更新了 scene 中的相机算法

This commit is contained in:
Caiyishuai 2023-11-20 16:40:00 +08:00
parent e4591b2efe
commit 14fde64ce3
6 changed files with 57 additions and 26 deletions

View File

@ -55,7 +55,7 @@ class Make(Act):
# obj_x, obj_y, obj_z = obj_info.location.X, obj_info.location.Y, obj_info.location.Z
# print(id,obj.name,obj_x,obj_y,obj_z)
if self.scene.take_picture:
self.scene.get_obstacle_point(self.scene.db, self.status, map_ratio=self.scene.map_ratio)
self.scene.get_obstacle_point(self.scene.db, self.status, map_ratio=self.scene.map_ratio,update_info_count=1)
self.scene.state["condition_set"] |= (self.info["add"])
self.scene.state["condition_set"] -= self.info["del_set"]

View File

@ -57,7 +57,7 @@ class PickUp(Act):
self.scene.op_task_execute(op_type=16, obj_id=obj_id)
if self.scene.take_picture:
self.scene.get_obstacle_point(self.scene.db, self.status, map_ratio=self.scene.map_ratio)
self.scene.get_obstacle_point(self.scene.db, self.status, map_ratio=self.scene.map_ratio,update_info_count=1)
self.scene.state["condition_set"] |= (self.info["add"])
self.scene.state["condition_set"] -= self.info["del_set"]

View File

@ -42,7 +42,7 @@ class PutDown(Act):
self.scene.move_task_area(op_type, release_pos=release_pos)
self.scene.op_task_execute(op_type, release_pos=release_pos)
if self.scene.take_picture:
self.scene.get_obstacle_point(self.scene.db, self.status, map_ratio=self.scene.map_ratio)
self.scene.get_obstacle_point(self.scene.db, self.status, map_ratio=self.scene.map_ratio,update_info_count=1)
self.scene.state["condition_set"] |= (self.info["add"])
self.scene.state["condition_set"] -= self.info["del_set"]

View File

@ -114,3 +114,14 @@ create_sub_task
抱歉,我马上去开空调并调低空调温度。
create_sub_task
{"goal":"Is(ACTemperature,Down)"}
请问哪里有空位啊?
现在有不少空位呢,请问您有什么要求嘛,比如靠窗还是阴凉处,还是?
我想坐高脚凳子。
没问题,您后面的桌子就能符合您的要求呢!
你带我去吧。
OK请跟我来
create_sub_task
{"goal":"At(Robot,BrightTable5)"}

View File

@ -116,7 +116,7 @@ class Scene:
self.show_bubble = True
# 图像分割
self.take_picture = False
self.take_picture = True
self.map_ratio = 5
self.map_map = np.zeros((math.ceil(950 / self.map_ratio), math.ceil(1850 / self.map_ratio)))
self.db = DBSCAN(eps=self.map_ratio, min_samples=int(self.map_ratio / 2))
@ -197,6 +197,12 @@ class Scene:
'refrigerator': {'吧台', '服务台', '蛋糕柜'},
'bookshelf': {'餐桌', '沙发', '窗户', '休闲区', '墙角'}}
self.obstacle_objs_id = [114, 115, 122, 96, 102, 83, 121, 105, 108, 89, 100, 90,
111, 103, 95, 92, 76, 113, 101, 29, 112, 87, 109, 98,
106, 120, 97, 86, 104, 78, 85, 81, 82, 84, 91, 93, 94,
99, 107, 116, 117, 118, 119, 255, 251]
self.not_key_objs_id = {255, 254, 253, 107, 81}
def reset(self):
# 基类reset默认执行仿真器初始化操作
self.reset_sim()
@ -999,8 +1005,8 @@ class Scene:
else:
return False
@staticmethod
def transform_co(img_data, pixel_x_, pixel_y_, depth_, scene, id=0, label=0):
def transform_co(self,img_data, pixel_x_, pixel_y_, depth_, scene, id=0, label=0):
im = img_data.images[0]
# 相机外参矩阵
@ -1031,14 +1037,14 @@ class Scene:
# print("物体的相对底盘的齐次坐标为:", robot_homogeneous_coordinates)
# 机器人坐标
X = scene.location.X
Y = scene.location.Y
X = self.status.location.X
Y = self.status.location.Y
Z = 0.0
# 机器人旋转信息
Roll = 0.0
Pitch = 0.0
Yaw = scene.rotation.Yaw
Yaw = self.status.rotation.Yaw
# 构建平移矩阵
T = np.array([[1, 0, 0, X],
@ -1090,9 +1096,10 @@ class Scene:
# print("物体世界偏移的坐标: ", world_offest_coordinates)
return world_coordinates
def get_obstacle_point(self, db, scene, map_ratio, update_info_count):
def get_obstacle_point(self, db, scene, map_ratio, update_info_count=0):
# db = DBSCAN(eps=4, min_samples=2)
cur_obstacle_pixel_points = []
cur_obstacle_world_points = []
obj_detect_count = 0
walker_detect_count = 0
fig = plt.figure()
@ -1127,7 +1134,7 @@ class Scene:
plt.imshow(d_segment, cmap="gray" if "depth" in im_segment.name.lower() else None)
plt.axis("off")
plt.title("相机分割")
plt.show()
d_depth = np.transpose(d_depth, (1, 0, 2))
d_segment = np.transpose(d_segment, (1, 0, 2))
@ -1144,8 +1151,8 @@ class Scene:
# print(f"kettle的像素坐标({i},{j})")
# print(f"kettle的深度{d_depth[i][j][0]}")
# print(f"kettle的世界坐标: {transform_co(img_data_depth, i, j, d_depth[i][j][0], scene)}")
# if d_segment[i][j][0] in obstacle_objs_id:
# cur_obstacle_pixel_points.append([i, j])
if d_segment[i][j][0] in self.obstacle_objs_id:
cur_obstacle_pixel_points.append([i, j])
if d_segment[i][j][0] not in not_key_objs_id:
# 首先检查键是否存在
if d_segment[i][j][0] in object_pixels:
@ -1155,13 +1162,13 @@ class Scene:
# 如果键不存在那么创建一个新的键值对其中键是d_segment[i][j][0],值是一个包含元组(i, j)的列表
object_pixels[d_segment[i][j][0]] = [[i, j]]
# print(cur_obstacle_pixel_points)
# for pixel in cur_obstacle_pixel_points:
# world_point = transform_co(img_data_depth, pixel[0], pixel[1], d_depth[pixel[0]][pixel[1]][0], scene)
# cur_obstacle_world_points.append([world_point[0], world_point[1]])
for pixel in cur_obstacle_pixel_points:
world_point = self.transform_co(img_data_depth, pixel[0], pixel[1], d_depth[pixel[0]][pixel[1]][0], scene)
cur_obstacle_world_points.append([world_point[0], world_point[1]])
# print(f"{pixel}{[world_point[0], world_point[1]]}")
plt.subplot(2, 2, 2)
plt.imshow(d_color, cmap="gray" if "depth" in im_depth.name.lower() else None)
# plt.axis('off')
plt.axis('off')
plt.title("目标检测")
for key, value in object_pixels.items():
@ -1215,10 +1222,11 @@ class Scene:
ha='center',
va='center')
plt.gca().add_patch(rect)
new_map = self.updateMap(cur_obstacle_pixel_points)
self.draw_map(new_map)
new_map = self.updateMap(cur_obstacle_world_points)
self.draw_map(plt,new_map)
plt.subplot(2, 7, 14)
plt.axis("off")
plt.text(0, 0.9, f'检测行人数量:{walker_detect_count}', fontsize=10)
plt.text(0, 0.7, f'检测物体数量:{obj_detect_count}', fontsize=10)
plt.text(0, 0.5, f'新增语义信息:{walker_detect_count}', fontsize=10)
@ -1233,11 +1241,10 @@ class Scene:
for point in points:
if point[0] < -350 or point[0] > 600 or point[1] < -400 or point[1] > 1450:
continue
map[
math.floor((point[0] + 350) / self.map_ratio), math.floor((point[1] + 400) / self.map_ratio)] = 1
map[math.floor((point[0] + 350) / self.map_ratio), math.floor((point[1] + 400) / self.map_ratio)] = 1
return map
def draw_map(self, map):
def draw_map(self,plt, map):
plt.subplot(2, 1, 2) # 这里的2,1表示总共2行1列2表示这个位置是第2个子图
plt.imshow(map, cmap='binary', alpha=0.5, origin='lower',
extent=(-400 / self.map_ratio, 1450 / self.map_ratio,

View File

@ -11,14 +11,27 @@ class SceneVLM(Scene):
super().__init__(robot)
# 在这里加入场景中发生的事件, (事件发生的时间,事件函数)
self.new_event_list = [
(3, self.add_walker, (29,60,520)),
(5, self.customer_say, (6,"请问哪里有空位啊?")),
# (5, self.customer_say, (0, "请问哪里有空位啊?")),
# (5, self.customer_say, (0, "我想坐高脚凳子。")),
(3, self.customer_say, (0, "你带我去吧。")),
]
def _reset(self):
self.gen_obj()
self.add_walkers([[4,1, 880], [31,250, 1200],[6,-55, 750],[10,70, -200],[27,-290, 400, 180],[26, 60,-320,90]])
self.control_walkers(walker_loc=[[-55, 750], [70, -200]],is_autowalk = True)
self.add_walkers([
[29, 60, 520], #顾客 0
[23, 20, 320], #秃头老头子 1
[0, -55, 150], #小男孩走来走去 2
[10, -55, 750], # 3
[19, 70, -200], #后门站着不动的 4
[21, 65, 1000, -90], #大胖男占了一号桌 5
[5, 230, 1200], #小女孩 6
[26, -28, -150, 90] , #在设置一个在后门随机游走的 7
[31, 280, 1200, -45] # 8
])
self.control_walker(2, True, 200, -55, 155, 90) #飞速奔跑的小男孩
self.control_walker(7, True, 80, -25, -150, 90)
self.control_walker(5, True, 65, 995, 520, 90)
pass
def _run(self):