RoboWaiter/robowaiter/behavior_tree/obtea/OptimalBTExpansionAlgorithm...

430 lines
18 KiB
Python
Raw Normal View History

2024-01-09 20:24:23 +08:00
import copy
import random
from robowaiter.behavior_tree.obtea.BehaviorTree import Leaf,ControlBT
class CondActPair:
def __init__(self, cond_leaf,act_leaf):
self.cond_leaf = cond_leaf
self.act_leaf = act_leaf
#定义行动类,行动包括前提、增加和删除影响
class Action:
def __init__(self,name='anonymous action',pre=set(),add=set(),del_set=set(),cost=1):
self.pre=copy.deepcopy(pre)
self.add=copy.deepcopy(add)
self.del_set=copy.deepcopy(del_set)
self.name=name
self.cost=cost
def __str__(self):
return self.name
# 从状态随机生成一个行动
def generate_from_state(self,state,num):
for i in range(0,num):
if i in state:
if random.random() >0.5:
self.pre.add(i)
if random.random() >0.5:
self.del_set.add(i)
continue
if random.random() > 0.5:
self.add.add(i)
continue
if random.random() >0.5:
self.del_set.add(i)
def print_action(self):
print (self.pre)
print(self.add)
print(self.del_set)
#生成随机状态
def generate_random_state(num):
result = set()
for i in range(0,num):
if random.random()>0.5:
result.add(i)
return result
#从状态和行动生成后继状态
def state_transition(state,action):
if not action.pre <= state:
print ('error: action not applicable')
return state
new_state=(state | action.add) - action.del_set
return new_state
def conflict(c):
have_at = False
have_holding = False
for str in c:
if 'At' in str:
if not have_at:
have_at = True
else:
return True
if 'Holding' in str:
if not have_holding:
have_holding = True
else:
return True
return False
#本文所提出的完备规划算法
class OptBTExpAlgorithm:
def __init__(self,verbose=False):
self.bt = None
self.nodes=[]
self.traversed=[]
self.mounted=[]
self.conditions=[]
self.conditions_index=[]
self.verbose=verbose
self.goal=None
self.bt_merge = True
def clear(self):
self.bt = None
self.goal = None
self.nodes = []
self.traversed = [] #存cond
self.expanded = [] #存整个
self.conditions = []
self.conditions_index = []
#运行规划算法从初始状态、目标状态和可用行动计算行为树self.bt
# def run_algorithm(self,goal,actions,scene):
def run_algorithm_selTree(self, start, goal, actions):
# self.scene = scene
self.goal = goal
if self.verbose:
print("\n算法开始!")
bt = ControlBT(type='cond')
# 初始行为树只包含目标条件
gc_node = Leaf(type='cond', content=goal,mincost=0) # 为了统一,都成对出现
ga_node = Leaf(type='act', content=None, mincost=0)
subtree = ControlBT(type='?')
subtree.add_child([copy.deepcopy(gc_node)]) # 子树首先保留所扩展结
bt.add_child([subtree])
# self.conditions.append(goal)
cond_anc_pair = CondActPair(cond_leaf=gc_node,act_leaf=ga_node)
self.nodes.append(copy.deepcopy(cond_anc_pair)) # the set of explored but unexpanded conditions
self.traversed = [goal] # the set of expanded conditions
while len(self.nodes)!=0:
# Find the condition for the shortest cost path
pair_node = None
min_cost = float ('inf')
index= -1
for i,cond_anc_pair in enumerate(self.nodes):
########### 剪枝操作
# cond_tmp = cond_anc_pair.cond_leaf.content
# valid = True
# for pn in self.expanded: # 剪枝操作
# if isinstance(pn.act_leaf.content,Action):
# if pn.act_leaf.content.name==cond_anc_pair.act_leaf.content.name and cond_tmp <= pn.cond_leaf.content:
# valid = False
# break
# if not valid:
# continue
########### 剪枝操作
if cond_anc_pair.cond_leaf.mincost < min_cost:
min_cost = cond_anc_pair.cond_leaf.mincost
pair_node = copy.deepcopy(cond_anc_pair)
index = i
if self.verbose:
print("选择扩展条件结点:",pair_node.cond_leaf.content)
# Update self.nodes and self.traversed
self.nodes.pop(index) # the set of explored but unexpanded conditions. self.nodes.remove(pair_node)
c = pair_node.cond_leaf.content # 子树所扩展结点对应的条件一个文字的set
# Mount the action node and extend BT. T = Eapand(T,c,A(c))
if c!=goal:
if c!=set():
# 挂在上去的时候判断要不要挂载
########### 剪枝操作 发现行不通
# valid = True
# for pn in self.expanded: # 剪枝操作
# if isinstance(pn.act_leaf.content,Action):
# if pn.act_leaf.content.name==pair_node.act_leaf.content.name and c <= pn.cond_leaf.content:
# valid = False
# break
# if valid:
########### 剪枝操作
sequence_structure = ControlBT(type='>')
sequence_structure.add_child(
[copy.deepcopy(pair_node.cond_leaf), copy.deepcopy(pair_node.act_leaf)])
subtree.add_child([copy.deepcopy(sequence_structure)]) # subtree 是回不断变化的它的父亲是self.bt
self.expanded.append(copy.deepcopy(pair_node))
# 增加实时条件判断,满足条件就不再扩展
# if c <= self.scene.state["condition_set"]:
if c <= start:
if self.bt_merge:
bt = copy.deepcopy(self.merge_adjacent_conditions_stack(bt))
return bt,min_cost
# return True
else:
subtree.add_child([copy.deepcopy(pair_node.act_leaf)])
if self.verbose:
print("完成扩展 a_node= %s,对应的新条件 c_attr= %s,mincost=%d" \
% (pair_node.act_leaf.content.name, pair_node.cond_leaf.content,
pair_node.cond_leaf.mincost))
if self.verbose:
print("遍历所有动作, 寻找符合条件的动作")
# 遍历所有动作, 寻找符合条件的动作
current_mincost = pair_node.cond_leaf.mincost # 当前的最短路径是多少
for i in range(0, len(actions)):
if not c & ((actions[i].pre | actions[i].add) - actions[i].del_set) <= set():
if (c - actions[i].del_set) == c:
if self.verbose:
print("———— 满足条件可以扩展:",actions[i].name)
c_attr = (actions[i].pre | c) - actions[i].add
# 这样剪枝存在错误性
if conflict(c_attr):
continue
# 剪枝操作,现在的条件是以前扩展过的条件的超集
valid = True
for j in self.traversed: # 剪枝操作
if j <= c_attr:
valid = False
if self.verbose:
print("———— --被剪枝:",actions[i].name,"c_attr=",c_attr)
break
if valid:
c_attr_node = Leaf(type='cond', content=c_attr, mincost=current_mincost + actions[i].cost)
a_attr_node = Leaf(type='act', content=actions[i], mincost=current_mincost + actions[i].cost)
cond_anc_pair = CondActPair(cond_leaf=c_attr_node, act_leaf=a_attr_node)
self.nodes.append(copy.deepcopy(cond_anc_pair)) # condition node list
self.traversed.append(c_attr) # 重点 the set of expanded conditions
# 把符合条件的动作节点都放到列表里
if self.verbose:
print("———— -- %s 符合条件放入列表,对应的c为 %s" % (actions[i].name,c_attr),"cost=",current_mincost + actions[i].cost)
if self.bt_merge:
bt = copy.deepcopy(self.merge_adjacent_conditions_stack(bt))
if self.verbose:
print("算法结束!\n")
return bt,min_cost
# return True
def run_algorithm(self, start, goal, actions):
self.bt = ControlBT(type='cond')
subtree = ControlBT(type='?')
subtree_with_costs_ls=[]
if len(goal) > 1:
for g in goal:
bt_sel_tree,mincost = self.run_algorithm_selTree(start, g, actions)
subtree_with_costs_ls.append((bt_sel_tree,mincost))
# 要排个序再一次add
# subtree.add_child([copy.deepcopy(bt_sel_tree.children[0])])
# self.bt.add_child([subtree])
sorted_trees = sorted(subtree_with_costs_ls, key=lambda x: x[1])
for tree,cost in sorted_trees:
subtree.add_child([copy.deepcopy(tree.children[0])])
self.bt.add_child([subtree])
else:
self.bt,mincost = self.run_algorithm_selTree(start, goal[0], actions)
return True
def merge_adjacent_conditions_stack(self,bt_sel):
# 只针对第一层合并,之后要考虑层层递归合并
bt = ControlBT(type='cond')
sbtree = ControlBT(type='?')
# gc_node = Leaf(type='cond', content=self.goal, mincost=0) # 为了统一,都成对出现
# sbtree.add_child([copy.deepcopy(gc_node)]) # 子树首先保留所扩展结
bt.add_child([sbtree])
parnode = copy.deepcopy(bt_sel.children[0])
stack=[]
for child in parnode.children:
if isinstance(child, ControlBT) and child.type == '>':
if stack==[]:
stack.append(child)
continue
# 检查合并的条件,前面一个的条件包含了后面的条件,把包含部分提取出来
last_child = stack[-1]
if isinstance(last_child, ControlBT) and last_child.type == '>':
set1 = last_child.children[0].content
set2 = child.children[0].content
inter = set1 & set2
if inter!=set():
c1 = set1-set2
c2 = set2-set1
inter_node = Leaf(type='cond', content=inter)
c1_node = Leaf(type='cond', content=c1)
c2_node = Leaf(type='cond', content=c2)
a1_node = copy.deepcopy(last_child.children[1])
a2_node = copy.deepcopy(child.children[1])
# set1<=set2,此时set2对应的动作永远不会执行
if (c1==set() and isinstance(last_child.children[1], Leaf) and isinstance(child.children[1], Leaf) \
and isinstance(last_child.children[1].content, Action) and isinstance(child.children[1].content, Action)):
continue
# 再写一个特殊情况处理三个结点动作last 遇到 两个结点 且动作相同
if len(last_child.children)==3 and \
isinstance(last_child.children[2], Leaf) and isinstance(child.children[1], Leaf) \
and isinstance(last_child.children[2].content, Action) and isinstance( child.children[1].content, Action) \
and last_child.children[2].content.name == child.children[1].content.name \
and c1==set() and c2!=set():
last_child.children[1].add_child([copy.deepcopy(c2_node)])
continue
elif len(last_child.children)==3:
stack.append(child)
continue
# 判断动作相不相同
if isinstance(last_child.children[1], Leaf) and isinstance(child.children[1], Leaf) \
and isinstance(last_child.children[1].content, Action) and isinstance(child.children[1].content, Action) \
and last_child.children[1].content.name == child.children[1].content.name:
if c2==set():
tmp_tree = ControlBT(type='>')
tmp_tree.add_child(
[copy.deepcopy(inter_node), copy.deepcopy(a1_node)])
else:
_sel = ControlBT(type='?')
_sel.add_child([copy.deepcopy(c1_node), copy.deepcopy(c2_node)])
tmp_tree = ControlBT(type='>')
tmp_tree.add_child(
[copy.deepcopy(inter_node), copy.deepcopy(_sel),copy.deepcopy(a1_node)])
else:
if c1 == set():
seq1 = copy.deepcopy(last_child.children[1])
else:
seq1 = ControlBT(type='>')
seq1.add_child([copy.deepcopy(c1_node), copy.deepcopy(a1_node)])
if c2 == set():
seq2 = copy.deepcopy(child.children[1])
else:
seq2 = ControlBT(type='>')
seq2.add_child([copy.deepcopy(c2_node), copy.deepcopy(a2_node)])
sel = ControlBT(type='?')
sel.add_child([copy.deepcopy(seq1), copy.deepcopy(seq2)])
tmp_tree = ControlBT(type='>')
tmp_tree.add_child(
[copy.deepcopy(inter_node), copy.deepcopy(sel)])
stack.pop()
stack.append(tmp_tree)
else:
stack.append(child)
else:
stack.append(child)
else:
stack.append(child)
for tree in stack:
sbtree.add_child([tree])
bt_sel = copy.deepcopy(bt)
return bt_sel
def print_solution(self):
print("========= BT ==========") # 树的bfs遍历
nodes_ls = []
nodes_ls.append(self.bt)
while len(nodes_ls) != 0:
parnode = nodes_ls[0]
print("Parrent:", parnode.type)
for child in parnode.children:
if isinstance(child, Leaf):
print("---- Leaf:", child.content)
elif isinstance(child, ControlBT):
print("---- ControlBT:", child.type)
nodes_ls.append(child)
print()
nodes_ls.pop(0)
print("========= BT ==========\n")
# 返回所有能到达目标状态的初始状态
def get_all_state_leafs(self):
state_leafs=[]
nodes_ls = []
nodes_ls.append(self.bt)
while len(nodes_ls) != 0:
parnode = nodes_ls[0]
for child in parnode.children:
if isinstance(child, Leaf):
if child.type == "cond":
state_leafs.append(child.content)
elif isinstance(child, ControlBT):
nodes_ls.append(child)
nodes_ls.pop(0)
return state_leafs
# 树的dfs
def dfs_ptml(self,parnode,is_root=False):
for child in parnode.children:
if isinstance(child, Leaf):
if child.type == 'cond':
if is_root and len(child.content) > 1:
# 把多个 cond 串起来
self.ptml_string += "sequence{\n"
self.ptml_string += "cond "
c_set_str = '\n cond '.join(map(str, child.content)) + "\n"
self.ptml_string += c_set_str
self.ptml_string += '}\n'
else:
self.ptml_string += "cond "
c_set_str = '\n cond '.join(map(str, child.content)) + "\n"
self.ptml_string += c_set_str
elif child.type == 'act':
if '(' not in child.content.name:
self.ptml_string += 'act ' + child.content.name + "()\n"
else:
self.ptml_string += 'act ' + child.content.name + "\n"
elif isinstance(child, ControlBT):
if child.type == '?':
self.ptml_string += "selector{\n"
self.dfs_ptml(parnode=child)
elif child.type == '>':
self.ptml_string += "sequence{\n"
self.dfs_ptml( parnode=child)
self.ptml_string += '}\n'
def get_ptml(self):
self.ptml_string = "selector{\n"
self.dfs_ptml(self.bt.children[0],is_root=True)
self.ptml_string += '}\n'
return self.ptml_string
def save_ptml_file(self,file_name):
self.ptml_string = "selector{\n"
self.dfs_ptml(self.bt.children[0])
self.ptml_string += '}\n'
with open(f'./{file_name}.ptml', 'w') as file:
file.write(self.ptml_string)
return self.ptml_string