RoboWaiter/robowaiter/scene/tasks/AEM.py

109 lines
4.2 KiB
Python
Raw Normal View History

"""
环境主动探索和记忆
要求输出探索结果语义地图对环境重点信息记忆生成环境的语义拓扑地图和不少于10个环境物品的识别和位置记忆可以是图片或者文字或者格式化数据
"""
import json
import math
import time
import matplotlib as mpl
2023-11-16 16:37:11 +08:00
import pickle
import numpy as np
from matplotlib import pyplot as plt
from sklearn.cluster import DBSCAN
from robowaiter.scene.scene import Scene
class SceneAEM(Scene):
def __init__(self, robot):
super().__init__(robot)
2023-11-15 12:04:49 +08:00
def _reset(self):
pass
def _run(self):
# 创建一个从白色1到灰色0的 colormap
2023-11-15 15:09:51 +08:00
cur_objs = []
cur_obstacle_world_points = []
2023-11-16 16:37:11 +08:00
objs_name_set = set()
visited_obstacle = set()
obj_json_data = []
db = DBSCAN(eps=4, min_samples=2)
map_ratio = 3
# # 创建一个颜色映射其中0表示黑色1表示白色
# cmap = plt.cm.get_cmap('gray')
# cmap.set_under('black')
# cmap.set_over('white')
2023-11-16 16:37:11 +08:00
file_name = '../../proto/map_1.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
2023-11-15 15:09:51 +08:00
print('------------ 自主探索 ------------')
2023-11-16 16:37:11 +08:00
# cur_objs = self.semantic_map.navigation_move(cur_objs, 0, 11)
# print("物品列表如下:")
# print(cur_objs)
# cur_pos = [int(scene.location.X), int(scene.location.Y)]
# print(reachable([237,490]))
# navigation_move([[237,490]], i, map_id)
# navigation_test(i,map_id)
map_map = np.zeros((math.ceil(950 / map_ratio), math.ceil(1850 / map_ratio)))
2023-11-16 16:37:11 +08:00
while True:
goal = self.explore(map, 120) # cur_pos 指的是当前机器人的位置,场景中应该也有接口可以获取
if goal is None:
break
cur_objs, objs_name_set, cur_obstacle_world_points= self.navigation_move(cur_objs, objs_name_set, cur_obstacle_world_points, [[goal[0], goal[1]]], map_ratio, db,0, 11)
for point in cur_obstacle_world_points:
if point[0] < -350 or point[0] > 600 or point[1] < -400 or point[1] > 1450:
continue
map_map[math.floor((point[0] + 350) / map_ratio), math.floor((point[1] + 400) / map_ratio)] = 1
visited_obstacle.add((math.floor((point[0] + 350) / map_ratio), math.floor((point[1] + 400) / map_ratio)))
# plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
# extent=(-400 / map_ratio, 1450 / map_ratio,
# -350 / map_ratio, 600 / map_ratio))
# 使用imshow函数绘制图像其中cmap参数设置颜色映射
plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-400 / map_ratio, 1450 / map_ratio,
-350 / map_ratio, 600 / map_ratio))
# plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower')
# plt.axis('off')
plt.show()
time.sleep(1)
2023-11-16 16:37:11 +08:00
print("------------物品信息--------------")
2023-11-15 15:09:51 +08:00
print(cur_objs)
for i in range(len(cur_objs)):
obj_json_data.append({"id":f"{i}", "name":f"{cur_objs[i].name}", "location":f"{cur_objs[i].location}", "height":f"{cur_objs[i].location.Z * 2}"})
with open('../../proto/objs.json', 'w') as file:
json.dump(obj_json_data, file)
# for i in range(-350, 600):
# for j in range(-400, 1450):
# i = (math.floor((i + 350) / map_ratio))
# j = (math.floor((j + 400) / map_ratio))
# if (i, j) not in visited_obstacle:
# map_map[i][j] = 1
plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-400 / map_ratio, 1450 / map_ratio,
-350 / map_ratio, 600 / map_ratio))
# plt.axis('off')
plt.show()
print("已绘制完成地图!!!")
2023-11-15 12:04:49 +08:00
if __name__ == '__main__':
import os
from robowaiter.robot.robot import Robot
robot = Robot()
# create task
task = SceneAEM(robot)
task.reset()
2023-11-15 15:09:51 +08:00
task.run()