RoboWaiter/BTExpansionCode/BTExpansionAlgorithm_old.py

163 lines
5.6 KiB
Python
Raw Normal View History

2024-01-04 22:51:33 +08:00
import random
import numpy as np
import copy
import time
from OptimalBTExpansionAlgorithm import ControlBT,Leaf,generate_random_state,Action,state_transition,conflict
# 本文所提出的完备规划算法
class BTExpAlgorithm:
def __init__(self,verbose=False):
self.bt = None
self.nodes = []
self.traversed = []
self.conditions = []
self.conditions_index = []
self.verbose = verbose
# print (self.conditions_list[0])
def clear(self):
self.bt = None
self.nodes = []
self.traversed = []
self.conditions = []
self.conditions_index = []
# 运行规划算法从初始状态、目标状态和可用行动计算行为树self.bt
def run_algorithm(self, start, goal, actions):
# 初始行为树只包含目标条件
self.bt = ControlBT(type='cond')
g_node = Leaf(type='cond', content=goal)
self.bt.add_child([g_node])
self.conditions.append(goal)
self.nodes.append(g_node) # condition node list
# 尝试在初始状态执行行为树
val, obj = self.bt.tick(start)
canrun = False
if val == 'success' or val == 'running':
canrun = True
# 循环扩展,直到行为树能够在初始状态运行
while not canrun:
index = -1
for i in range(0, len(self.nodes)):
if self.nodes[i].content in self.traversed:
continue
else:
c_node = self.nodes[i]
index = i
break
if index == -1: # 树中结点扩展完毕,仍无法运行行为树,返回失败
print('Failure')
return False
# 根据所选择条件结点扩展子树
subtree = ControlBT(type='?')
subtree.add_child([copy.deepcopy(c_node)]) # 子树首先保留所扩展结点
c = c_node.content # 子树所扩展结点对应的条件一个文字的set
for i in range(0, len(actions)): # 选择符合条件的行动,
# print("have action")
if not c & ((actions[i].pre | actions[i].add) - actions[i].del_set) <= set():
# print ("pass add")
if (c - actions[i].del_set) == c:
# print("pass delete")
c_attr = (actions[i].pre | c) - actions[i].add
valid = True
# 这样剪枝存在错误性
# if conflict(c_attr):
# continue
for j in self.traversed: # 剪枝操作
if j <= c_attr:
valid = False
break
if valid:
# print("pass prune")
# 构建行动的顺序结构
sequence_structure = ControlBT(type='>')
c_attr_node = Leaf(type='cond', content=c_attr)
a_node = Leaf(type='act', content=actions[i])
sequence_structure.add_child([c_attr_node, a_node])
# 将顺序结构添加到子树
subtree.add_child([sequence_structure])
self.nodes.append(c_attr_node)
# 将原条件结点c_node替换为扩展后子树subtree
parent_of_c = c_node.parent
parent_of_c.children[0] = subtree
# 记录已扩展条件
self.traversed.append(c)
# 尝试在初始状态运行行为树
val, obj = self.bt.tick(start)
canrun = False
if val == 'success' or val == 'running':
canrun = True
return True
def print_solution(self):
print("========= XiaoCaoBT ==========") # 树的bfs遍历
nodes_ls = []
nodes_ls.append(self.bt)
while len(nodes_ls) != 0:
parnode = nodes_ls[0]
print("Parrent:", parnode.type)
for child in parnode.children:
if isinstance(child, Leaf):
print("---- Leaf:", child.content)
elif isinstance(child, ControlBT):
print("---- ControlBT:", child.type)
nodes_ls.append(child)
print()
nodes_ls.pop(0)
print("========= XiaoCaoBT ==========\n")
if __name__ == '__main__':
bt_algo_opt = False
# casestudy begin 对应论文的case study包含三个行动的移动机械臂场景
actions = []
a = Action(name='movebtob')
a.pre = {1, 2}
a.add = {3}
a.del_set = {1, 4}
actions.append(a)
a = Action(name='moveatob')
a.pre = {1}
a.add = {5, 2}
a.del_set = {1, 6}
actions.append(a)
a = Action(name='moveatoa')
a.pre = {7}
a.add = {8, 2}
a.del_set = {7, 6}
actions.append(a)
start = {1, 7, 4, 6}
goal = {3}
algo = BTExpAlgorithm()
algo.clear()
algo.run_algorithm(start, goal, list(actions))
state = start
steps = 0
val, obj = algo.bt.tick(state)
while val != 'success' and val != 'failure':
state = state_transition(state, obj)
print(obj.name)
val, obj = algo.bt.tick(state)
if (val == 'failure'):
print("bt fails at step", steps)
steps += 1
if not goal <= state:
print("wrong solution", steps)
else:
print("right solution", steps)
# algo.bt.print_nodes()
print(algo.bt.count_size() - 1)
algo.clear()
# case study end