Merge remote-tracking branch 'origin/main'

This commit is contained in:
ChenXL97 2023-10-25 22:22:30 +08:00
commit 945d7cd230
1 changed files with 466 additions and 0 deletions

View File

@ -0,0 +1,466 @@
import random
import numpy as np
import copy
import time
#定义行动类,行动包括前提、增加和删除影响
class Action:
def __init__(self,name='anonymous action'):
self.pre=set()
self.add=set()
self.del_set=set()
self.name=name
def __str__(self):
return self.name
# 从状态随机生成一个行动
def generate_from_state(self,state,num):
for i in range(0,num):
if i in state:
if random.random() >0.5:
self.pre.add(i)
if random.random() >0.5:
self.del_set.add(i)
continue
if random.random() > 0.5:
self.add.add(i)
continue
if random.random() >0.5:
self.del_set.add(i)
def print_action(self):
print (self.pre)
print(self.add)
print(self.del_set)
#生成随机状态
def generate_random_state(num):
result = set()
for i in range(0,num):
if random.random()>0.5:
result.add(i)
return result
#从状态和行动生成后继状态
def state_transition(state,action):
if not action.pre <= state:
print ('error: action not applicable')
return state
new_state=(state | action.add) - action.del_set
return new_state
#叶结点
class Leaf:
def __init__(self,type,content):
self.type=type
self.content=content #conditionset or action
self.parent=None
self.parent_index=0
# tick 叶节点返回返回值以及对应的条件或行动对象self.content
def tick(self,state):
if self.type=='cond':
if self.content <= state:
return 'success',self.content
else:
return 'failure',self.content
if self.type=='act':
if self.content.pre<=state:
return 'running',self.content #action
else:
return 'failure',self.content
def __str__(self):
print( self.content)
return ''
def print_nodes(self):
print(self.content)
def count_size(self):
return 1
#可能包含控制结点的行为树
class ControlBT:
def __init__(self,type):
self.type=type
self.children=[]
self.parent=None
self.parent_index=0
def add_child(self,subtree_list):
for subtree in subtree_list:
self.children.append(subtree)
subtree.parent=self
subtree.parent_index=len(self.children)-1
# tick行为树根据不同控制结点逻辑tick子结点
def tick(self,state):
if len(self.children) < 1:
print("error,no child")
if self.type =='?':#选择结点,即或结点
for child in self.children:
val,obj=child.tick(state)
if val=='success':
return val,obj
if val=='running':
return val,obj
return 'failure','?fails'
if self.type =='>':#顺序结点,即与结点
for child in self.children:
val,obj=child.tick(state)
if val=='failure':
return val,obj
if val=='running':
return val,obj
return 'success', '>success'
if self.type =='act':#行动结点
return self.children[0].tick(state)
if self.type =='cond':#条件结点
return self.children[0].tick(state)
def getFirstChild(self):
return self.children[0]
def __str__(self):
print(self.type+'\n')
for child in self.children:
print (child)
return ''
def print_nodes(self):
print(self.type)
for child in self.children:
child.print_nodes()
# 递归统计树中结点数
def count_size(self):
result=1
for child in self.children:
result+= child.count_size()
return result
#本文所提出的完备规划算法
class BTalgorithm:
def __init__(self):
self.bt = None
self.nodes=[]
self.traversed=[]
self.conditions=[]
self.conditions_index=[]
#print (self.conditions_list[0])
def clear(self):
self.bt = None
self.nodes = []
self.traversed = []
self.conditions = []
self.conditions_index = []
#运行规划算法从初始状态、目标状态和可用行动计算行为树self.bt
def run_algorithm(self,start,goal,actions):
# 初始行为树只包含目标条件
self.bt = ControlBT(type='cond')
g_node = Leaf(type='cond', content=goal)
self.bt.add_child([g_node])
self.conditions.append(goal)
self.nodes.append(g_node) #condition node list
# 尝试在初始状态执行行为树
val, obj = self.bt.tick(start)
canrun = False
if val == 'success' or val == 'running':
canrun = True
# 循环扩展,直到行为树能够在初始状态运行
while not canrun:
index = -1
for i in range(0,len(self.nodes)):
if self.nodes[i].content in self.traversed:
continue
else:
c_node = self.nodes[i]
index = i
break
if index == -1:#树中结点扩展完毕,仍无法运行行为树,返回失败
print('Failure')
return False
#根据所选择条件结点扩展子树
subtree = ControlBT(type='?')
subtree.add_child([copy.deepcopy(c_node)])#子树首先保留所扩展结点
c = c_node.content#子树所扩展结点对应的条件一个文字的set
for i in range(0,len(actions)):#选择符合条件的行动,
#print("have action")
if not c & ( (actions[i].pre | actions[i].add)-actions[i].del_set) <=set():
#print ("pass add")
if (c - actions[i].del_set) == c:
#print("pass delete")
c_attr = (actions[i].pre | c )-actions[i].add
valid = True
for j in self.traversed:#剪枝操作
if j<=c_attr:
valid = False
break
if valid:
#print("pass prune")
# 构建行动的顺序结构
sequence_structure=ControlBT(type='>')
c_attr_node = Leaf(type='cond', content=c_attr)
a_node = Leaf(type='act', content=actions[i])
sequence_structure.add_child([c_attr_node,a_node])
# 将顺序结构添加到子树
subtree.add_child([sequence_structure])
self.nodes.append(c_attr_node)
# 将原条件结点c_node替换为扩展后子树subtree
parent_of_c = c_node.parent
parent_of_c.children[0] = subtree
#记录已扩展条件
self.traversed.append(c)
# 尝试在初始状态运行行为树
val, obj = self.bt.tick(start)
canrun = False
if val == 'success' or val == 'running':
canrun = True
return True
def print_solution(self):
print(len(self.nodes))
# for i in self.nodes:
# if isinstance(i,Node):
# print (i.content)
# else:
# print (i)
#所对比的基准算法,具体扩展细节有差异
class Weakalgorithm:
def __init__(self):
self.bt=None
self.nodes=[]
self.traversed=[]
self.conditions=[]
self.conditions_index=[]
self.danger=False
#print (self.conditions_list[0])
def clear(self):
self.bt=None
self.nodes = []
self.traversed = []
self.conditions = []
self.conditions_index = []
self.danger = False
def run_algorithm(self,start,goal,actions):
self.bt = ControlBT(type='cond')
g_node = Leaf(type='cond', content=goal)
self.bt.add_child([g_node])
# self.nodes.append(goal)
self.conditions.append(goal)
self.nodes.append(g_node) # condition node list
# nodes_start_index=0
# self.conditions_index.append(0)
val, obj = self.bt.tick(start)
canrun = False
if val == 'success' or val == 'running':
canrun = True
while not canrun:
#print ("loop begin")
index = -1
for i in range(0,len(self.nodes)):
if self.nodes[i].content in self.traversed:
continue
else:
c_node = self.nodes[i]
index = i
break
#print (index)
if index == -1:
print('Algorithm Failure, all conditions expanded')
return False
subtree = ControlBT(type='?')
subtree.add_child([copy.deepcopy(c_node)])
c = c_node.content
for i in range(0,len(actions)):
if not c & actions[i].add <= set():
if not (c - actions[i].del_set) == c:
danger = True
self.danger = True
#continue
c_attr = actions[i].pre
valid = True
if valid:
sequence_structure = ControlBT(type='>')
for j in c_attr:
if j in self.traversed:
continue
c_attr_node = Leaf(type='cond', content={j})
sequence_structure.add_child([c_attr_node])
if j in start:
continue
self.nodes.append(c_attr_node)
a_node = Leaf(type='act', content=actions[i])
sequence_structure.add_child([ a_node])
subtree.add_child([sequence_structure])
parent_of_c = c_node.parent
p_index = c_node.parent_index
parent_of_c.children[p_index] = subtree
self.traversed.append(c)
val, obj = self.bt.tick(start)
canrun = False
if val == 'success' or val == 'running':
canrun = True
return True
def print_solution(self):
print(len(self.nodes))
if __name__ == '__main__':
random.seed(1)
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
literals_num=10
depth = 10
iters= 10
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
# 实验1000次
for count in range (0,1000):
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
states = []
actions = []
start = generate_random_state(literals_num)
state = start
states.append(state)
#print (state)
for i in range (0,depth):
a = Action()
a.generate_from_state(state,literals_num)
if not a in actions:
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
#print(state)
goal = states[-1]
state = start
for i in range (0,iters):
a = Action()
a.generate_from_state(state,literals_num)
if not a in actions:
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states,1)[0]
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
algo = BTalgorithm()
#algo = Weakalgorithm()
start_time = time.time()
if algo.run_algorithm(start, goal, list(actions)):#运行算法规划后行为树为algo.bt
total_tree_size.append( algo.bt.count_size()-1)
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
val, obj = algo.bt.tick(state)#tick行为树obj为所运行的行动
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj = algo.bt.tick(state)
if(val == 'failure'):
print("bt fails at step",steps)
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
print (success_count,failure_count)#算法成功和失败次数
print(np.mean(total_tree_size), np.std(total_tree_size, ddof=1))#1000次测试树大小
print (np.mean(total_steps_num),np.std(total_steps_num,ddof=1))
print (np.mean(total_state_num))#1000次问题的平均状态数
print (np.mean(total_action_num))#1000次问题的平均行动数
print(planning_time_total,planning_time_total/1000.0)
#print(total_state_num)
#casestudy begin 对应论文的case study包含三个行动的移动机械臂场景
# actions=[]
# a = Action(name='movebtob')
# a.pre={1,2}
# a.add={3}
# a.del_set={1,4}
# actions.append(a)
# a=Action(name='moveatob')
# a.pre={1}
# a.add={5,2}
# a.del_set={1,6}
# actions.append(a)
# a=Action(name='moveatoa')
# a.pre={7}
# a.add={8,2}
# a.del_set={7,6}
# actions.append(a)
#
# start = {1,7,4,6}
# goal={3}
# algo = BTalgorithm()
# algo.clear()
# algo.run_algorithm(start, goal, list(actions))
# state = start
# steps = 0
# val, obj = algo.bt.tick(state)
# while val != 'success' and val != 'failure':
# state = state_transition(state, obj)
# print (obj.name)
# val, obj = algo.bt.tick(state)
# if (val == 'failure'):
# print("bt fails at step", steps)
# steps += 1
# if not goal <= state:
# print ("wrong solution",steps)
# else:
# print ("right solution",steps)
# #algo.bt.print_nodes()
# print (algo.bt.count_size()-1)
# algo.clear()
#case study end