RoboWaiter/robowaiter/behavior_tree/obtea/BTExpansionAlgorithm.py

317 lines
11 KiB
Python
Raw Normal View History

2023-12-12 20:13:13 +08:00
import random
import numpy as np
import copy
import time
from robowaiter.behavior_tree.obtea.BehaviorTree import Leaf,ControlBT
from robowaiter.behavior_tree.obtea.OptimalBTExpansionAlgorithm import Action,generate_random_state,state_transition,conflict
# 本文所提出的完备规划算法
class BTalgorithm:
def __init__(self,verbose=False):
self.bt = None
self.nodes = []
self.traversed = []
self.conditions = []
self.conditions_index = []
self.verbose = verbose
# print (self.conditions_list[0])
def clear(self):
self.bt = None
self.nodes = []
self.traversed = []
self.conditions = []
self.conditions_index = []
# 运行规划算法从初始状态、目标状态和可用行动计算行为树self.bt
2024-01-04 22:51:33 +08:00
def run_algorithm_selTree(self, start, goal, actions):
2023-12-12 20:13:13 +08:00
# 初始行为树只包含目标条件
2024-01-04 22:51:33 +08:00
bt = ControlBT(type='cond')
2023-12-12 20:13:13 +08:00
g_node = Leaf(type='cond', content=goal,mincost=0)
2024-01-04 22:51:33 +08:00
bt.add_child([g_node])
2023-12-12 20:13:13 +08:00
self.conditions.append(goal)
self.nodes.append(g_node) # condition node list
# 尝试在初始状态执行行为树
2024-01-04 22:51:33 +08:00
val, obj = bt.tick(start)
2023-12-12 20:13:13 +08:00
canrun = False
if val == 'success' or val == 'running':
canrun = True
# 循环扩展,直到行为树能够在初始状态运行
while not canrun:
index = -1
for i in range(0, len(self.nodes)):
if self.nodes[i].content in self.traversed:
continue
else:
c_node = self.nodes[i]
index = i
break
if index == -1: # 树中结点扩展完毕,仍无法运行行为树,返回失败
print('Failure')
return False
# 根据所选择条件结点扩展子树
subtree = ControlBT(type='?')
subtree.add_child([copy.deepcopy(c_node)]) # 子树首先保留所扩展结点
c = c_node.content # 子树所扩展结点对应的条件一个文字的set
for i in range(0, len(actions)): # 选择符合条件的行动,
# print("have action")
if not c & ((actions[i].pre | actions[i].add) - actions[i].del_set) <= set():
# print ("pass add")
if (c - actions[i].del_set) == c:
# print("pass delete")
c_attr = (actions[i].pre | c) - actions[i].add
valid = True
# 这样剪枝存在错误性
if conflict(c_attr):
continue
for j in self.traversed: # 剪枝操作
if j <= c_attr:
valid = False
break
if valid:
# print("pass prune")
# 构建行动的顺序结构
sequence_structure = ControlBT(type='>')
c_attr_node = Leaf(type='cond', content=c_attr, mincost=0)
a_node = Leaf(type='act', content=actions[i], mincost=0)
sequence_structure.add_child([c_attr_node, a_node])
# 将顺序结构添加到子树
subtree.add_child([sequence_structure])
self.nodes.append(c_attr_node)
# 将原条件结点c_node替换为扩展后子树subtree
parent_of_c = c_node.parent
parent_of_c.children[0] = subtree
# 记录已扩展条件
self.traversed.append(c)
# 尝试在初始状态运行行为树
2024-01-04 22:51:33 +08:00
val, obj = bt.tick(start)
2023-12-12 20:13:13 +08:00
canrun = False
if val == 'success' or val == 'running':
canrun = True
2024-01-04 22:51:33 +08:00
return bt
def run_algorithm(self, start, goal, actions):
# goal_ls = goal.replace(" ", "")
# goal_ls = goal_ls.split("|")
self.bt = ControlBT(type='cond')
subtree = ControlBT(type='?')
if len(goal) > 1:
for g in goal:
print("goal",g)
bt_sel_tree = self.run_algorithm_selTree(start, g, actions)
print("bt_sel_tree.children",bt_sel_tree.children)
# print(bt_sel_tree.children[0])
subtree.add_child([copy.deepcopy(bt_sel_tree.children[0])])
self.bt.add_child([subtree])
else:
self.bt = self.run_algorithm_selTree(start, goal[0], actions)
2023-12-12 20:13:13 +08:00
return True
def print_solution(self):
print(len(self.nodes))
# for i in self.nodes:
# if isinstance(i,Node):
# print (i.content)
# else:
# print (i)
# 树的dfs
def dfs_ptml(self,parnode,is_root=False):
for child in parnode.children:
if isinstance(child, Leaf):
if child.type == 'cond':
if is_root and len(child.content) > 1:
# 把多个 cond 串起来
self.ptml_string += "sequence{\n"
self.ptml_string += "cond "
c_set_str = '\n cond '.join(map(str, child.content)) + "\n"
self.ptml_string += c_set_str
self.ptml_string += '}\n'
else:
self.ptml_string += "cond "
c_set_str = '\n cond '.join(map(str, child.content)) + "\n"
self.ptml_string += c_set_str
elif child.type == 'act':
if '(' not in child.content.name:
self.ptml_string += 'act ' + child.content.name + "()\n"
else:
self.ptml_string += 'act ' + child.content.name + "\n"
elif isinstance(child, ControlBT):
if child.type == '?':
self.ptml_string += "selector{\n"
self.dfs_ptml(parnode=child)
elif child.type == '>':
self.ptml_string += "sequence{\n"
self.dfs_ptml( parnode=child)
self.ptml_string += '}\n'
def get_ptml(self):
self.ptml_string = "selector{\n"
self.dfs_ptml(self.bt.children[0],is_root=True)
self.ptml_string += '}\n'
return self.ptml_string
def save_ptml_file(self,file_name):
self.ptml_string = "selector{\n"
self.dfs_ptml(self.bt.children[0])
self.ptml_string += '}\n'
with open(f'./{file_name}.ptml', 'w') as file:
file.write(self.ptml_string)
return self.ptml_string
# 所对比的基准算法,具体扩展细节有差异
if __name__ == '__main__':
random.seed(1)
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
literals_num = 10
depth = 10
iters = 10
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num = []
# fail_count=0
# danger_count=0
success_count = 0
failure_count = 0
planning_time_total = 0.0
# 实验1000次
for count in range(0, 1000):
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
states = []
actions = []
start = generate_random_state(literals_num)
state = start
states.append(state)
# print (state)
for i in range(0, depth):
a = Action()
a.generate_from_state(state, literals_num)
if not a in actions:
actions.append(a)
state = state_transition(state, a)
if state in states:
pass
else:
states.append(state)
# print(state)
goal = states[-1]
state = start
for i in range(0, iters):
a = Action()
a.generate_from_state(state, literals_num)
if not a in actions:
actions.append(a)
state = state_transition(state, a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states, 1)[0]
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
algo = BTalgorithm()
# algo = Weakalgorithm()
start_time = time.time()
if algo.run_algorithm(start, goal, list(actions)): # 运行算法规划后行为树为algo.bt
total_tree_size.append(algo.bt.count_size() - 1)
else:
print("error")
end_time = time.time()
planning_time_total += (end_time - start_time)
# 开始从初始状态运行行为树,测试
state = start
steps = 0
val, obj = algo.bt.tick(state) # tick行为树obj为所运行的行动
while val != 'success' and val != 'failure': # 运行直到行为树成功或失败
state = state_transition(state, obj)
val, obj = algo.bt.tick(state)
if (val == 'failure'):
print("bt fails at step", steps)
steps += 1
if (steps >= 500): # 至多运行500步
break
if not goal <= state: # 错误解,目标条件不在执行后状态满足
# print ("wrong solution",steps)
failure_count += 1
else: # 正确解,满足目标条件
# print ("right solution",steps)
success_count += 1
total_steps_num.append(steps)
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
print(success_count, failure_count) # 算法成功和失败次数
print(np.mean(total_tree_size), np.std(total_tree_size, ddof=1)) # 1000次测试树大小
print(np.mean(total_steps_num), np.std(total_steps_num, ddof=1))
print(np.mean(total_state_num)) # 1000次问题的平均状态数
print(np.mean(total_action_num)) # 1000次问题的平均行动数
print(planning_time_total, planning_time_total / 1000.0)
# print(total_state_num)
# casestudy begin 对应论文的case study包含三个行动的移动机械臂场景
actions = []
a = Action(name='movebtob')
a.pre = {1, 2}
a.add = {3}
a.del_set = {1, 4}
actions.append(a)
a = Action(name='moveatob')
a.pre = {1}
a.add = {5, 2}
a.del_set = {1, 6}
actions.append(a)
a = Action(name='moveatoa')
a.pre = {7}
a.add = {8, 2}
a.del_set = {7, 6}
actions.append(a)
start = {1, 7, 4, 6}
goal = {3}
algo = BTalgorithm()
algo.clear()
algo.run_algorithm(start, goal, list(actions))
state = start
steps = 0
val, obj = algo.bt.tick(state)
while val != 'success' and val != 'failure':
state = state_transition(state, obj)
print(obj.name)
val, obj = algo.bt.tick(state)
if (val == 'failure'):
print("bt fails at step", steps)
steps += 1
if not goal <= state:
print("wrong solution", steps)
else:
print("right solution", steps)
# algo.bt.print_nodes()
print(algo.bt.count_size() - 1)
algo.clear()
# case study end