修改AEM,通过视觉构建更加精细化的2D地图

完善了AEM,障碍物识别,2D地图构建
This commit is contained in:
liwang_zhang 2023-11-18 22:42:54 +08:00
parent d7b5fc9f6c
commit 3859c810d1
3 changed files with 220 additions and 21 deletions

View File

@ -7,6 +7,7 @@ import sys
import time
import grpc
sys.path.append('./')
sys.path.append('../')
@ -24,6 +25,10 @@ channel = grpc.insecure_channel('localhost:30001', options=[
sim_client = GrabSim_pb2_grpc.GrabSimStub(channel)
objects_dic = {}
obstacle_objs_id = [114, 115, 122, 96, 102, 83, 121, 105, 108, 89, 100, 90,
111, 103, 95, 92, 76, 113, 101, 29, 112, 87, 109, 98,
106, 120, 97, 86, 104, 78, 85, 81, 82, 84, 91, 93, 94,
99, 107, 116, 117, 118, 119, 255]
'''
初始化卸载已经加载的关卡清除所有机器人
@ -217,6 +222,105 @@ def show_image(img_data, scene):
plt.imshow(d, cmap="gray" if "depth" in im.name.lower() else None)
plt.show()
def transform_co(img_data, pixel_x_, pixel_y_,depth_, scene ,id = 0,label = 0):
im = img_data.images[0]
# 相机外参矩阵
out_matrix = np.array(im.parameters.matrix).reshape((4, 4))
d = np.frombuffer(im.data, dtype=im.dtype).reshape((im.height, im.width, im.channels))
depth = depth_
# 将像素坐标转换为归一化设备坐标
normalized_x = (pixel_x_ - im.parameters.cx) / im.parameters.fx
normalized_y = (pixel_y_ - im.parameters.cy) / im.parameters.fy
# 将归一化设备坐标和深度值转换为相机坐标
camera_x = normalized_x * depth
camera_y = normalized_y * depth
camera_z = depth
# 构建相机坐标向量
camera_coordinates = np.array([camera_x, camera_y, camera_z, 1])
# print("物体相对相机坐标的齐次坐标: ", camera_coordinates)
# 将相机坐标转换为机器人底盘坐标
robot_coordinates = np.dot(out_matrix, camera_coordinates)[:3]
# print("物体的相对底盘坐标为:", robot_coordinates)
# 将物体相对机器人底盘坐标转为齐次坐标
robot_homogeneous_coordinates = np.array([robot_coordinates[0], -robot_coordinates[1], robot_coordinates[2], 1])
# print("物体的相对底盘的齐次坐标为:", robot_homogeneous_coordinates)
# 机器人坐标
X = scene.location.X
Y = scene.location.Y
Z = 0.0
# 机器人旋转信息
Roll = 0.0
Pitch = 0.0
Yaw = scene.rotation.Yaw
# 构建平移矩阵
T = np.array([[1, 0, 0, X],
[0, 1, 0, Y],
[0, 0, 1, Z],
[0, 0, 0, 1]])
# 构建旋转矩阵
Rx = np.array([[1, 0, 0, 0],
[0, np.cos(Roll), -np.sin(Roll), 0],
[0, np.sin(Roll), np.cos(Roll), 0],
[0, 0, 0, 1]])
Ry = np.array([[np.cos(Pitch), 0, np.sin(Pitch), 0],
[0, 1, 0, 0],
[-np.sin(Pitch), 0, np.cos(Pitch), 0],
[0, 0, 0, 1]])
Rz = np.array([[np.cos(np.radians(Yaw)), -np.sin(np.radians(Yaw)), 0, 0],
[np.sin(np.radians(Yaw)), np.cos(np.radians(Yaw)), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
R = np.dot(Rz, np.dot(Ry, Rx))
# 构建机器人的变换矩阵
T_robot = np.dot(T, R)
# print(T_robot)
# 将物体的坐标从机器人底盘坐标系转换到世界坐标系
world_coordinates = np.dot(T_robot, robot_homogeneous_coordinates)[:3]
# if world_coordinates[0] < 200 and world_coordinates[1] <= 1050:
# world_coordinates[0] += 400
# world_coordinates[1] += 400
# elif world_coordinates[0] >= 200 and world_coordinates[1] <= 1050:
# world_coordinates[0] -= 550
# world_coordinates[1] += 400
# elif world_coordinates[0] >= 200 and world_coordinates[1] > 1050:
# world_coordinates[0] -= 550
# world_coordinates[1] -= 1450
# elif world_coordinates[0] < 200 and world_coordinates[1] > 1050:
# world_coordinates[0] += 400
# world_coordinates[1] -= 1450
# print("物体的世界坐标:", world_coordinates)
# 世界偏移后的坐标
world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
# print("物体世界偏移的坐标: ", world_offest_coordinates)
return world_coordinates
# 世界偏移后的坐标
# world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
# print("物体世界偏移的坐标: ", world_offest_coordinates)
# dict_f = {'id':id,'label':label,'world_coordinates':world_coordinates,'world_offest_coordinates':world_offest_coordinates}
# with open('./semantic.txt', 'a') as file:
# file.write(str(dict_f) + '\n')
def save_obj_info(img_data, objs_name):
items = img_data.info.split(";")
@ -236,6 +340,51 @@ def save_obj_info(img_data, objs_name):
return objs_name
def get_obstacle_point(scene, cur_obstacle_world_points, map_ratio):
cur_obstacle_pixel_points = []
img_data_segment = get_camera([GrabSim_pb2.CameraName.Head_Segment])
img_data_depth = get_camera([GrabSim_pb2.CameraName.Head_Depth])
im_segment = img_data_segment.images[0]
im_depth = img_data_depth.images[0]
d_segment = np.frombuffer(im_segment.data, dtype=im_segment.dtype).reshape((im_segment.height, im_segment.width, im_segment.channels))
d_depth = np.frombuffer(im_depth.data, dtype=im_depth.dtype).reshape((im_depth.height, im_depth.width, im_depth.channels))
# plt.imshow(d_depth, cmap="gray" if "depth" in im_depth.name.lower() else None)
# plt.show()
#
# plt.imshow(d_segment, cmap="gray" if "depth" in im_segment.name.lower() else None)
# plt.show()
d_depth = np.transpose(d_depth, (1, 0, 2))
d_segment = np.transpose(d_segment, (1, 0, 2))
for i in range(0, d_segment.shape[0], map_ratio):
for j in range(0, d_segment.shape[1], map_ratio):
if d_depth[i][j][0] == 600:
continue
# if d_segment[i][j] == 96:
# print(f"apple的像素坐标({i},{j})")
# print(f"apple的深度{d_depth[i][j][0]}")
# print(f"apple的世界坐标: {transform_co(img_data_depth, i, j, d_depth[i][j][0], scene)}")
# if d_segment[i][j] == 113:
# print(f"kettle的像素坐标({i},{j})")
# print(f"kettle的深度{d_depth[i][j][0]}")
# print(f"kettle的世界坐标: {transform_co(img_data_depth, i, j, d_depth[i][j][0], scene)}")
if d_segment[i][j][0] in obstacle_objs_id:
cur_obstacle_pixel_points.append([i, j])
# print(cur_obstacle_pixel_points)
for pixel in cur_obstacle_pixel_points:
world_point = transform_co(img_data_depth, pixel[0], pixel[1], d_depth[pixel[0]][pixel[1]][0], scene)
cur_obstacle_world_points.append([world_point[0], world_point[1]])
# print(f"{pixel}{[world_point[0], world_point[1]]}")
return cur_obstacle_world_points
def get_semantic_map(camera, cur_objs, objs_name):
scene = Observe(0)
objs = scene.objects
@ -273,9 +422,9 @@ if __name__ == '__main__':
# print(get_semantic_map(GrabSim_pb2.CameraName.Head_Segment,cur_objs))
for camera_name in [GrabSim_pb2.CameraName.Head_Depth]:
img_data = get_camera([camera_name], i)
show_image(img_data, scene)
# for camera_name in [GrabSim_pb2.CameraName.Head_Depth]:
# img_data = get_camera([camera_name], i)
# show_image(img_data, scene)
# for camera_name in [GrabSim_pb2.CameraName.Waist_Color, GrabSim_pb2.CameraName.Waist_Depth]:
# img_data = get_camera([camera_name], i)
# show_image(img_data, 2)

View File

@ -666,7 +666,7 @@ class Scene:
scene = stub.Do(action)
print(scene.info)
def navigation_move(self, cur_objs, objs_name_set, v_list, scene_id=0, map_id=11):
def navigation_move(self, cur_objs, objs_name_set, cur_obstacle_world_points, v_list, map_ratio, scene_id=0, map_id=11):
print('------------------navigation_move----------------------')
scene = stub.Observe(GrabSim_pb2.SceneID(value=scene_id))
walk_value = [scene.location.X, scene.location.Y]
@ -679,6 +679,8 @@ class Scene:
print("walk_v", walk_v)
action = GrabSim_pb2.Action(scene=scene_id, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v)
scene = stub.Do(action)
cur_obstacle_world_points = camera.get_obstacle_point(scene, cur_obstacle_world_points,map_ratio)
cur_objs, objs_name_set = camera.get_semantic_map(GrabSim_pb2.CameraName.Head_Segment, cur_objs,
objs_name_set)
# if scene.info == "Unreachable":
@ -696,11 +698,14 @@ class Scene:
print("walk_v", walk_v)
action = GrabSim_pb2.Action(scene=scene_id, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v)
scene = stub.Do(action)
cur_obstacle_world_points = camera.get_obstacle_point(scene, cur_obstacle_world_points, map_ratio)
cur_objs, objs_name_set = camera.get_semantic_map(GrabSim_pb2.CameraName.Head_Segment, cur_objs,
objs_name_set)
# if scene.info == "Unreachable":
print(scene.info)
return cur_objs, objs_name_set
return cur_objs, objs_name_set, cur_obstacle_world_points
def isOutMap(self, pos, min_x=-200, max_x=600, min_y=-250, max_y=1300):
if pos[0] <= min_x or pos[0] >= max_x or pos[1] <= min_y or pos[1] >= max_y:
@ -741,21 +746,21 @@ class Scene:
free_array = np.array(free_list)
print(f"主动探索完成!以下是场景中可以到达的点:{free_array};其余点均是障碍物不可达")
# 画地图: X行Y列第一行在下面
plt.clf()
plt.imshow(self.auto_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-250, 1300,
-200, 600))
plt.show()
print("已绘制完成地图!!!")
# # 画地图: X行Y列第一行在下面
# plt.clf()
# plt.imshow(self.auto_map, cmap='binary', alpha=0.5, origin='lower',
# extent=(-250, 1300,
# -200, 600))
# plt.show()
# print("已绘制完成地图!!!")
return None
# 画地图: X行Y列第一行在下面
plt.imshow(self.auto_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-250, 1300,
-200, 600))
plt.show()
print("已绘制部分地图!")
# # 画地图: X行Y列第一行在下面
# plt.imshow(self.auto_map, cmap='binary', alpha=0.5, origin='lower',
# extent=(-250, 1300,
# -200, 600))
# plt.show()
# print("已绘制部分地图!")
return self.getNearestFrontier(cur_pos, self.all_frontier_list)
def isNewFrontier(self, pos, map):

View File

@ -2,8 +2,13 @@
环境主动探索和记忆
要求输出探索结果语义地图对环境重点信息记忆生成环境的语义拓扑地图和不少于10个环境物品的识别和位置记忆可以是图片或者文字或者格式化数据
"""
import math
import matplotlib as mpl
import pickle
import numpy as np
from matplotlib import pyplot as plt
from robowaiter.scene.scene import Scene
class SceneAEM(Scene):
def __init__(self, robot):
@ -12,8 +17,20 @@ class SceneAEM(Scene):
def _reset(self):
pass
def _run(self):
# 创建一个从白色1到灰色0的 colormap
cur_objs = []
cur_obstacle_world_points = []
objs_name_set = set()
visited_obstacle = set()
map_ratio = 5
# # 创建一个颜色映射其中0表示黑色1表示白色
# cmap = plt.cm.get_cmap('gray')
# cmap.set_under('black')
# cmap.set_over('white')
file_name = '../../proto/map_1.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
@ -26,15 +43,43 @@ class SceneAEM(Scene):
# print(reachable([237,490]))
# navigation_move([[237,490]], i, map_id)
# navigation_test(i,map_id)
map_map = np.zeros((math.ceil(950 / map_ratio), math.ceil(1850 / map_ratio)))
while True:
goal = self.explore(map, 120) # cur_pos 指的是当前机器人的位置,场景中应该也有接口可以获取
if goal is None:
break
cur_objs, objs_name_set = self.navigation_move(cur_objs, objs_name_set, [[goal[0], goal[1]]], 0, 11)
cur_objs, objs_name_set, cur_obstacle_world_points= self.navigation_move(cur_objs, objs_name_set, cur_obstacle_world_points, [[goal[0], goal[1]]], map_ratio, 0, 11)
for point in cur_obstacle_world_points:
if point[0] < -350 or point[0] > 600 or point[1] < -400 or point[1] > 1450:
continue
map_map[math.floor((point[0] + 350) / map_ratio), math.floor((point[1] + 400) / map_ratio)] = 1
visited_obstacle.add((math.floor((point[0] + 350) / map_ratio), math.floor((point[1] + 400) / map_ratio)))
# plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
# extent=(-400 / map_ratio, 1450 / map_ratio,
# -350 / map_ratio, 600 / map_ratio))
# 使用imshow函数绘制图像其中cmap参数设置颜色映射
plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-400 / map_ratio, 1450 / map_ratio,
-350 / map_ratio, 600 / map_ratio))
# plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower')
# plt.axis('off')
plt.show()
print("------------物品信息--------------")
print(cur_objs)
pass
# for i in range(-350, 600):
# for j in range(-400, 1450):
# i = (math.floor((i + 350) / map_ratio))
# j = (math.floor((j + 400) / map_ratio))
# if (i, j) not in visited_obstacle:
# map_map[i][j] = 1
plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower',
extent=(-400 / map_ratio, 1450 / map_ratio,
-350 / map_ratio, 600 / map_ratio))
# plt.axis('off')
plt.show()
print("已绘制完成地图!!!")
if __name__ == '__main__':