Merge remote-tracking branch 'origin/main'

This commit is contained in:
wuziji 2023-11-13 23:06:32 +08:00
commit 355f1fac7b
28 changed files with 478 additions and 163 deletions

2
.gitignore vendored
View File

@ -20,6 +20,8 @@ MANIFEST
MO-VLN/
GLIP/
sub_task.ptml
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.

View File

@ -1,4 +1,3 @@
from . import navigate
from . import dstar_lite

View File

@ -0,0 +1,59 @@
# !/usr/bin/env python3
# -*- encoding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pickle
import os
def draw_grid_map(grid_map):
# 生成新的地图图像
plt.imshow(grid_map, cmap='binary', alpha=0.5, origin='lower') # 黑白网格
# 绘制坐标轴
plt.xlabel('y', loc='right')
plt.ylabel('x', loc='top')
# 显示网格线
plt.grid(color='black', linestyle='-', linewidth=0.5)
# 显示图像
plt.show()
#plt.pause(0.01)
if __name__ == '__main__':
# control.init_world(scene_num=1, mapID=3)
# scene = control.Scene(sceneID=0)
#
# X = int(950/5) # 采点数量
# Y = int(1850/5)
# map = np.zeros((X, Y))
#
# for x in range(X):
# for y in range(Y):
# if not scene.reachable_check(x*5-350, y*5-400, Yaw=0):
# map[x, y] = 1
# print(x, y)
#
#
# file_name = 'map_5.pkl'
# if not os.path.exists(file_name):
# open(file_name, 'w').close()
# with open(file_name, 'wb') as file:
# pickle.dump(map, file)
# print('保存成功')
file_name = 'map_5.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
draw_grid_map(map)

View File

@ -23,7 +23,8 @@ def manhattan_distance(start, end): # 曼哈顿距离
def euclidean_distance(start, end): # 欧式距离
# return np.linalg.norm(start-end)
return math.sqrt((start[0] - end[0]) ** 2 + (start[1] - end[1]) ** 2)
# return math.sqrt((start[0] - end[0]) ** 2 + (start[1] - end[1]) ** 2)
return math.hypot(start[0] - end[0], start[1] - end[1])
def heuristic(start, end, name='euclidean'):
@ -115,9 +116,9 @@ class PriorityQueue:
class DStarLite:
def __init__(self,
map: np.array([int, int]), # [X, Y]
area_range, # [x_min, x_max, y_min, y_max] 实际坐标范围
scale_ratio=5, # 地图缩放率
dyna_obs_radius=20 # dyna_obs实际身位半径
area_range, # [x_min, x_max, y_min, y_max] 实际坐标范围
scale_ratio=5, # 地图缩放率
dyna_obs_radius=30, # dyna_obs实际身位半径
):
# self.area_bounds = area
@ -128,7 +129,7 @@ class DStarLite:
(self.x_min, self.x_max, self.y_min, self.y_max) = area_range
self.scale_ratio = scale_ratio
self.dyna_obs_list = [] # 动态障碍物位置列表( 当前地图 ) [(x, y)]
self.dyna_obs_radius = math.ceil(dyna_obs_radius/scale_ratio) # dyna_obs缩放后身位半径
self.dyna_obs_radius = math.ceil(dyna_obs_radius / scale_ratio) # dyna_obs缩放后身位半径
# free:0, obs:1, dyna_obs:2
self.idx_to_object = {
@ -140,7 +141,7 @@ class DStarLite:
self.object_to_cost = {
"free": 0,
"obstacle": float('inf'),
"dynamic obstacle": 50
"dynamic obstacle": 100
}
self.compute_cost_map()
@ -259,7 +260,7 @@ class DStarLite:
self.rhs[s] = min([self.c(s, s_) + self.g[s_] for s_ in succ])
self.update_vertex(s)
def _planning(self, s_start, s_goal, dyna_obs, step_num=None, debug=False):
def _planning(self, s_start, s_goal, dyna_obs, debug=False):
'''
规划路径(实际实现)
Args:
@ -268,7 +269,7 @@ class DStarLite:
'''
# 确保目标合法
if not self.in_bounds_without_obstacle(s_goal):
return None
return []
# 第一次规划需要初始化rhs并将goal加入队列计算最短路径
if self.s_goal is None:
self.s_start = tuple(s_start)
@ -281,7 +282,6 @@ class DStarLite:
# 后续规划只更新起点,直接使用原路径(去掉已走过部分)
else:
self.s_start = tuple(s_start)
self.path = self.path[step_num:]
# 根据obs更新map, cost_map, edge_cost
changed_pos = self.update_map(dyna_obs=dyna_obs)
if changed_pos:
@ -299,17 +299,16 @@ class DStarLite:
# pass
return self.path
def planning(self, s_start, s_goal, dyna_obs, step_num=None, debug=False):
def planning(self, s_start, s_goal, dyna_obs, debug=False):
'''
路径规划(供外部调用处理实际坐标和地图坐标的转换)
'''
# 实际坐标 -> 地图坐标
s_start = self.real2map(s_start)
s_goal = self.real2map(s_goal)
for i in range(len(dyna_obs)):
dyna_obs[i] = self.real2map(dyna_obs[i])
dyna_obs = [self.real2map(obs) for obs in dyna_obs]
self._planning(s_start, s_goal, dyna_obs, step_num, debug)
self._planning(s_start, s_goal, dyna_obs, debug)
# 地图坐标->实际坐标
path = [self.map2real(node) for node in self.path]
@ -319,7 +318,7 @@ class DStarLite:
'''
得到路径
Args:
step_num: 路径步数 (None表示返回完整路径)
step_num: 路径步数
return:
path: [(x, y), ...]
'''
@ -327,7 +326,6 @@ class DStarLite:
return []
path = []
cur = self.s_start
# if step_num is None: # 得到完整路径
while cur != self.s_goal:
succ = self.get_neighbors(cur)
cur = succ[np.argmin([self.c(cur, s_) + self.g[s_] for s_ in succ])]
@ -411,10 +409,13 @@ class DStarLite:
根据dyna_obs中心位置计算其占用的所有网格位置
'''
(x, y) = obs_pos
occupy_pos = []
for i in range(x-self.dyna_obs_radius, x+self.dyna_obs_radius+1):
for j in range(y-self.dyna_obs_radius, y+self.dyna_obs_radius+1):
occupy_pos.append((i, j))
# for i in range(x - self.dyna_obs_radius, x + self.dyna_obs_radius + 1):
# for j in range(y - self.dyna_obs_radius, y + self.dyna_obs_radius + 1):
# occupy_pos.append((i, j))
occupy_pos = [(i, j) for i in range(x - self.dyna_obs_radius, x + self.dyna_obs_radius + 1)
for j in range(y - self.dyna_obs_radius, y + self.dyna_obs_radius + 1)
if euclidean_distance((i, j), obs_pos) < self.dyna_obs_radius]
occupy_pos = filter(self.in_bounds_without_obstacle, occupy_pos) # 确保位置在地图范围内 且 不是静态障碍物
return list(occupy_pos)
@ -507,4 +508,4 @@ class DStarLite:
plt.xlabel('y', loc='right')
plt.ylabel('x', loc='top')
plt.grid(color='black', linestyle='-', linewidth=0.5)
plt.pause(0.3)
plt.pause(0.2)

View File

@ -1,71 +1,80 @@
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
import math
import sys
import time
from dstar_lite import DStarLite, euclidean_distance
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
from robowaiter.algos.navigate.DstarLite.dstar_lite import DStarLite
class Navigator:
'''
导航类
'''
def __init__(self, scene, area_range, map, scale_ratio=5):
def __init__(self, scene, area_range, map, scale_ratio=5, step_length=150, velocity=150, react_radius=250):
self.scene = scene
self.area_range = area_range # 地图实际坐标范围 xmin, xmax, ymin, ymax
self.map = map # 缩放并离散化的地图 array(X,Y)
self.scale_ratio = scale_ratio # 地图缩放率
self.step_length = 50 # 步长(单次移动)
self.area_range = area_range # 地图实际坐标范围 xmin, xmax, ymin, ymax
self.map = map # 缩放并离散化的地图 array(X,Y)
self.scale_ratio = scale_ratio # 地图缩放率
self.step_length = step_length # 步长(单次移动)
self.step_num = self.step_length // self.scale_ratio # 单次移动地图格数
self.v = 200 # 速度
self.step_time = self.step_length/self.v + 0.1 # 单步移动时长
self.v = velocity # 速度
self.react_radius = react_radius # robot反应半径
self.planner = DStarLite(area_range=area_range, map=map, scale_ratio=scale_ratio)
@staticmethod
def is_reached(pos: np.array((float, float)), goal: np.array((float, float)), dis_limit=25):
def is_reached(pos: (float, float), goal: (float, float), dis_limit=50):
'''
判断是否到达目标
'''
dis = np.linalg.norm(pos - goal)
dis = math.hypot(pos[0]-goal[0], pos[1]-goal[1])
# dis = np.linalg.norm(pos - goal)
return dis < dis_limit
def reset_goal(self, goal:(float, float)):
# TODO: 使目标可达
# 目标在障碍物上:从目标开始方形向外扩展,直到找到可行点
# 目标在地图外面:起点和目标连线最靠近目标的可行点
pass
@staticmethod
def get_yaw(pos: (float, float), goal: (float, float)):
'''
得到移动方向
'''
return math.degrees(math.atan2(goal[0] - pos[0], -(goal[1] - pos[1])))
def legalize_goal(self, goal: (float, float)):
'''
TODO: 处理非法目标
目标在障碍物上从目标开始方形向外扩展直到找到可行点
目标在地图外面起点和目标连线最靠近目标的可行点
'''
return goal
def navigate(self, goal: (float, float), animation=True):
'''
单次导航直到到达目标
'''
if not self.scene.reachable_check(goal[0], goal[1], 0):
goal = self.legalize_goal(goal)
pos = np.array((self.scene.status.location.X, self.scene.status.location.Y)) # 机器人当前: 位置 和 朝向
yaw = self.scene.status.rotation.Yaw
pos = (self.scene.status.location.X, self.scene.status.location.Y) # 机器人当前: 位置 和 朝向
print('------------------navigation_start----------------------')
while not self.is_reached(pos, goal):
dyna_obs = [(walker.pose.X, walker.pose.Y) for walker in self.scene.status.walkers] # 动态障碍物(顾客)位置列表
path = self.planner.planning(pos, goal, dyna_obs, step_num=self.step_num)
dyna_obs = [obs for obs in dyna_obs if euclidean_distance(obs, pos) < self.react_radius] # 过滤观测范围外的dyna_obs
# 周围有dyna_obs则步长减半
if dyna_obs:
step_num = self.step_num // 2
else:
step_num = self.step_num
path = self.planner.planning(pos, goal, dyna_obs)
if path:
next_step = min(self.step_num, len(path))
(next_x, next_y) = path[next_step-1]
print('plan pos:', (next_x, next_y), end=' ')
scene_info = self.scene.walk_to(next_x, next_y, yaw, velocity=self.v)
yaw = scene_info.rotation.Yaw
if animation:
self.planner.draw_graph(self.step_num) # 画出搜索路径
# time.sleep(self.step_time)
pos = np.array((self.scene.status.location.X, self.scene.status.location.Y))
self.planner.draw_graph(step_num) # 画出搜索路径
next_step = min(step_num, len(path))
next_pos = path[next_step - 1]
print('plan pos:', next_pos, end=' ')
yaw = self.get_yaw(pos, next_pos)
self.scene.walk_to(next_pos[0], next_pos[1], yaw, velocity=self.v, dis_limit=10)
# pos = (self.scene.status.location.X, self.scene.status.location.Y)
# if self.is_reached(pos, next_pos):
self.planner.path = self.planner.path[next_step - 1:] # 去除已走过的路径
pos = (self.scene.status.location.X, self.scene.status.location.Y)
print('reach pos:', pos)
self.planner.reset() # 完成一轮导航,重置变量
@ -76,4 +85,3 @@ class Navigator:

View File

@ -1,4 +1,52 @@
### dstar_lite.py ——Dstar lite算法文件
### navigate.py ——导航类
### test.py ——测试文件
### map_5.pkl ——离散化地图文件
## 默认使用RRTStar+路径平滑
### apf.py: 势场法实现
### discretize_map.py: 地图离散化并压缩
### map_5.pkl: 地图文件(5倍压缩)
### navigate.py: 导航类
### pathsmoothing.py: 路径平滑
### rrt.py: RRT实现
### rrt_star.py: RRTStar 实现
### test.py: 测试文件
## TODO
### 目标不合法
#### 初始目标不合法
目标在障碍物上:从目标开始方形向外扩展,直到找到可行点
目标在地图外面:起点和目标连线最靠近目标的可行点
对不合法的目标做单独处理,生成新的目标
#### 在移动过程中目标被占据
给出目标但不会行移动,程序会继续运行,重新计算规划路径,给出新目标
### 规划中断情况
### 计算转向角
`完成`
### 有些本来可达的位置却无法走到系统bug?
例如从初始位置(247, 500) 移动到(115, -10),无法到达
`(已解决)将dis_limit设为小值5而非0`
#### 构型空间膨胀??
`不需要`
### 只考虑一定范围内的行人
观测范围 / 反应半径
`完成`
#### 观测范围内有行人步长要减小
`完成`

View File

@ -2,11 +2,12 @@ import os
import pickle
import time
import random
import math
import matplotlib.pyplot as plt
import numpy as np
from robowaiter.scene.scene import Scene,init_world # TODO: 文件名改成Scene.py
from robowaiter.scene import scene
from navigate import Navigator
@ -19,14 +20,13 @@ if __name__ == '__main__':
with open(file_name, 'rb') as file:
map = pickle.load(file)
init_world(1, 11)
scene = Scene(sceneID=0)
scene.init_world(1, 11)
scene = scene.Scene(sceneID=0)
navigator = Navigator(scene=scene, area_range=[-350, 600, -400, 1450], map=map)
navigator = Navigator(scene=scene, area_range=[-350, 600, -400, 1450], map=map)
'''场景1: 无行人环境 robot到达指定目标'''
goal = np.array((-100, 700))
# goal = np.array((-100, 700))
'''场景2: 静止行人环境 robot到达指定目标'''
# scene.clean_walker()
@ -35,12 +35,17 @@ if __name__ == '__main__':
# goal = np.array((-100, 700))
'''场景3: 移动行人环境 robot到达指定目标'''
# scene.clean_walker()
# scene.add_walker(50, 300, 0)
# scene.add_walker(-50, 500, 0)
# scene.control_walker([scene.walker_control_generator(walkerID=0, autowalk=False, speed=20, X=-50, Y=600, Yaw=0)])
# scene.control_walker([scene.walker_control_generator(walkerID=1, autowalk=False, speed=20, X=100, Y=150, Yaw=0)])
# goal = np.array((-100, 700))
scene.walk_to(100, 0, -90, dis_limit=10)
scene.clean_walker()
scene.add_walker(50, 300, 0)
scene.add_walker(-50, 500, 0)
scene.add_walker(0, 700, 0)
scene.control_walker([scene.walker_control_generator(walkerID=0, autowalk=False, speed=50, X=-50, Y=600, Yaw=0)])
scene.control_walker([scene.walker_control_generator(walkerID=1, autowalk=False, speed=50, X=100, Y=150, Yaw=0)])
scene.control_walker([scene.walker_control_generator(walkerID=2, autowalk=False, speed=50, X=0, Y=0, Yaw=0)])
goal = (-100, 700)
# goal = (-300)
'''场景4: 行人自由移动 robot到达指定目标'''
# # TODO: autowalk=True仿真器会闪退 ???

View File

@ -3,12 +3,14 @@ from robowaiter.behavior_lib._base.Behavior import Bahavior
class Act(Bahavior):
print_name_prefix = "act "
type = 'Act'
all_place = {'Bar', 'WaterTable', 'CoffeeTable', 'Bar2', 'Table1', 'Table2', 'Table3'}
all_object = {'Coffee', 'Water', 'Dessert', 'Softdrink', 'BottledDrink', 'Yogurt', 'ADMilk', 'MilkDrink', 'Milk',
'VacuumCup'}
def __init__(self,*args):
super().__init__(*args)
self.info = self.get_info(*args)
def get_conds(self):
pre = set()
add = set()
de = set()
return pre, add, de
@classmethod
def get_info(self,*arg):
return None

View File

@ -14,12 +14,28 @@ class Bahavior(ptree.behaviour.Behaviour):
scene = None
print_name_prefix = ""
@classmethod
def get_ins_name(cls,*args):
name = cls.__name__
if len(args) > 0:
ins_name = f'{name}({",".join(list(args))})'
else:
ins_name = f'{name}()'
return ins_name
def __init__(self,*args):
name = self.__class__.__name__
if len(args)>0:
name = f'{name}({",".join(list(args))})'
self.name = name
#get valid args
# self.valid_arg_list = []
# lines = self.valid_params.strip().splitlines()
# for line in lines:
# self.valid_arg_list.append((x.strip for x in line.split(",")))
self.args = args
super().__init__(self.name)
def _update(self) -> ptree.common.Status:
@ -28,7 +44,9 @@ class Bahavior(ptree.behaviour.Behaviour):
@property
def print_name(self):
return f'{self.print_name_prefix}{self.name}'
return f'{self.print_name_prefix}{self.get_ins_name(*self.args)}'
# let behavior node interact with the scene
def set_scene(self, scene):

View File

@ -0,0 +1,37 @@
import py_trees as ptree
from typing import Any
from robowaiter.behavior_lib._base.Act import Act
from robowaiter.behavior_lib._base.Behavior import Status
class Make(Act):
can_be_expanded = True
num_args = 1
valid_args = (
"Coffee","Water","Dessert"
)
def __init__(self, *args):
super().__init__(*args)
self.target_obj = self.args[0]
@classmethod
def get_info(cls,arg):
info = {}
info["pre"]= {f'Holding(Nothing)'}
info['del'] = set()
if arg == "Coffee":
info["add"]= {f'On(Coffee,CoffeeTable)'}
elif arg == "Water":
info["add"] = {f'On(Water,WaterTable)'}
elif arg == "Dessert":
info["add"] = {f'On(Dessert,Bar)'}
return info
def _update(self) -> ptree.common.Status:
op_type = 1
self.scene.move_task_area(op_type)
self.scene.op_task_execute(op_type)
self.scene.state["condition_set"].union(self.info["add"])
self.scene.state["condition_set"] -= self.info["del"]
return Status.RUNNING

View File

@ -1,23 +0,0 @@
import py_trees as ptree
from typing import Any
from robowaiter.behavior_lib._base.Act import Act
from robowaiter.behavior_lib._base.Behavior import Status
class MakeCoffee(Act):
def __init__(self, *args):
super().__init__(*args)
@property
def cond_sets(self):
pre = {"At(Robot,Bar)"}
add = {"At(Coffee,Bar)"}
de = {}
return pre,add,de
def _update(self) -> ptree.common.Status:
op_type = 1
self.scene.move_task_area(op_type)
self.scene.op_task_execute(op_type)
self.scene.state["condition_set"].add("At(Coffee,Bar)")
return Status.RUNNING

View File

@ -4,9 +4,23 @@ from robowaiter.behavior_lib._base.Act import Act
from robowaiter.algos.navigate.DstarLite.navigate import Navigator
class MoveTo(Act):
can_be_expanded = True
num_args = 1
valid_args = Act.all_object | Act.all_place
valid_args.add('Customer')
def __init__(self, target_place):
super().__init__(target_place)
self.target_place = target_place
@classmethod
def get_info(self,arg):
info = {}
info["add"] = {f'At(Robot,{arg})'}
info["del"] = {f'At(Robot,{place})' for place in self.valid_args if place != arg}
return info
def __init__(self, *args):
super().__init__(*args)
def _update(self) -> ptree.common.Status:
# self.scene.test_move()

View File

@ -6,7 +6,6 @@ class At(Cond):
can_be_expanded = True
num_params = 2
valid_params = '''
Coffee, Bar
Robot, Bar
'''

View File

@ -0,0 +1,28 @@
import py_trees as ptree
from typing import Any
from robowaiter.behavior_lib._base.Cond import Cond
class On(Cond):
can_be_expanded = True
num_params = 2
valid_params = '''
Robot, Bar
'''
def __init__(self,*args):
super().__init__(*args)
def _update(self) -> ptree.common.Status:
# if self.scene.status?
arg_str = self.arg_str
if f'At({arg_str})' in self.scene.state["condition_set"]:
return ptree.common.Status.SUCCESS
else:
return ptree.common.Status.FAILURE
# if self.scene.state['chat_list'] == []:
# return ptree.common.Status.FAILURE
# else:
# return ptree.common.Status.SUCCESS

View File

@ -94,10 +94,13 @@ class OptBTExpAlgorithm:
# Mount the action node and extend BT. T = Eapand(T,c,A(c))
if c!=goal:
sequence_structure = ControlBT(type='>')
sequence_structure.add_child(
[copy.deepcopy(pair_node.cond_leaf), copy.deepcopy(pair_node.act_leaf)])
subtree.add_child([copy.deepcopy(sequence_structure)]) # subtree 是回不断变化的它的父亲是self.bt
if c!=set():
sequence_structure = ControlBT(type='>')
sequence_structure.add_child(
[copy.deepcopy(pair_node.cond_leaf), copy.deepcopy(pair_node.act_leaf)])
subtree.add_child([copy.deepcopy(sequence_structure)]) # subtree 是回不断变化的它的父亲是self.bt
else:
subtree.add_child([copy.deepcopy(pair_node.act_leaf)])
if self.verbose:
print("完成扩展 a_node= %s,对应的新条件 c_attr= %s,mincost=%d" \
% (cond_anc_pair.act_leaf.content.name, cond_anc_pair.cond_leaf.content,
@ -183,12 +186,15 @@ class OptBTExpAlgorithm:
c_set_str = ', '.join(map(str, child.content)) + "\n"
self.ptml_string += c_set_str
elif child.type == 'act':
self.ptml_string += 'act '+child.content.name+"\n"
if '(' not in child.content.name:
self.ptml_string += 'act '+child.content.name+"()\n"
else:
self.ptml_string += 'act ' + child.content.name + "\n"
elif isinstance(child, ControlBT):
if parnode.type == '?':
if child.type == '?':
self.ptml_string += "selector{\n"
self.dfs_ptml(parnode=child)
elif parnode.type == '>':
elif child.type == '>':
self.ptml_string += "sequence{\n"
self.dfs_ptml( parnode=child)
self.ptml_string += '}\n'

View File

@ -1,2 +1,4 @@
OPENAI_API_BASE=
#BACKEND_TYPE=webui
#OPENAI_API_BASE=https://45.125.46.134:25344/v1/chat/completions
OPENAI_API_BASE=https://45.125.46.134:25344/v1/chat/completions
OPENAI_API_KEY=

View File

@ -170,7 +170,8 @@ class Agent:
)
else:
# Standard non-function reply
print("### Internal monologue: " + (response_message.content if response_message.content else ""))
# print("### Internal monologue: " + (response_message.content if response_message.content else ""))
print("### Internal monologue: " + (response_message['content'] if response_message['content'] else ""))
messages.append(response_message)
function_failed = None
@ -178,13 +179,37 @@ class Agent:
def step(self, user_message):
input_message_sequence = self.messages + [{"role": "user", "content": user_message}]
response = openai.ChatCompletion.create(model=self.model, messages=input_message_sequence,
functions=self.functions_description, function_call="auto")
response_message = response.choices[0].message
response_message_copy = response_message.copy()
# 原来的通信方式
# response = openai.ChatCompletion.create(model=self.model, messages=input_message_sequence,
# functions=self.functions_description, function_call="auto")
#
# response_message = response.choices[0].message
# response_message_copy = response_message.copy()
# ===我们的通信方式 "tools": self.functions_description 不起作用===
import requests
url = "https://45.125.46.134:25344/v1/chat/completions"
headers = {"Content-Type": "application/json"}
data = {
"model": "RoboWaiter",
"messages": input_message_sequence,
# "functions":self.functions_description,
# "function_call":"auto"
# "function_call":self.functions_description
"tools": self.functions_description
}
response = requests.post(url, headers=headers, json=data, verify=False)
if response.status_code == 200:
result = response.json()
response_message = result['choices'][0]['message']
else:
response_message = "大模型请求失败:"+ str(response.status_code)
response_message_copy = response_message
# ===我们的通信方式 "tools": self.functions_description 不起作用===
all_response_messages, function_failed = self.handle_ai_response(response_message)
assert "api_response" not in all_response_messages[0], f"api_response already in {all_response_messages[0]}"
all_response_messages[0]["api_response"] = response_message_copy
assert "api_args" not in all_response_messages[0], f"api_args already in {all_response_messages[0]}"

View File

@ -0,0 +1,17 @@
FUNCTIONS = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string"},
},
"required": ["location"],
},
}
]

View File

@ -2,10 +2,14 @@ from dotenv import load_dotenv
load_dotenv()
import utils
from functions import FUNCTIONS
# from functions import FUNCTIONS
from functions_zh import FUNCTIONS
from agent import Agent
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
def run_agent_loop(agent):
while True:
user_input = input("You: ")
@ -20,6 +24,11 @@ if __name__ == "__main__":
persona = utils.get_persona_text()
human = utils.get_human_text()
system = utils.get_system_text()
print("system:",system)
print("persona:", persona)
print("human:", human)
agent = Agent(model="gpt-3.5-turbo-16k-0613", system=system, functions_description=FUNCTIONS, persona_notes=persona,
human_notes=human)
run_agent_loop(agent)

View File

@ -1 +1,2 @@
{"测试VLM做一杯咖啡": {"Answer": "测试VLM做一杯咖啡", "Goal": "{\"At(Coffee,Bar)\"}"}, "测试VLN前往桌子": {"Answer": "测试VLN前往桌子", "Goal": "{\"At(Robot,Table)\"}"}, "测试AEM": {"Answer": "测试AEM", "Goal": "{\"EnvExplored()\"}"}}
{"测试VLM做一杯咖啡": {"Answer": "测试VLM做一杯咖啡", "Goal": "{\"At(Coffee,Bar)\"}"}, "测试VLN前往桌子": {"Answer": "测试VLN前往桌子", "Goal": "{\"At(Robot,Table)\"}"}, "测试VLM倒一杯水": {"Answer": "测试VLM倒一杯水", "Goal": "{\"At(Water,WaterTable)\"}"}}

View File

@ -2,3 +2,4 @@ Question,Answer,Goal
测试VLM做一杯咖啡,测试VLM做一杯咖啡,"{""At(Coffee,Bar)""}"
测试VLN前往桌子,测试VLN前往桌子,"{""At(Robot,Table)""}"
测试AEM,测试AEM,"{""EnvExplored()""}"
测试VLM倒一杯水,测试VLM倒一杯水,"{""At(Water,WaterTable)""}"

1 Question Answer Goal
2 测试VLM:做一杯咖啡 测试VLM:做一杯咖啡 {"At(Coffee,Bar)"}
3 测试VLN:前往桌子 测试VLN:前往桌子 {"At(Robot,Table)"}
4 测试AEM 测试AEM {"EnvExplored()"}
5 测试VLM:倒一杯水 测试VLM:倒一杯水 {"At(Water,WaterTable)"}

View File

@ -1,7 +1,9 @@
import io
import contextlib
import os
import importlib.util
from robowaiter.utils.bt.load import load_bt_from_ptml, find_node_by_name, print_tree_from_root
from robowaiter.utils.bt.load import load_bt_from_ptml,find_node_by_name,print_tree_from_root
from robowaiter.utils.bt.visitor import StatusVisitor
from robowaiter.behavior_tree.obtea.OptimalBTExpansionAlgorithm import Action # 调用最优行为树扩展算法
@ -9,13 +11,13 @@ from robowaiter.behavior_tree.obtea.opt_bt_exp_main import BTOptExpInterface
from robowaiter.behavior_lib.act.DelSubTree import DelSubTree
from robowaiter.behavior_lib._base.Sequence import Sequence
from robowaiter.utils.bt.load import load_behavior_tree_lib
class Robot(object):
scene = None
response_frequency = 1
def __init__(self, ptml_path, behavior_lib_path):
def __init__(self,ptml_path,behavior_lib_path):
self.ptml_path = ptml_path
self.behavior_lib_path = behavior_lib_path
@ -24,12 +26,13 @@ class Robot(object):
self.last_tick_output = ""
self.action_list = None
def set_scene(self, scene):
def set_scene(self,scene):
self.scene = scene
def load_BT(self):
self.bt = load_bt_from_ptml(self.scene, self.ptml_path, self.behavior_lib_path)
sub_task_place_holder = find_node_by_name(self.bt.root, "SubTaskPlaceHolder")
self.bt = load_bt_from_ptml(self.scene, self.ptml_path,self.behavior_lib_path)
sub_task_place_holder = find_node_by_name(self.bt.root,"SubTaskPlaceHolder")
if sub_task_place_holder:
sub_task_seq = sub_task_place_holder.parent
sub_task_seq.children.pop()
@ -38,10 +41,16 @@ class Robot(object):
self.bt_visitor = StatusVisitor()
self.bt.visitors.append(self.bt_visitor)
def expand_sub_task_tree(self, goal):
def expand_sub_task_tree(self,goal):
if self.action_list is None:
self.action_list = self.collect_action_nodes()
print(f"首次运行行为树扩展算法,收集到{len(self.action_list)}个有效动作")
print("\n--------------------")
print(f"首次运行行为树扩展算法,收集到{len(self.action_list)}个有效动作:")
for a in self.action_list:
print(a.name)
print("--------------------\n")
algo = BTOptExpInterface(self.action_list)
@ -52,7 +61,7 @@ class Robot(object):
with open(file_path, 'w') as file:
file.write(ptml_string)
sub_task_bt = load_bt_from_ptml(self.scene, file_path, self.behavior_lib_path)
sub_task_bt = load_bt_from_ptml(self.scene, file_path,self.behavior_lib_path)
# 加入删除子树的节点
seq = Sequence(name="Sequence", memory=False)
@ -65,15 +74,30 @@ class Robot(object):
print("当前行为树为:")
print_tree_from_root(self.bt.root)
# 获取所有action的pre,add,del列表
def collect_action_nodes(self):
action_list = [
Action(name='MakeCoffee()', pre={'At(Robot,CoffeeMachine)'},
add={'At(Coffee,Bar)'}, del_set=set(), cost=1),
Action(name='MoveTo(Table)', pre={'At(Robot,Bar)'},
add={'At(Robot,Table)'}, del_set=set(), cost=1),
Action(name='ExploreEnv()', pre={'At(Robot,Bar)'},
add={'EnvExplored()'}, del_set=set(), cost=1),
]
action_list = []
behavior_dict = load_behavior_tree_lib()
for cls in behavior_dict["act"].values():
if cls.can_be_expanded:
if cls.num_args == 0:
action_list.append(Action(name=cls.get_ins_name(),**cls.get_info()))
if cls.num_args == 1:
for arg in cls.valid_args:
action_list.append(Action(name=cls.get_ins_name(arg), **cls.get_info(arg)))
if cls.num_args > 1:
for args in cls.valid_args:
action_list.append(Action(name=cls.get_ins_name(*args),**cls.get_info(*args)))
print(action_list)
# action_list = [
# Action(name='MakeCoffee', pre={'At(Robot,CoffeeMachine)'},
# add={'At(Coffee,Bar)'}, del_set=set(), cost=1),
# Action(name='MoveTo(Table)', pre={'At(Robot,Bar)'},
# add={'At(Robot,Table)'}, del_set=set(), cost=1),
# Action(name='ExploreEnv()', pre=set(),
# add={'EnvExplored()'}, del_set=set(), cost=1),
# ]
return action_list
def step(self):
@ -92,6 +116,5 @@ class Robot(object):
print("\n")
self.last_tick_output = bt_output
if __name__ == '__main__':
pass
pass

View File

@ -409,10 +409,11 @@ class Scene:
return True
def gen_obj(self,h=100):
# 4;冰红(盒) 5;酸奶 7:保温杯 9;冰红(瓶) 13:代语词典
# 4;冰红(盒) 5;酸奶 7:保温杯 9;冰红(瓶) 13:代语词典 14:cake 61:甜牛奶
type= 9 #9
scene = stub.Observe(GrabSim_pb2.SceneID(value=self.sceneID))
ginger_loc = [scene.location.X, scene.location.Y, scene.location.Z]
obj_list = [GrabSim_pb2.ObjectList.Object(x=ginger_loc[0] - 50, y=ginger_loc[1] - 40, z = h, roll=0, pitch=0, yaw=0, type=9)]
obj_list = [GrabSim_pb2.ObjectList.Object(x=ginger_loc[0] - 50, y=ginger_loc[1] - 40, z = h, roll=0, pitch=0, yaw=0, type=type)]
scene = stub.AddObjects(GrabSim_pb2.ObjectList(objects=obj_list, scene=self.sceneID))
time.sleep(1.0)

View File

@ -12,12 +12,13 @@ class SceneVLM(Scene):
# 在这里加入场景中发生的事件, (事件发生的时间,事件函数)
self.event_list = [
(5, self.create_chat_event("测试VLM做一杯咖啡")),
# (5, self.create_chat_event("测试VLM倒一杯水")),
]
def _reset(self):
pass
def _run(self, op_type=2):
def _run(self, op_type=7):
# 共17个操作
# "制作咖啡","倒水","夹点心","拖地","擦桌子","开筒灯","搬椅子", # 1-7
# "关筒灯","开大厅灯","关大厅灯","关闭窗帘","打开窗帘", # 8-12
@ -29,8 +30,8 @@ class SceneVLM(Scene):
# self.gen_obj()
# self.op_task_execute(op_type, obj_id=0)
# # 原始吧台处:[247.0, 520.0, 100.0], 空调开关旁吧台:[240.0, 40.0, 70.0], 水杯桌:[-70.0, 500.0, 107]
# # 桌子1:[-55.0, 0.0, 107],桌子1:[-55.0, 150.0, 107]
# elif op_type == 17: self.op_task_execute(op_type, release_pos=[-55.0, 150.0, 107])
# # 桌子1:[-55.0, 0.0, 107],桌子2:[-55.0, 150.0, 107]
# elif op_type == 17: self.op_task_execute(op_type, release_pos=[247.0, 520.0, 100.0])#[-55.0, 150.0, 107]
# else:
# self.move_task_area(op_type)
# self.op_task_execute(op_type)

View File

@ -2,11 +2,4 @@ import os
from robowaiter.utils import *
from robowaiter.utils import *
def get_root_path():
return os.path.abspath(
os.path.join(__file__, "../../..")
)
from robowaiter.utils.basic import get_root_path

View File

@ -0,0 +1,6 @@
import os
def get_root_path():
return os.path.abspath(
os.path.join(__file__, "../../..")
)

View File

@ -1,10 +1,12 @@
import py_trees as ptree
from robowaiter.behavior_tree.ptml import ptmlCompiler
import os
import importlib.util
from robowaiter.utils.basic import get_root_path
def load_bt_from_ptml(scene, ptml_path, behavior_lib_path):
ptml_bt = ptmlCompiler.load(scene, ptml_path, behavior_lib_path)
bt = ptree.trees.BehaviourTree(ptml_bt)
bt = ptree.trees.BehaviourTree(ptml_bt)
with open(ptml_path, 'r') as f:
ptml = f.read()
@ -29,7 +31,6 @@ def print_tree_from_root(node, indent=0):
for child in node.children:
print_tree_from_root(child, indent + 1)
def find_node_by_name(tree, name):
"""
Find a node in the behavior tree with the specified name.
@ -47,6 +48,42 @@ def find_node_by_name(tree, name):
return result
return None
def get_classes_from_folder(folder_path):
cls_dict = {}
for filename in os.listdir(folder_path):
if filename.endswith('.py'):
# 构建模块的完整路径
module_path = os.path.join(folder_path, filename)
# 获取模块名(不含.py扩展名
module_name = os.path.splitext(filename)[0]
# 动态导入模块
spec = importlib.util.spec_from_file_location(module_name, module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# 获取模块中定义的所有类
for name, obj in module.__dict__.items():
if isinstance(obj, type):
cls_dict[module_name] = obj
return cls_dict
def load_behavior_tree_lib():
root_path = get_root_path()
type_list = ["act","cond"]
behavior_dict = {}
for type in type_list:
path = os.path.join(root_path,"robowaiter","behavior_lib",type)
behavior_dict[type] = get_classes_from_folder(path)
return behavior_dict
if __name__ == '__main__':
print(load_behavior_tree_lib())
# class BehaviorTree(ptree):
# def __init__(self):
# super().__init__()
# super().__init__()

View File

@ -1,7 +1,3 @@
selector{
cond At(Coffee,Bar)
selector{
cond At(Robot,CoffeeMachine)
act MakeCoffee()
}
cond EnvExplored()
}