RoboWaiter/robowaiter/proto/camera.py

431 lines
15 KiB
Python
Raw Normal View History

2023-11-15 15:11:01 +08:00
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# enconding = utf8
import json
import string
import sys
import time
import grpc
2023-11-15 15:11:01 +08:00
sys.path.append('./')
sys.path.append('../')
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
import GrabSim_pb2_grpc
import GrabSim_pb2
channel = grpc.insecure_channel('localhost:30001', options=[
('grpc.max_send_message_length', 1024 * 1024 * 1024),
('grpc.max_receive_message_length', 1024 * 1024 * 1024)
])
sim_client = GrabSim_pb2_grpc.GrabSimStub(channel)
objects_dic = {}
obstacle_objs_id = [114, 115, 122, 96, 102, 83, 121, 105, 108, 89, 100, 90,
111, 103, 95, 92, 76, 113, 101, 29, 112, 87, 109, 98,
106, 120, 97, 86, 104, 78, 85, 81, 82, 84, 91, 93, 94,
99, 107, 116, 117, 118, 119, 255]
2023-11-15 15:11:01 +08:00
'''
初始化卸载已经加载的关卡清除所有机器人
'''
def Init():
sim_client.Init(GrabSim_pb2.NUL())
'''
获取当前可加载的地图信息(地图名字地图尺寸)
'''
def AcquireAvailableMaps():
AvailableMaps = sim_client.AcquireAvailableMaps(GrabSim_pb2.NUL())
print(AvailableMaps)
'''
1根据mapID加载指定地图
2如果scene_num>1,则根据地图尺寸偏移后加载多个相同地图
3这样就可以在一个关卡中训练多个地图
'''
def SetWorld(map_id=0, scene_num=1):
print('------------------SetWorld----------------------')
world = sim_client.SetWorld(GrabSim_pb2.BatchMap(count=scene_num, mapID=map_id))
'''
返回场景的状态信息
1返回机器人的位置和旋转
2返回各个关节的名字和旋转
3返回场景中标记的物品信息(名字类型位置旋转)
4返回场景中行人的信息(名字位置旋转速度)
5返回机器人手指和双臂的碰撞信息
'''
def Observe(scene_id=0):
print('------------------show_env_info----------------------')
scene = sim_client.Observe(GrabSim_pb2.SceneID(value=scene_id))
# print(
# f"location:{[scene.location]}, rotation:{scene.rotation}\n",
# f"joints number:{len(scene.joints)}, fingers number:{len(scene.fingers)}\n",
# f"objects number: {len(scene.objects)}, walkers number: {len(scene.walkers)}\n"
# f"timestep:{scene.timestep}, timestamp:{scene.timestamp}\n"
# f"collision:{scene.collision}, info:{scene.info}")
return scene
'''
重置场景
1重置桌子的宽度和高度
2清除生成的行人和物品
3重置关节角度位置旋转
4清除碰撞信息
5重置场景中标记的物品
'''
def Reset(scene_id=0):
print('------------------Reset----------------------')
scene = sim_client.Reset(GrabSim_pb2.ResetParams(scene=scene_id))
print(scene)
# 如果场景支持调整桌子
# sim_client.Reset(GrabSim_pb2.ResetParams(scene = scene_id, adjust = True, height = 100.0, width = 100.0))"
'''
根据传入的部位名字获取相机数据
'''
def get_camera(part, scene_id=0):
print('------------------get_camera----------------------')
action = GrabSim_pb2.CameraList(cameras=part, scene=scene_id)
return sim_client.Capture(action)
'''
显示相机画面
'''
def show_image(img_data, scene):
print('------------------show_image----------------------')
im = img_data.images[0]
# 相机内参矩阵
in_matrix = np.array(
[[im.parameters.fx, 0, im.parameters.cx], [0, im.parameters.fy, im.parameters.cy], [0, 0, 1]])
# 相机外参矩阵
out_matrix = np.array(im.parameters.matrix).reshape((4, 4))
# # 旋转矩阵
# rotation_matrix = out_matrix[0:3, 0:3]
#
# # 平移矩阵
# translation_matrix = out_matrix[0:3, -1].reshape(3, 1)
# 像素坐标
# pixel_point = np.array([403, 212, 1]).reshape(3, 1)
pixel_x = 404
pixel_y = 212
depth = 369
# 将像素坐标转换为归一化设备坐标
normalized_x = (pixel_x - im.parameters.cx) / im.parameters.fx
normalized_y = (pixel_y - im.parameters.cy) / im.parameters.fy
# 将归一化设备坐标和深度值转换为相机坐标
camera_x = normalized_x * depth
camera_y = normalized_y * depth
camera_z = depth
# 构建相机坐标向量
camera_coordinates = np.array([camera_x, camera_y, camera_z, 1])
# print("物体相对相机坐标的齐次坐标: ", camera_coordinates)
# 将相机坐标转换为机器人底盘坐标
robot_coordinates = np.dot(out_matrix, camera_coordinates)[:3]
# print("物体的相对底盘坐标为:", robot_coordinates)
# 将物体相对机器人底盘坐标转为齐次坐标
robot_homogeneous_coordinates = np.array([robot_coordinates[0], -robot_coordinates[1], robot_coordinates[2], 1])
# print("物体的相对底盘的齐次坐标为:", robot_homogeneous_coordinates)
# 机器人坐标
X = scene.location.X
Y = scene.location.Y
Z = 0.0
# 机器人旋转信息
Roll = 0.0
Pitch = 0.0
Yaw = scene.rotation.Yaw
# 构建平移矩阵
T = np.array([[1, 0, 0, X],
[0, 1, 0, Y],
[0, 0, 1, Z],
[0, 0, 0, 1]])
# 构建旋转矩阵
Rx = np.array([[1, 0, 0, 0],
[0, np.cos(Roll), -np.sin(Roll), 0],
[0, np.sin(Roll), np.cos(Roll), 0],
[0, 0, 0, 1]])
Ry = np.array([[np.cos(Pitch), 0, np.sin(Pitch), 0],
[0, 1, 0, 0],
[-np.sin(Pitch), 0, np.cos(Pitch), 0],
[0, 0, 0, 1]])
Rz = np.array([[np.cos(np.radians(Yaw)), -np.sin(np.radians(Yaw)), 0, 0],
[np.sin(np.radians(Yaw)), np.cos(np.radians(Yaw)), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
R = np.dot(Rz, np.dot(Ry, Rx))
# 构建机器人的变换矩阵
T_robot = np.dot(T, R)
# print(T_robot)
# 将物体的坐标从机器人底盘坐标系转换到世界坐标系
world_coordinates = np.dot(T_robot, robot_homogeneous_coordinates)[:3]
# print("物体的世界坐标:", world_coordinates)
# 世界偏移后的坐标
world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
# print("物体世界偏移的坐标: ", world_offest_coordinates)
# world_point = world_coordinates + np.array([])
# print("物体的世界坐标为:", )
# # 相对机器人的世界坐标
# world_point = rotation_matrix.T @ (in_matrix.T * 369 @ pixel_point - translation_matrix)
# print(world_point)
# print(in_matrix @ out_matrix @ obj_world)
#
d = np.frombuffer(im.data, dtype=im.dtype).reshape((im.height, im.width, im.channels))
plt.imshow(d, cmap="gray" if "depth" in im.name.lower() else None)
plt.show()
def transform_co(img_data, pixel_x_, pixel_y_,depth_, scene ,id = 0,label = 0):
im = img_data.images[0]
# 相机外参矩阵
out_matrix = np.array(im.parameters.matrix).reshape((4, 4))
d = np.frombuffer(im.data, dtype=im.dtype).reshape((im.height, im.width, im.channels))
depth = depth_
# 将像素坐标转换为归一化设备坐标
normalized_x = (pixel_x_ - im.parameters.cx) / im.parameters.fx
normalized_y = (pixel_y_ - im.parameters.cy) / im.parameters.fy
# 将归一化设备坐标和深度值转换为相机坐标
camera_x = normalized_x * depth
camera_y = normalized_y * depth
camera_z = depth
# 构建相机坐标向量
camera_coordinates = np.array([camera_x, camera_y, camera_z, 1])
# print("物体相对相机坐标的齐次坐标: ", camera_coordinates)
# 将相机坐标转换为机器人底盘坐标
robot_coordinates = np.dot(out_matrix, camera_coordinates)[:3]
# print("物体的相对底盘坐标为:", robot_coordinates)
# 将物体相对机器人底盘坐标转为齐次坐标
robot_homogeneous_coordinates = np.array([robot_coordinates[0], -robot_coordinates[1], robot_coordinates[2], 1])
# print("物体的相对底盘的齐次坐标为:", robot_homogeneous_coordinates)
# 机器人坐标
X = scene.location.X
Y = scene.location.Y
Z = 0.0
# 机器人旋转信息
Roll = 0.0
Pitch = 0.0
Yaw = scene.rotation.Yaw
# 构建平移矩阵
T = np.array([[1, 0, 0, X],
[0, 1, 0, Y],
[0, 0, 1, Z],
[0, 0, 0, 1]])
# 构建旋转矩阵
Rx = np.array([[1, 0, 0, 0],
[0, np.cos(Roll), -np.sin(Roll), 0],
[0, np.sin(Roll), np.cos(Roll), 0],
[0, 0, 0, 1]])
Ry = np.array([[np.cos(Pitch), 0, np.sin(Pitch), 0],
[0, 1, 0, 0],
[-np.sin(Pitch), 0, np.cos(Pitch), 0],
[0, 0, 0, 1]])
Rz = np.array([[np.cos(np.radians(Yaw)), -np.sin(np.radians(Yaw)), 0, 0],
[np.sin(np.radians(Yaw)), np.cos(np.radians(Yaw)), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
R = np.dot(Rz, np.dot(Ry, Rx))
# 构建机器人的变换矩阵
T_robot = np.dot(T, R)
# print(T_robot)
# 将物体的坐标从机器人底盘坐标系转换到世界坐标系
world_coordinates = np.dot(T_robot, robot_homogeneous_coordinates)[:3]
# if world_coordinates[0] < 200 and world_coordinates[1] <= 1050:
# world_coordinates[0] += 400
# world_coordinates[1] += 400
# elif world_coordinates[0] >= 200 and world_coordinates[1] <= 1050:
# world_coordinates[0] -= 550
# world_coordinates[1] += 400
# elif world_coordinates[0] >= 200 and world_coordinates[1] > 1050:
# world_coordinates[0] -= 550
# world_coordinates[1] -= 1450
# elif world_coordinates[0] < 200 and world_coordinates[1] > 1050:
# world_coordinates[0] += 400
# world_coordinates[1] -= 1450
# print("物体的世界坐标:", world_coordinates)
# 世界偏移后的坐标
world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
# print("物体世界偏移的坐标: ", world_offest_coordinates)
return world_coordinates
# 世界偏移后的坐标
# world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
# print("物体世界偏移的坐标: ", world_offest_coordinates)
# dict_f = {'id':id,'label':label,'world_coordinates':world_coordinates,'world_offest_coordinates':world_offest_coordinates}
# with open('./semantic.txt', 'a') as file:
# file.write(str(dict_f) + '\n')
2023-11-15 15:11:01 +08:00
def save_obj_info(img_data, objs_name):
items = img_data.info.split(";")
dictionary = {}
for item in items:
key, value = item.split(":")
dictionary[int(key)] = value
im = img_data.images[0]
d = np.frombuffer(im.data, dtype=im.dtype).reshape((im.height, im.width, im.channels))
arr_flat = d.ravel()
for id in arr_flat:
if id not in dictionary:
print(id)
else:
objs_name.add(dictionary[id])
return objs_name
def get_obstacle_point(scene, cur_obstacle_world_points, map_ratio):
cur_obstacle_pixel_points = []
img_data_segment = get_camera([GrabSim_pb2.CameraName.Head_Segment])
img_data_depth = get_camera([GrabSim_pb2.CameraName.Head_Depth])
im_segment = img_data_segment.images[0]
im_depth = img_data_depth.images[0]
d_segment = np.frombuffer(im_segment.data, dtype=im_segment.dtype).reshape((im_segment.height, im_segment.width, im_segment.channels))
d_depth = np.frombuffer(im_depth.data, dtype=im_depth.dtype).reshape((im_depth.height, im_depth.width, im_depth.channels))
# plt.imshow(d_depth, cmap="gray" if "depth" in im_depth.name.lower() else None)
# plt.show()
#
# plt.imshow(d_segment, cmap="gray" if "depth" in im_segment.name.lower() else None)
# plt.show()
d_depth = np.transpose(d_depth, (1, 0, 2))
d_segment = np.transpose(d_segment, (1, 0, 2))
for i in range(0, d_segment.shape[0], map_ratio):
for j in range(0, d_segment.shape[1], map_ratio):
if d_depth[i][j][0] == 600:
continue
# if d_segment[i][j] == 96:
# print(f"apple的像素坐标({i},{j})")
# print(f"apple的深度{d_depth[i][j][0]}")
# print(f"apple的世界坐标: {transform_co(img_data_depth, i, j, d_depth[i][j][0], scene)}")
# if d_segment[i][j] == 113:
# print(f"kettle的像素坐标({i},{j})")
# print(f"kettle的深度{d_depth[i][j][0]}")
# print(f"kettle的世界坐标: {transform_co(img_data_depth, i, j, d_depth[i][j][0], scene)}")
if d_segment[i][j][0] in obstacle_objs_id:
cur_obstacle_pixel_points.append([i, j])
# print(cur_obstacle_pixel_points)
for pixel in cur_obstacle_pixel_points:
world_point = transform_co(img_data_depth, pixel[0], pixel[1], d_depth[pixel[0]][pixel[1]][0], scene)
cur_obstacle_world_points.append([world_point[0], world_point[1]])
# print(f"{pixel}{[world_point[0], world_point[1]]}")
return cur_obstacle_world_points
2023-11-15 15:11:01 +08:00
def get_semantic_map(camera, cur_objs, objs_name):
scene = Observe(0)
objs = scene.objects
img_data = get_camera([camera])
2023-11-16 16:37:11 +08:00
# show_image(img_data, scene)
2023-11-15 15:11:01 +08:00
objs_name = save_obj_info(img_data, objs_name)
for obj_name in list(objs_name):
for obj in objs:
if obj.name == obj_name and obj not in cur_objs:
cur_objs.append(obj)
break
return cur_objs, objs_name
if __name__ == '__main__':
map_id = 11 # 地图编号
scene_num = 1 # 场景数量
cur_objs = []
print('------------ 初始化加载场景 ------------')
Init()
AcquireAvailableMaps()
SetWorld(map_id, scene_num)
time.sleep(5.0)
for i in range(scene_num):
print('------------ 场景操作 ------------')
scene = Observe(i)
Reset(i)
print('------------ 相机捕获 ------------')
Reset(i)
time.sleep(1.0)
# print(get_semantic_map(GrabSim_pb2.CameraName.Head_Segment,cur_objs))
# for camera_name in [GrabSim_pb2.CameraName.Head_Depth]:
# img_data = get_camera([camera_name], i)
# show_image(img_data, scene)
2023-11-15 15:11:01 +08:00
# for camera_name in [GrabSim_pb2.CameraName.Waist_Color, GrabSim_pb2.CameraName.Waist_Depth]:
# img_data = get_camera([camera_name], i)
# show_image(img_data, 2)