This commit is contained in:
Caiyishuai 2023-11-19 22:24:17 +08:00
commit 37871c6d77
6 changed files with 77 additions and 17 deletions

View File

@ -6,6 +6,7 @@ from py_trees.common import Status
# _base Behavior
class Bahavior(ptree.behaviour.Behaviour):
can_be_expanded = False
num_params = 0
valid_params='''

View File

@ -0,0 +1,14 @@
import py_trees as ptree
from typing import Any
from robowaiter.behavior_lib._base.Act import Act
class ResolveAnomaly(Act):
def __init__(self, *args):
super().__init__(*args)
def _update(self) -> ptree.common.Status:
# explore algorithm
self.scene.state["chat_list"].insert(0,("Goal",'Is(HallLight,On)'))
return ptree.common.Status.RUNNING

View File

@ -0,0 +1,23 @@
import py_trees as ptree
from typing import Any
from robowaiter.behavior_lib._base.Cond import Cond
class AnomalyDetected(Cond):
def __init__(self):
super().__init__()
def _update(self) -> ptree.common.Status:
# if self.scene.status?
light_set = {'Is(HallLight,Off)', 'Is(TubeLight,Off)', 'Is(Curtain,Off)'}
if light_set.issubset(self.scene.state["condition_set"]):
self.scene.chat_bubble("太暗了,开灯")
self.scene.state["anomaly"] = "TooDark"
return ptree.common.Status.SUCCESS
return ptree.common.Status.FAILURE

View File

@ -370,7 +370,7 @@ def get_id_object_pixels(id, scene):
def get_obstacle_point(db, scene, cur_obstacle_world_points, map_ratio):
def get_obstacle_point(plt, db, scene, cur_obstacle_world_points, map_ratio):
cur_obstacle_pixel_points = []
object_pixels = {}
colors = [
@ -439,13 +439,16 @@ def get_obstacle_point(db, scene, cur_obstacle_world_points, map_ratio):
world_point = transform_co(img_data_depth, pixel[0], pixel[1], d_depth[pixel[0]][pixel[1]][0], scene)
cur_obstacle_world_points.append([world_point[0], world_point[1]])
# print(f"{pixel}{[world_point[0], world_point[1]]}")
plt.subplot(2, 1, 1)
plt.imshow(d_color, cmap="gray" if "depth" in im_depth.name.lower() else None)
plt.axis('off')
plt.title("目标检测")
# plt.tight_layout()
for key, value in object_pixels.items():
if key == 101 or key == 0:
if key == 0:
continue
if key in [91, 84]:
if key in [91, 84, 96, 87, 102, 106, 120, 85,113, 101, 83]:
X = np.array(value)
db.fit(X)
labels = db.labels_
@ -487,7 +490,8 @@ def get_obstacle_point(db, scene, cur_obstacle_world_points, map_ratio):
# 将矩形框添加到图像中
# plt.gca().add_patch(rect)
plt.show()
# plt.show()
return cur_obstacle_world_points

View File

@ -76,7 +76,8 @@ class Scene:
"attention":{},
"serve_state":{},
"chat_history":{},
"wait_history":set()
"wait_history":set(),
"anomaly": None
}
"""
status:
@ -766,7 +767,7 @@ class Scene:
scene = stub.Do(action)
print(scene.info)
def navigation_move(self, cur_objs, objs_name_set, cur_obstacle_world_points, v_list, map_ratio, db, scene_id=0, map_id=11):
def navigation_move(self, plt, cur_objs, objs_name_set, cur_obstacle_world_points, v_list, map_ratio, db, scene_id=0, map_id=11):
print('------------------navigation_move----------------------')
scene = stub.Observe(GrabSim_pb2.SceneID(value=scene_id))
walk_value = [scene.location.X, scene.location.Y]
@ -782,7 +783,7 @@ class Scene:
cur_objs, objs_name_set = camera.get_semantic_map(GrabSim_pb2.CameraName.Head_Segment, cur_objs,
objs_name_set)
cur_obstacle_world_points = camera.get_obstacle_point(db, scene, cur_obstacle_world_points,map_ratio)
cur_obstacle_world_points = camera.get_obstacle_point(plt, db, scene, cur_obstacle_world_points,map_ratio)
# if scene.info == "Unreachable":
@ -804,7 +805,7 @@ class Scene:
cur_objs, objs_name_set = camera.get_semantic_map(GrabSim_pb2.CameraName.Head_Segment, cur_objs,
objs_name_set)
cur_obstacle_world_points = camera.get_obstacle_point(db, scene, cur_obstacle_world_points, map_ratio)
cur_obstacle_world_points = camera.get_obstacle_point(plt, db, scene, cur_obstacle_world_points, map_ratio)
# if scene.info == "Unreachable":

View File

@ -11,6 +11,8 @@ import pickle
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
from sklearn.cluster import DBSCAN
from robowaiter.scene.scene import Scene
@ -51,11 +53,13 @@ class SceneAEM(Scene):
# navigation_test(i,map_id)
map_map = np.zeros((math.ceil(950 / map_ratio), math.ceil(1850 / map_ratio)))
while True:
fig = plt.figure()
goal = self.explore(map, 120) # cur_pos 指的是当前机器人的位置,场景中应该也有接口可以获取
if goal is None:
break
cur_objs, objs_name_set, cur_obstacle_world_points= self.navigation_move(cur_objs, objs_name_set, cur_obstacle_world_points, [[goal[0], goal[1]]], map_ratio, db,0, 11)
cur_objs, objs_name_set, cur_obstacle_world_points= self.navigation_move(plt, cur_objs, objs_name_set, cur_obstacle_world_points, [[goal[0], goal[1]]], map_ratio, db,0, 11)
for point in cur_obstacle_world_points:
if point[0] < -350 or point[0] > 600 or point[1] < -400 or point[1] > 1450:
@ -67,33 +71,46 @@ class SceneAEM(Scene):
# -350 / map_ratio, 600 / map_ratio))
# 使用imshow函数绘制图像其中cmap参数设置颜色映射
plt.subplot(2, 1, 2) # 这里的2,1表示总共2行1列2表示这个位置是第2个子图
plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-400 / map_ratio, 1450 / map_ratio,
-350 / map_ratio, 600 / map_ratio))
# plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower')
# plt.axis('off')
plt.title("地图构建过程")
plt.show()
print("------------当前检测到的物品信息--------------")
print(cur_objs)
time.sleep(1)
print("------------物品信息--------------")
print(cur_objs)
for i in range(len(cur_objs)):
obj_json_data.append({"id":f"{i}", "name":f"{cur_objs[i].name}", "location":f"{cur_objs[i].location}", "height":f"{cur_objs[i].location.Z * 2}"})
if cur_objs[i].name == "Desk" or cur_objs[i].name == "Chair":
obj_json_data.append({"id":f"{i}", "name":f"{cur_objs[i].name}", "location":f"{cur_objs[i].location}", "height":f"{cur_objs[i].location.Z * 2}"})
else:
obj_json_data.append(
{"id": f"{i}", "name": f"{cur_objs[i].name}", "location": f"{cur_objs[i].location}",
"height": f"{cur_objs[i].location.Z}"})
with open('../../proto/objs.json', 'w') as file:
json.dump(obj_json_data, file)
# for i in range(-350, 600):
# for j in range(-400, 1450):
# i = (math.floor((i + 350) / map_ratio))
# j = (math.floor((j + 400) / map_ratio))
# if (i, j) not in visited_obstacle:
# map_map[i][j] = 1
plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-400 / map_ratio, 1450 / map_ratio,
-350 / map_ratio, 600 / map_ratio))
# plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
# extent=(-400 / map_ratio, 1450 / map_ratio,
# -350 / map_ratio, 600 / map_ratio))
# plt.axis('off')
plt.show()
# plt.show()
print("已绘制完成地图!!!")
print("------------检测到的所有物品信息--------------")
print(obj_json_data)
if __name__ == '__main__':