
algo.print_solution()
break
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
total_cost.append(current_cost)
total_tick.append(current_tick_time)
print("success:",success_count,"failure:",failure_count)#算法成功和失败次数
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
print("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
print("Average Number of States:",np.mean(total_state_num))#1000次问题的平均状态数
print("Average Number of Actions",np.mean(total_action_num))#1000次问题的平均行动数
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
print("Average Number of Ticks", np.mean(total_tick),"std=",np.std(total_tick,ddof=1))
print("Average Cost of Execution:", np.mean(total_cost),"std=",np.std(total_cost,ddof=1))
# print(total_steps_num) 第21个
if bt_algo_opt:
print("============= End OptBT Test ==============")
else:
print("============= End XiaoCai BT Test ==============")
# xiao cai
# success: 1000 failure: 0
# Total Tree Size: mean= 35.303 std= 29.71336526001515
# Total Steps Num: mean= 1.898 std= 0.970844240101644
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
# our start
# success: 1000 failure: 0
# Total Tree Size: mean= 17.945 std= 12.841997192488865
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
# our
# success: 1000 failure: 0
# Total Tree Size: mean= 48.764 std= 20.503626574406358
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 3.3271877765655518 0.0033271877765655516
def get_act_start_goal(seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
act_list=[]
start_list=[]
goal_list=[]
for count in range(total_count):
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
action_num=1
states = []
actions = []
start = generate_random_state(literals_num)
state = copy.deepcopy(start)
states.append(state)
# print (state)
for k in range(int(iters/5)):
state = copy.deepcopy(start)
for i in range(0, depth):
a = Action()
a.generate_from_state(state, literals_num)
a.cost = random.randint(1, 100)
if not a in actions:
a.name = "a" + str(action_num)
action_num += 1
actions.append(a)
state = state_transition(state, a)
if state in states:
pass
else:
states.append(state)
# print(state)
goal = states[-1]
state = copy.deepcopy(start)
for i in range(0, int(iters/5)):
a = Action()
a.generate_from_state(state, literals_num)
if not a in actions:
a.name = "a" + str(action_num)
action_num += 1
actions.append(a)
state = state_transition(state, a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states, 1)[0]
act_list.append(actions)
start_list.append(start)
goal_list.append(goal)
# print("action:",len(actions))
return act_list, start_list, goal_list
def BTTest_act_start_goal(bt_algo_opt,act_list,start_list,goal_list):
if bt_algo_opt:
print("============= OptBT Test ==============")
else:
print("============= XiaoCai BT Test ==============")
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
total_cost=[]
total_tick=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
error = False
# 实验1000次
for count, (actions, start, goal) in enumerate(zip(act_list, start_list, goal_list)):
states=[]
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
state = copy.deepcopy(start)
states.append(state)
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
if bt_algo_opt:
# if count==874:
# algo = OptBTExpAlgorithm(verbose=False)
# else:
algo = OptBTExpAlgorithm(verbose=False)
else:
algo = BTExpAlgorithm(verbose=False)
algo.clear()
#algo = Weakalgorithm()
start_time = time.time()
if count == 0 : #874:
print_action_data_table(goal, start, list(actions))
# print_action_data_table(goal, start, list(actions))
if algo.run_algorithm_test(start, goal, actions):#运行算法规划后行为树为algo.bt
total_tree_size.append( algo.bt.count_size()-1)
if count==0:
algo.print_solution()
# algo.print_solution() # 打印行为树
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
current_cost = 0
current_tick_time=0
val, obj, cost, tick_time = algo.bt.cost_tick(state,0,0)#tick行为树obj为所运行的行动
current_tick_time+=tick_time
current_cost += cost
2024-01-04 22:51:33 +08:00
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj,cost, tick_time = algo.bt.cost_tick(state,0,0)
current_cost += cost
current_tick_time += tick_time
if(val == 'failure'):
print("bt fails at step",steps)
error = True
break
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
error = True
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
if error:
print_action_data_table(goal, start, list(actions))
algo.print_solution()
break
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
total_cost.append(current_cost)
total_tick.append(current_tick_time)
print("success:",success_count,"failure:",failure_count)#算法成功和失败次数
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
print("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
print("Average Number of States:",np.mean(total_state_num))#1000次问题的平均状态数
print("Average Number of Actions",np.mean(total_action_num))#1000次问题的平均行动数
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
print("Average Number of Ticks", np.mean(total_tick),"std=",np.std(total_tick,ddof=1))
print("Average Cost of Execution:", np.mean(total_cost),"std=",np.std(total_cost,ddof=1))
# print(total_steps_num) 第21个
if bt_algo_opt:
print("============= End OptBT Test ==============")
else:
print("============= End XiaoCai BT Test ==============")
# xiao cai
# success: 1000 failure: 0
# Total Tree Size: mean= 35.303 std= 29.71336526001515
# Total Steps Num: mean= 1.898 std= 0.970844240101644
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
# our start
# success: 1000 failure: 0
# Total Tree Size: mean= 17.945 std= 12.841997192488865
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
# our
# success: 1000 failure: 0
# Total Tree Size: mean= 48.764 std= 20.503626574406358
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 3.3271877765655518 0.0033271877765655516