RoboWaiter/zoo/opt_bt_expansion/OptimalBTExpansionAlgorithm.py

211 lines
8.2 KiB
Python
Raw Normal View History

import copy
import random
from robowaiter.behavior_tree.obtea.BehaviorTree import Leaf,ControlBT
class CondActPair:
def __init__(self, cond_leaf,act_leaf):
self.cond_leaf = cond_leaf
self.act_leaf = act_leaf
#定义行动类,行动包括前提、增加和删除影响
class Action:
def __init__(self,name='anonymous action',pre=set(),add=set(),del_set=set(),cost=1):
self.pre=copy.deepcopy(pre)
self.add=copy.deepcopy(add)
self.del_set=copy.deepcopy(del_set)
self.name=name
self.cost=cost
def __str__(self):
return self.name
#生成随机状态
def generate_random_state(num):
result = set()
for i in range(0,num):
if random.random()>0.5:
result.add(i)
return result
#从状态和行动生成后继状态
def state_transition(state,action):
if not action.pre <= state:
print ('error: action not applicable')
return state
new_state=(state | action.add) - action.del_set
return new_state
#本文所提出的完备规划算法
class OptBTExpAlgorithm:
def __init__(self,verbose=False):
self.bt = None
self.nodes=[]
self.traversed=[]
self.mounted=[]
self.conditions=[]
self.conditions_index=[]
self.verbose=verbose
def clear(self):
self.bt = None
self.nodes = []
self.traversed = []
self.conditions = []
self.conditions_index = []
#运行规划算法从初始状态、目标状态和可用行动计算行为树self.bt
def run_algorithm(self,goal,actions):
if self.verbose:
print("\n算法开始!")
self.bt = ControlBT(type='cond')
# 初始行为树只包含目标条件
gc_node = Leaf(type='cond', content=goal,mincost=0) # 为了统一,都成对出现
ga_node = Leaf(type='act', content=None, mincost=0)
subtree = ControlBT(type='?')
subtree.add_child([copy.deepcopy(gc_node)]) # 子树首先保留所扩展结
self.bt.add_child([subtree])
# self.conditions.append(goal)
cond_anc_pair = CondActPair(cond_leaf=gc_node,act_leaf=ga_node)
self.nodes.append(copy.deepcopy(cond_anc_pair)) # the set of explored but unexpanded conditions
self.traversed = [goal] # the set of expanded conditions
while len(self.nodes)!=0:
# Find the condition for the shortest cost path
pair_node = None
min_cost = float ('inf')
index= -1
for i,cond_anc_pair in enumerate(self.nodes):
if cond_anc_pair.cond_leaf.mincost < min_cost:
min_cost = cond_anc_pair.cond_leaf.mincost
pair_node = copy.deepcopy(cond_anc_pair)
index = i
break
if self.verbose:
print("选择扩展条件结点:",pair_node.cond_leaf.content)
# Update self.nodes and self.traversed
self.nodes.pop(index) # the set of explored but unexpanded conditions. self.nodes.remove(pair_node)
c = pair_node.cond_leaf.content # 子树所扩展结点对应的条件一个文字的set
# Mount the action node and extend BT. T = Eapand(T,c,A(c))
if c!=goal:
sequence_structure = ControlBT(type='>')
sequence_structure.add_child(
[copy.deepcopy(pair_node.cond_leaf), copy.deepcopy(pair_node.act_leaf)])
subtree.add_child([copy.deepcopy(sequence_structure)]) # subtree 是回不断变化的它的父亲是self.bt
if self.verbose:
print("完成扩展 a_node= %s,对应的新条件 c_attr= %s,mincost=%d" \
% (cond_anc_pair.act_leaf.content.name, cond_anc_pair.cond_leaf.content,
cond_anc_pair.cond_leaf.mincost))
if self.verbose:
print("遍历所有动作, 寻找符合条件的动作")
# 遍历所有动作, 寻找符合条件的动作
current_mincost = pair_node.cond_leaf.mincost # 当前的最短路径是多少
for i in range(0, len(actions)):
if not c & ((actions[i].pre | actions[i].add) - actions[i].del_set) <= set():
if (c - actions[i].del_set) == c:
if self.verbose:
print("———— 满足条件可以扩展")
c_attr = (actions[i].pre | c) - actions[i].add
# 剪枝操作,现在的条件是以前扩展过的条件的超集
valid = True
for j in self.traversed: # 剪枝操作
if j <= c_attr:
valid = False
if self.verbose:
print("———— --被剪枝")
break
if valid:
# 把符合条件的动作节点都放到列表里
if self.verbose:
print("———— -- %s 符合条件放入列表" % actions[i].name)
c_attr_node = Leaf(type='cond', content=c_attr, mincost=current_mincost + actions[i].cost)
a_attr_node = Leaf(type='act', content=actions[i], mincost=current_mincost + actions[i].cost)
cond_anc_pair = CondActPair(cond_leaf=c_attr_node, act_leaf=a_attr_node)
self.nodes.append(copy.deepcopy(cond_anc_pair)) # condition node list
self.traversed.append(c_attr) # 重点 the set of expanded conditions
if self.verbose:
print("算法结束!\n")
return True
def print_solution(self):
print("========= BT ==========") # 树的bfs遍历
nodes_ls = []
nodes_ls.append(self.bt)
while len(nodes_ls) != 0:
parnode = nodes_ls[0]
print("Parrent:", parnode.type)
for child in parnode.children:
if isinstance(child, Leaf):
print("---- Leaf:", child.content)
elif isinstance(child, ControlBT):
print("---- ControlBT:", child.type)
nodes_ls.append(child)
print()
nodes_ls.pop(0)
print("========= BT ==========\n")
# 返回所有能到达目标状态的初始状态
def get_all_state_leafs(self):
state_leafs=[]
nodes_ls = []
nodes_ls.append(self.bt)
while len(nodes_ls) != 0:
parnode = nodes_ls[0]
for child in parnode.children:
if isinstance(child, Leaf):
if child.type == "cond":
state_leafs.append(child.content)
elif isinstance(child, ControlBT):
nodes_ls.append(child)
nodes_ls.pop(0)
return state_leafs
# 树的dfs
def dfs_ptml(self,parnode):
for child in parnode.children:
if isinstance(child, Leaf):
if child.type == 'cond':
self.ptml_string += "cond "
c_set_str = ', '.join(map(str, child.content)) + "\n"
self.ptml_string += c_set_str
elif child.type == 'act':
self.ptml_string += 'act '+child.content.name+"\n"
elif isinstance(child, ControlBT):
if parnode.type == '?':
self.ptml_string += "selector{\n"
self.dfs_ptml(parnode=child)
elif parnode.type == '>':
self.ptml_string += "sequence{\n"
self.dfs_ptml( parnode=child)
self.ptml_string += '}\n'
def get_ptml(self):
self.ptml_string = "selector{\n"
self.dfs_ptml(self.bt.children[0])
self.ptml_string += '}\n'
return self.ptml_string
def save_ptml_file(self,file_name):
self.ptml_string = "selector{\n"
self.dfs_ptml(self.bt.children[0])
self.ptml_string += '}\n'
with open(f'./{file_name}.ptml', 'w') as file:
file.write(self.ptml_string)
return self.ptml_string