2023-11-06 17:31:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from tabulate import tabulate
|
|
|
|
|
import numpy as np
|
|
|
|
|
import random
|
2023-11-08 10:03:40 +08:00
|
|
|
|
from zoo.opt_bt_expansion.OptimalBTExpansionAlgorithm import Action,OptBTExpAlgorithm
|
2023-11-06 17:31:43 +08:00
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_action_data_table(goal,start,actions):
|
|
|
|
|
data = []
|
|
|
|
|
for a in actions:
|
|
|
|
|
data.append([a.name ,a.pre ,a.add ,a.del_set ,a.cost])
|
|
|
|
|
data.append(["Goal" ,goal ," " ,"Start" ,start])
|
|
|
|
|
print(tabulate(data, headers=["Name", "Pre", "Add" ,"Del" ,"Cost"], tablefmt="fancy_grid")) # grid plain simple github fancy_grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 从状态随机生成一个行动
|
|
|
|
|
def generate_from_state(act,state,num):
|
|
|
|
|
for i in range(0,num):
|
|
|
|
|
if i in state:
|
|
|
|
|
if random.random() >0.5:
|
|
|
|
|
act.pre.add(i)
|
|
|
|
|
if random.random() >0.5:
|
|
|
|
|
act.del_set.add(i)
|
|
|
|
|
continue
|
|
|
|
|
if random.random() > 0.5:
|
|
|
|
|
act.add.add(i)
|
|
|
|
|
continue
|
|
|
|
|
if random.random() >0.5:
|
|
|
|
|
act.del_set.add(i)
|
|
|
|
|
|
|
|
|
|
def print_action(act):
|
|
|
|
|
print (act.pre)
|
|
|
|
|
print(act.add)
|
|
|
|
|
print(act.del_set)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#行为树测试代码
|
|
|
|
|
def BTTest(seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
|
|
|
|
|
print("============= BT Test ==============")
|
|
|
|
|
random.seed(seed)
|
|
|
|
|
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
|
|
|
|
|
literals_num=literals_num
|
|
|
|
|
depth = depth
|
|
|
|
|
iters= iters
|
|
|
|
|
total_tree_size = []
|
|
|
|
|
total_action_num = []
|
|
|
|
|
total_state_num = []
|
|
|
|
|
total_steps_num=[]
|
|
|
|
|
#fail_count=0
|
|
|
|
|
#danger_count=0
|
|
|
|
|
success_count =0
|
|
|
|
|
failure_count = 0
|
|
|
|
|
planning_time_total = 0.0
|
|
|
|
|
# 实验1000次
|
|
|
|
|
for count in range (total_count):
|
|
|
|
|
|
|
|
|
|
action_num = 1
|
|
|
|
|
|
|
|
|
|
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
|
|
|
|
|
states = []
|
|
|
|
|
actions = []
|
|
|
|
|
start = generate_random_state(literals_num)
|
|
|
|
|
state = start
|
|
|
|
|
states.append(state)
|
|
|
|
|
#print (state)
|
|
|
|
|
for i in range (0,depth):
|
|
|
|
|
a = Action()
|
|
|
|
|
generate_from_state(a,state,literals_num)
|
|
|
|
|
if not a in actions:
|
|
|
|
|
a.name = "a"+str(action_num)
|
|
|
|
|
action_num+=1
|
|
|
|
|
actions.append(a)
|
|
|
|
|
state = state_transition(state,a)
|
|
|
|
|
if state in states:
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
states.append(state)
|
|
|
|
|
#print(state)
|
|
|
|
|
|
|
|
|
|
goal = states[-1]
|
|
|
|
|
state = start
|
|
|
|
|
for i in range (0,iters):
|
|
|
|
|
a = Action()
|
|
|
|
|
generate_from_state(a,state,literals_num)
|
|
|
|
|
if not a in actions:
|
|
|
|
|
a.name = "a"+str(action_num)
|
|
|
|
|
action_num+=1
|
|
|
|
|
actions.append(a)
|
|
|
|
|
state = state_transition(state,a)
|
|
|
|
|
if state in states:
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
states.append(state)
|
|
|
|
|
state = random.sample(states,1)[0]
|
|
|
|
|
|
|
|
|
|
# 选择测试本文算法btalgorithm,或对比算法weakalgorithm
|
|
|
|
|
algo = OptBTExpAlgorithm()
|
|
|
|
|
#algo = Weakalgorithm()
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
# print_action_data_table(goal, start, list(actions))
|
|
|
|
|
if algo.run_algorithm(start, goal, actions):#运行算法,规划后行为树为algo.bt
|
|
|
|
|
total_tree_size.append( algo.bt.count_size()-1)
|
|
|
|
|
# algo.print_solution() # 打印行为树
|
|
|
|
|
else:
|
|
|
|
|
print ("error")
|
|
|
|
|
end_time = time.time()
|
|
|
|
|
planning_time_total += (end_time-start_time)
|
|
|
|
|
|
|
|
|
|
#开始从初始状态运行行为树,测试
|
|
|
|
|
state=start
|
|
|
|
|
steps=0
|
|
|
|
|
val, obj = algo.bt.tick(state)#tick行为树,obj为所运行的行动
|
|
|
|
|
while val !='success' and val !='failure':#运行直到行为树成功或失败
|
|
|
|
|
state = state_transition(state,obj)
|
|
|
|
|
val, obj = algo.bt.tick(state)
|
|
|
|
|
if(val == 'failure'):
|
|
|
|
|
print("bt fails at step",steps)
|
|
|
|
|
steps+=1
|
|
|
|
|
if(steps>=500):#至多运行500步
|
|
|
|
|
break
|
|
|
|
|
if not goal <= state:#错误解,目标条件不在执行后状态满足
|
|
|
|
|
#print ("wrong solution",steps)
|
|
|
|
|
failure_count+=1
|
|
|
|
|
|
|
|
|
|
else:#正确解,满足目标条件
|
|
|
|
|
#print ("right solution",steps)
|
|
|
|
|
success_count+=1
|
|
|
|
|
total_steps_num.append(steps)
|
|
|
|
|
algo.clear()
|
|
|
|
|
total_action_num.append(len(actions))
|
|
|
|
|
total_state_num.append(len(states))
|
|
|
|
|
|
|
|
|
|
print ("success:",success_count,"failure:",failure_count)#算法成功和失败次数
|
|
|
|
|
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
|
|
|
|
|
print ("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
|
|
|
|
|
print ("Average number of states:",np.mean(total_state_num))#1000次问题的平均状态数
|
|
|
|
|
print ("Average number of actions",np.mean(total_action_num))#1000次问题的平均行动数
|
|
|
|
|
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
|
|
|
|
|
print("============ End BT Test ===========")
|
|
|
|
|
|
|
|
|
|
# xiao cai
|
|
|
|
|
# success: 1000 failure: 0
|
|
|
|
|
# Total Tree Size: mean= 35.303 std= 29.71336526001515
|
|
|
|
|
# Total Steps Num: mean= 1.898 std= 0.970844240101644
|
|
|
|
|
# Average number of states: 20.678
|
|
|
|
|
# Average number of actions 20.0
|
|
|
|
|
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
|
|
|
|
|
|
|
|
|
|
# our start
|
|
|
|
|
# success: 1000 failure: 0
|
|
|
|
|
# Total Tree Size: mean= 17.945 std= 12.841997192488865
|
|
|
|
|
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
|
|
|
|
|
# Average number of states: 20.678
|
|
|
|
|
# Average number of actions 20.0
|
|
|
|
|
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
|
|
|
|
|
|
|
|
|
|
# our
|
|
|
|
|
# success: 1000 failure: 0
|
|
|
|
|
# Total Tree Size: mean= 48.764 std= 20.503626574406358
|
|
|
|
|
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
|
|
|
|
|
# Average number of states: 20.678
|
|
|
|
|
# Average number of actions 20.0
|
|
|
|
|
# Planning Time Total: 3.3271877765655518 0.0033271877765655516
|
|
|
|
|
|