2023-10-25 10:34:46 +08:00
|
|
|
|
"""
|
|
|
|
|
环境主动探索和记忆
|
|
|
|
|
要求输出探索结果(语义地图)对环境重点信息记忆。生成环境的语义拓扑地图,和不少于10个环境物品的识别和位置记忆,可以是图片或者文字或者格式化数据。
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from robowaiter.scene.scene import Scene
|
|
|
|
|
|
|
|
|
|
class SceneAEM(Scene):
|
|
|
|
|
def __init__(self, robot):
|
|
|
|
|
super().__init__(robot)
|
|
|
|
|
|
|
|
|
|
# control.init_world(1, 3)
|
|
|
|
|
|
2023-10-25 22:12:15 +08:00
|
|
|
|
def _reset(self):
|
2023-10-25 10:34:46 +08:00
|
|
|
|
self.add_object(0, 570, 1600, 85.5) # type与物品编号对应,具体参考README.md
|
|
|
|
|
self.add_object(1, 570, 1630, 85.5)
|
|
|
|
|
self.add_object(2, 570, 1660, 85.5)
|
|
|
|
|
self.add_object(3, 580, 1680, 85.5)
|
|
|
|
|
|
|
|
|
|
# todo: 探索并获得语义地图
|
|
|
|
|
print(self.status.objects) # 全部的物品信息,包括名称、位置等,与获得的语义地图进行对比
|
|
|
|
|
|
2023-10-25 22:12:15 +08:00
|
|
|
|
def _run(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def _step(self):
|
2023-10-25 10:34:46 +08:00
|
|
|
|
pass
|