更新了 导航算法 和 部分动作节点

This commit is contained in:
Caiyishuai 2023-11-16 15:28:08 +08:00
parent f2aef8fdc9
commit c379f15a5c
28 changed files with 593 additions and 446 deletions

View File

@ -1,4 +1,5 @@
import time
import math
import grpc
import numpy as np
@ -358,29 +359,29 @@ class Scene:
temp = stub.GetIKControlInfos(GrabSim_pb2.HandPostureInfos(scene=self.sceneID, handPostureObjects=HandPostureObject))
# 移动到进行操作任务的指定地点
def move_task_area(self,op_type):
if op_type==11 or op_type==12: # 开关窗帘不需要移动
return
scene = stub.Observe(GrabSim_pb2.SceneID(value=self.sceneID))
walk_value = [scene.location.X, scene.location.Y, scene.rotation.Yaw]
if op_type < 8:
v_list = self.op_v_list[op_type]
if op_type>=8 and op_type<=10: # 控灯
v_list = self.op_v_list[6]
if op_type in [13,14,15]: # 空调
v_list = [[240, -140.0]] # KongTiao [300.5, -140.0] # 250
print("------------------move_task_area----------------------")
print("Current Position:", walk_value,"开始任务:",self.op_dialog[op_type])
for walk_v in v_list:
walk_v = walk_v + [scene.rotation.Yaw, 180, 0]
walk_v[2] = 0 if (op_type in [13,14,15]) else scene.rotation.Yaw # 空调操作朝向墙面
action = GrabSim_pb2.Action(
scene=self.sceneID, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v
)
scene = stub.Do(action)
print("After Walk Position:",[scene.location.X, scene.location.Y, scene.rotation.Yaw])
# def move_task_area(self,op_type):
# if op_type==11 or op_type==12: # 开关窗帘不需要移动
# return
# scene = stub.Observe(GrabSim_pb2.SceneID(value=self.sceneID))
# walk_value = [scene.location.X, scene.location.Y, scene.rotation.Yaw]
#
# if op_type < 8:
# v_list = self.op_v_list[op_type]
# if op_type>=8 and op_type<=10: # 控灯
# v_list = self.op_v_list[6]
# if op_type in [13,14,15]: # 空调
# v_list = [[240, -140.0]] # KongTiao [300.5, -140.0] # 250
# print("------------------error version----------------------")
# print("------------------move_task_area----------------------")
# print("Current Position:", walk_value,"开始任务:",self.op_dialog[op_type])
# for walk_v in v_list:
# walk_v = walk_v + [scene.rotation.Yaw, 180, 0]
# walk_v[2] = 0 if (op_type in [13,14,15]) else scene.rotation.Yaw # 空调操作朝向墙面
# action = GrabSim_pb2.Action(
# scene=self.sceneID, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v
# )
# scene = stub.Do(action)
# print("After Walk Position:",[scene.location.X, scene.location.Y, scene.rotation.Yaw])
# 相应的行动,由主办方封装
def control_robot_action(self, type=0, action=0, message="你好"):
@ -512,3 +513,4 @@ class Scene:
print(scene.info)

View File

@ -1,59 +0,0 @@
# !/usr/bin/env python3
# -*- encoding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pickle
import os
def draw_grid_map(grid_map):
# 生成新的地图图像
plt.imshow(grid_map, cmap='binary', alpha=0.5, origin='lower') # 黑白网格
# 绘制坐标轴
plt.xlabel('y', loc='right')
plt.ylabel('x', loc='top')
# 显示网格线
plt.grid(color='black', linestyle='-', linewidth=0.5)
# 显示图像
plt.show()
#plt.pause(0.01)
if __name__ == '__main__':
# control.init_world(scene_num=1, mapID=3)
# scene = control.Scene(sceneID=0)
#
# X = int(950/5) # 采点数量
# Y = int(1850/5)
# map = np.zeros((X, Y))
#
# for x in range(X):
# for y in range(Y):
# if not scene.reachable_check(x*5-350, y*5-400, Yaw=0):
# map[x, y] = 1
# print(x, y)
#
#
# file_name = 'map_5.pkl'
# if not os.path.exists(file_name):
# open(file_name, 'w').close()
# with open(file_name, 'wb') as file:
# pickle.dump(map, file)
# print('保存成功')
file_name = 'map_5.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
draw_grid_map(map)

View File

@ -1,158 +0,0 @@
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
import math
import sys
import time
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
# from scene import control
# from rrt import RRT
# from rrt_star import RRTStar
# from apf import APF
from robowaiter.algos.navigate.dstar_lite import DStarLite, euclidean_distance
class Navigator:
'''
导航类
'''
def __init__(self, scene, area_range, map, scale_ratio=5, step_length=150, velocity=150, react_radius=300):
self.scene = scene
self.area_range = area_range # 地图实际坐标范围 xmin, xmax, ymin, ymax
self.map = map # 缩放并离散化的地图 array(X,Y)
self.scale_ratio = scale_ratio # 地图缩放率
self.step_length = step_length # 步长(单次移动)
self.step_num = self.step_length // self.scale_ratio # 单次移动地图格数
self.v = velocity # 速度
self.react_radius = react_radius # robot反应半径
# self.planner = RRTStar(rand_area=area_range, map=map, scale_ratio=scale_ratio, max_iter=400, search_until_max_iter=True)
self.planner = DStarLite(area_range=area_range, map=map, scale_ratio=scale_ratio)
@staticmethod
def is_reached(pos: (float, float), goal: (float, float), dis_limit=30):
'''
判断是否到达目标
'''
dis = math.hypot(pos[0]-goal[0], pos[1]-goal[1])
# dis = np.linalg.norm(pos - goal)
return dis < dis_limit
@staticmethod
def get_yaw(pos: (float, float), goal: (float, float)):
'''
得到移动方向
'''
return math.degrees(math.atan2((goal[1] - pos[1]), (goal[0] - pos[0])))
def legalize_goal(self, goal: (float, float)):
'''
TODO: 处理非法目标
目标在障碍物上从目标开始方形向外扩展直到找到可行点
目标在地图外面起点和目标连线最靠近目标的可行点
'''
return goal
def navigate(self, goal: (float, float), animation=True):
'''
单次导航直到到达目标
'''
if not self.scene.reachable_check(goal[0], goal[1], 0):
goal = self.legalize_goal(goal)
pos = (self.scene.status.location.X, self.scene.status.location.Y) # 机器人当前: 位置 和 朝向
print('------------------navigation_start----------------------')
while not self.is_reached(pos, goal):
dyna_obs = [(walker.pose.X, walker.pose.Y) for walker in self.scene.status.walkers] # 动态障碍物(顾客)位置列表
dyna_obs = [obs for obs in dyna_obs if euclidean_distance(obs, pos) < self.react_radius] # 过滤观测范围外的dyna_obs
# 周围有dyna_obs则步长减半
if dyna_obs:
step_num = self.step_num // 2
else:
step_num = self.step_num
path = self.planner.planning(pos, goal, dyna_obs)
if path:
if animation:
self.planner.draw_graph(step_num) # 画出搜索路径
next_step = min(step_num, len(path))
next_pos = path[next_step - 1]
# print('plan pos:', next_pos, end=' ')
yaw = self.get_yaw(pos, next_pos)
# print("yaw:",yaw)
self.scene.walk_to(next_pos[0], next_pos[1], Yaw=yaw, velocity=self.v, dis_limit=10)
# pos = (self.scene.status.location.X, self.scene.status.location.Y)
# if self.is_reached(pos, next_pos):
self.planner.path = self.planner.path[next_step - 1:] # 去除已走过的路径
pos = (self.scene.status.location.X, self.scene.status.location.Y)
# print('reach pos:', pos)
self.planner.reset() # 完成一轮导航,重置变量
if self.is_reached(pos, goal):
print('The robot has achieved goal !!')
# def navigate(self, goal: (float, float), path_smoothing=True, animation=True):
# pos = np.array((self.scene.status.location.X, self.scene.status.location.Y)) # 机器人当前: 位置 和 朝向
# yaw = self.scene.status.rotation.Yaw
# print('------------------navigation_start----------------------')
#
# path = self.planner.planning(pos, goal, path_smoothing, animation)
# if path:
# self.planner.draw_graph(final_path=path) # 画出探索过程
# for (x, y) in path:
# self.scene.walk_to(x, y, yaw, velocity=self.v)
# time.sleep(self.step_time)
# pos = np.array((self.scene.status.location.X, self.scene.status.location.Y))
#
# self.planner.reset()
#
# if self.is_reached(pos, goal):
# print('The robot has achieved goal !!')
'''APF势场法暂不可用'''
# while not self.is_reached(pos, goal):
# # 1. 路径规划
# path = self.planner.planning(pos, goal, path_smoothing, animation)
# self.planner.draw_graph(final_path=path) # 画出探索过程
#
# # 2. 使用APF导航到路径中的每个waypoint
# traj = [(pos[0], pos[1])]
# #self.planner.draw_graph(final_path=traj) # 画出探索过程
# for i, waypoint in enumerate(path[1:]):
# print('waypoint [', i, ']:', waypoint)
# # if (not self.scene.reachable_check(waypoint[0], waypoint[1], yaw)) and self.map[self.planner.real2map(waypoint[0], waypoint[1])] == 0:
# # print('error')
# while not self.is_reached(pos, waypoint):
# # 2.1 计算next_step
# pos = np.array((self.scene.status.location.X, self.scene.status.location.Y))
# Pobs = [] # 障碍物(顾客)位置数组
# for walker in self.scene.status.walkers:
# Pobs.append((walker.pose.X, walker.pose.Y))
# next_step, _ = APF(Pi=pos, Pg=waypoint, Pobs=Pobs, step_length=self.step_length)
# traj.append((next_step[0], next_step[1]))
# #self.planner.draw_graph(final_path=traj) # 画出探索过程
# while not self.scene.reachable_check(next_step[0], next_step[1], yaw): # 取中点直到next_step可达
# traj.pop()
# next_step = (pos + next_step) / 2
# traj.append((next_step[0], next_step[1]))
# #self.planner.draw_graph(final_path=traj) # 画出探索过程
# # 2.2 移动robot
# self.scene.walk_to(next_step[0], next_step[1], yaw, velocity=self.v)
# # print(self.scene.status.info) # print navigation info
# # print(self.scene.status.collision)
# time.sleep(self.step_time)
# # print(self.scene.status.info) # print navigation info
# # print(self.scene.status.collision)
# self.planner.reset()

View File

@ -1,52 +0,0 @@
## 默认使用RRTStar+路径平滑
### apf.py: 势场法实现
### discretize_map.py: 地图离散化并压缩
### map_5.pkl: 地图文件(5倍压缩)
### navigate.py: 导航类
### pathsmoothing.py: 路径平滑
### rrt.py: RRT实现
### rrt_star.py: RRTStar 实现
### test.py: 测试文件
## TODO
### 目标不合法
#### 初始目标不合法
目标在障碍物上:从目标开始方形向外扩展,直到找到可行点
目标在地图外面:起点和目标连线最靠近目标的可行点
对不合法的目标做单独处理,生成新的目标
#### 在移动过程中目标被占据
给出目标但不会行移动,程序会继续运行,重新计算规划路径,给出新目标
### 规划中断情况
### 计算转向角
`完成`
### 有些本来可达的位置却无法走到系统bug?
例如从初始位置(247, 500) 移动到(115, -10),无法到达
`(已解决)将dis_limit设为小值5而非0`
#### 构型空间膨胀??
`不需要`
### 只考虑一定范围内的行人
观测范围 / 反应半径
`完成`
#### 观测范围内有行人步长要减小
`完成`

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,90 @@
# !/usr/bin/env python3
# -*- encoding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pickle
import os
from scipy.ndimage import binary_dilation
from scene import scene
def draw_grid_map(grid_map):
# 生成新的地图图像
plt.imshow(grid_map, cmap='binary', alpha=0.5, origin='lower') # 黑白网格
# 绘制坐标轴
plt.xlabel('y', loc='right')
plt.ylabel('x', loc='top')
# 显示网格线
plt.grid(color='black', linestyle='-', linewidth=0.5)
# 显示图像
plt.show()
#plt.pause(0.01)
def discretize_map(scene, scale_ratio):
X = int(950 / scale_ratio) # 采点数量
Y = int(1850 / scale_ratio)
map = np.zeros((X, Y))
for x in range(X):
for y in range(Y):
if not scene.reachable_check(x * scale_ratio - 350, y * scale_ratio - 400, Yaw=0):
map[x, y] = 1
print(x, y)
file_name = 'map_'+str(scale_ratio)+'.pkl'
if not os.path.exists(file_name):
open(file_name, 'w').close()
with open(file_name, 'wb') as file:
pickle.dump(map, file)
print('保存成功')
def expand_obstacles(scale_ratio, expand_range=1):
'''
障碍物边沿扩展
TODO: 扩展后的地图不可用
'''
file_name = 'map_'+str(scale_ratio)+'.pkl'
dilated_file_name = 'map_'+str(scale_ratio)+'_e'+str(expand_range)+'.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
dilated_map = binary_dilation(map, iterations=expand_range)
if not os.path.exists(dilated_file_name):
open(dilated_file_name, 'w').close()
with open(dilated_file_name, 'wb') as file:
pickle.dump(dilated_map, file)
print('保存成功')
def show_map(file_name):
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
draw_grid_map(map)
if __name__ == '__main__':
# scene.init_world(scene_num=1, mapID=11)
# scene = scene.Scene(sceneID=0)
#
# # 离散化地图
# discretize_map(scene, scale_ratio=4)
# # 扩张构型空间
# expand_obstacles(scale_ratio=3, expand_range=1)
# 展示离散化地图
file_name = 'costMap_4.pkl'
show_map(file_name)

View File

@ -5,8 +5,8 @@
'''
import math
import queue
from functools import partial
import os
import pickle
import numpy as np
import heapq
@ -115,13 +115,12 @@ class PriorityQueue:
class DStarLite:
def __init__(self,
map: np.array([int, int]), # [X, Y]
area_range, # [x_min, x_max, y_min, y_max] 实际坐标范围
scale_ratio=5, # 地图缩放率
dyna_obs_radius=30, # dyna_obs实际身位半径
map: np.array([int, int]),
area_range, # [x_min, x_max, y_min, y_max] 实际坐标范围
scale_ratio=5, # 地图缩放率
dyna_obs_radius=36, # dyna_obs实际身位半径
):
# self.area_bounds = area
self.map = map
self.background = map.copy()
self.X = map.shape[0]
@ -145,9 +144,13 @@ class DStarLite:
"obstacle": float('inf'),
"dynamic obstacle": 100
}
self.cost_map = np.zeros_like(self.map)
file_name = 'costMap_'+str(self.scale_ratio)+'.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
cost_map = pickle.load(file)
self.cost_map = cost_map
self.cost_background = self.cost_map.copy()
self.compute_cost_map()
self.s_start = None # (int,int) 必须是元组(元组可以直接当作矩阵索引)
self.s_goal = None # (int,int)
@ -163,9 +166,11 @@ class DStarLite:
# 设置map 和 cost_map
# '''
# self.map = map_
# self.background = map_.copy()
# self.X = map_.shape[0]
# self.Y = map_.shape[1]
# self.compute_cost_map()
# self.cost_background = self.cost_map.copy()
def reset(self):
'''
@ -299,11 +304,6 @@ class DStarLite:
self.compute_shortest_path()
self.path = self.get_path()
return self.path
# TODO: 误差抖动使robot没有到达路径上的点导致新起点的rhs=∞可能导致get_path失败 ( 当前版本没有该问题 )
# assert (self.rhs[self.s_start] != float('inf')), "There is no known path!"
# # debug
# if debug:
# pass
def planning(self, s_start, s_goal, dyna_obs, debug=False):
'''
@ -311,7 +311,10 @@ class DStarLite:
'''
# 实际坐标 -> 地图坐标
s_start = self.real2map(s_start)
s_goal = self.real2map(s_goal)
if self.s_goal is None:
s_goal = self.real2map(s_goal)
else:
s_goal = self.s_goal
dyna_obs = [self.real2map(obs, reachable_assurance=False) for obs in dyna_obs]
self._planning(s_start, s_goal, dyna_obs, debug)
@ -336,13 +339,6 @@ class DStarLite:
succ = [s_ for s_ in self.get_neighbors(cur) if s_ not in path] # 避免抖动 (不可走重复的点)
cur = succ[np.argmin([self.c(cur, s_) + self.g[s_] for s_ in succ])]
path.append(cur)
# else:
# for i in range(step_num):
# if cur == self.s_goal:
# break
# succ = self.get_neighbors(cur)
# cur = succ[np.argmin([self.c(cur, s_) + self.g[s_] for s_ in succ])]
# path.append(cur)
return path
def in_bounds_without_obstacle(self, pos):
@ -357,8 +353,6 @@ class DStarLite:
获取邻居节点, 地图范围内
'''
(x_, y_) = pos
# results = [(x_+1,y_), (x_-1,y_), (x_, y_+1), (x_,y_-1)]
# if mode == 8:
neighbors = [(x_ + 1, y_), (x_ - 1, y_), (x_, y_ + 1), (x_, y_ - 1), (x_ + 1, y_ + 1), (x_ - 1, y_ + 1),
(x_ + 1, y_ - 1), (x_ - 1, y_ - 1)]
neighbors = filter(self.in_bounds_without_obstacle, neighbors) # 确保位置在地图范围内 且 不是静态障碍物
@ -366,17 +360,26 @@ class DStarLite:
def compute_cost_map(self):
# 计算当前地图的cost_map
self.cost_map = np.zeros_like(self.map)
for idx, obj in self.idx_to_object.items():
self.cost_map[self.map == idx] = self.object_to_cost[obj]
# # TODO
# for x in range(self.X):
# for y in range(self.Y):
# if self.cost_map[x, y] > 0:
# neighbors = self.get_neighbors((x, y))
# for (x_, y_) in neighbors:
# self.cost_map[x_, y_] = max(self.cost_map[x_, y_], self.cost_map[x, y] - 10)
# 扩张静态障碍物影响范围
obs_pos = np.where(self.map == self.object_to_idx['obstacle']) # 静态障碍物位置列表
for (x, y) in zip(obs_pos[0], obs_pos[1]):
start_x, end_x = max(x - 1, 0), min(x + 1, self.X - 1)
start_y, end_y = max(y - 1, 0), min(y + 1, self.Y - 1)
for cost in range(9, 0, -3):
for x_ in range(start_x, end_x + 1):
self.cost_map[x_, start_y] = max(self.cost_map[x_, start_y], cost)
for y_ in range(start_y + 1, end_y + 1):
self.cost_map[end_x, y_] = max(self.cost_map[end_x, y_], cost)
for x_ in range(end_x - 1, start_x - 1, -1):
self.cost_map[x_, end_y] = max(self.cost_map[x_, end_y], cost)
for y_ in range(end_y - 1, start_y, -1):
self.cost_map[start_x, y_] = max(self.cost_map[start_x, y_], cost)
start_x, end_x = max(start_x - 1, 0), min(end_x + 1, self.X - 1)
start_y, end_y = max(start_y - 1, 0), min(end_y + 1, self.Y - 1)
self.cost_background = self.cost_map.copy()
@ -388,8 +391,8 @@ class DStarLite:
return:
update_obj: 改变的位置列表 [(x, y, obj_idx, obj_idx_old), ...]
'''
# dyna_obs没有变化 (集合set可以忽略元素在列表中的位置)
if set(dyna_obs) == set(self.dyna_obs_list):
# dyna_obs没有变化 (集合set可以忽略元素在列表中的位置) 且 robot未在dyna_obs占用位置中
if set(dyna_obs) == set(self.dyna_obs_list) and self.s_start not in self.dyna_obs_occupy:
return []
# 当前dyna_obs占用位置列表
@ -397,24 +400,10 @@ class DStarLite:
for pos in dyna_obs:
dyna_obs_occupy.extend(self.get_occupy_pos(pos))
dyna_obs_occupy = [pos for i, pos in enumerate(dyna_obs_occupy) if pos not in dyna_obs_occupy[:i]] # 去除重复位置
# 转变为free 和 转变为obs的位置列表
# 转变为free 和 转变为dyna_obs的位置列表
changed_free = [pos for pos in self.dyna_obs_occupy if pos not in dyna_obs_occupy]
changed_obs = [pos for pos in dyna_obs_occupy if pos not in self.dyna_obs_occupy]
# # 新旧dyna_obs占用位置列表
# old_obs_occupy = []
# new_obs_occupy = []
# for pos in self.dyna_obs_list:
# old_obs_occupy.extend(self.get_occupy_pos(pos))
# for pos in dyna_obs:
# new_obs_occupy.extend(self.get_occupy_pos(pos))
# old_obs_occupy = [pos for i, pos in enumerate(old_obs_occupy) if pos not in old_obs_occupy[:i]] # 去除重复位置
# new_obs_occupy = [pos for i, pos in enumerate(new_obs_occupy) if pos not in new_obs_occupy[:i]] # 去除重复位置
#
# # 转变为free 和 转变为obs的位置列表
# changed_free = [pos for pos in old_obs_occupy if pos not in new_obs_occupy]
# changed_obs = [pos for pos in new_obs_occupy if pos not in old_obs_occupy]
# 更新地图计算changed_pos
changed_pos = []
for (x, y) in changed_free:
@ -430,21 +419,15 @@ class DStarLite:
return changed_pos
def get_occupy_pos(self, obs_pos):
'''
根据dyna_obs中心位置计算其占用的所有网格位置
'''
(x, y) = obs_pos
occupy_radius = min(self.dyna_obs_radius, int(euclidean_distance(obs_pos, self.s_start) - 1)) # 避免robot被dyna_obs的占用区域包裹住
# for i in range(x - self.dyna_obs_radius, x + self.dyna_obs_radius + 1): # 方形区域
# for j in range(y - self.dyna_obs_radius, y + self.dyna_obs_radius + 1):
# occupy_pos.append((i, j))
occupy_pos = [(i, j) for i in range(x - occupy_radius, x + occupy_radius + 1) # 圆形区域
for j in range(y - occupy_radius, y + occupy_radius + 1)
if euclidean_distance((i, j), obs_pos) < occupy_radius]
occupy_pos = filter(self.in_bounds_without_obstacle, occupy_pos) # 确保位置在地图范围内 且 不是静态障碍物
return list(occupy_pos)
@ -497,21 +480,40 @@ class DStarLite:
'''
x = round((pos[0] - self.x_min) / self.scale_ratio)
y = round((pos[1] - self.y_min) / self.scale_ratio)
# 需要确保点可达
if reachable_assurance and self.idx_to_object[self.map[x, y]] != 'free':
print('1')
x_ = math.floor((pos[0] - self.x_min) / self.scale_ratio)
y_ = math.floor((pos[1] - self.y_min) / self.scale_ratio)
candidates = [(x_, y_), (x_ + 1, y_), (x_, y_ + 1), (x_ + 1, y_ + 1)]
for (x, y) in candidates:
print(self.idx_to_object[self.map[x, y]])
if self.idx_to_object[self.map[x, y]] == 'free':
print((x,y))
return tuple((x, y))
raise Exception('error')
# 确保点不在静态障碍物上,否则就不断向外圈扩展直到找到非静态障碍物位置
if reachable_assurance:
return self.validate_pos((x, y))
else:
return tuple((x, y))
def validate_pos(self, pos):
'''
对于不合法的pos找到周围距离最近的合法坐标
'''
(x, y) = pos
x = max(0, min(x, self.X - 1))
y = max(0, min(y, self.Y - 1))
if self.idx_to_object[self.map[x, y]] == 'obstacle':
start_x, end_x = max(x - 1, 0), min(x + 1, self.X - 1)
start_y, end_y = max(y - 1, 0), min(y + 1, self.Y - 1)
while True:
for x_ in range(start_x, end_x + 1):
if self.idx_to_object[self.map[x_, start_y]] != 'obstacle':
return tuple((x_, start_y))
for y_ in range(start_y + 1, end_y + 1):
if self.idx_to_object[self.map[end_x, y_]] != 'obstacle':
return tuple((end_x, y_))
for x_ in range(end_x - 1, start_x - 1, -1):
if self.idx_to_object[self.map[x_, end_y]] != 'obstacle':
return tuple((x_, end_y))
for y_ in range(end_y - 1, start_y, -1):
if self.idx_to_object[self.map[start_x, y_]] != 'obstacle':
return tuple((start_x, y_))
start_x, end_x = max(start_x - 1, 0), min(end_x + 1, self.X - 1)
start_y, end_y = max(start_y - 1, 0), min(end_y + 1, self.Y - 1)
# raise Exception('invalid pos!')
return tuple((x, y))
def draw_graph(self, step_num):
# 清空当前figure内容保留figure对象
plt.clf()

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,115 @@
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
import math
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
from robowaiter.scene import scene
from robowaiter.algos.navigator.dstar_lite import DStarLite, euclidean_distance
class Navigator:
'''
导航类
'''
def __init__(self, scene, area_range, map, scale_ratio=5, step_length=150, velocity=150, react_radius=300):
self.scene = scene
self.area_range = area_range # 地图实际坐标范围 xmin, xmax, ymin, ymax
self.map = map # 缩放并离散化的地图 array(X,Y)
self.scale_ratio = scale_ratio # 地图缩放率
self.step_length = step_length # 步长(单次移动)
self.step_num = self.step_length // self.scale_ratio # 单次移动地图格数
self.v = velocity # 速度
self.react_radius = react_radius # robot反应半径
self.planner = DStarLite(area_range=area_range, map=map, scale_ratio=scale_ratio)
def validate_goal(self, goal):
'''
目标合法化
'''
return self.planner.map2real(self.planner.real2map(goal))
@staticmethod
def is_reached(pos: (float, float), goal: (float, float), dis_limit=50):
'''
判断是否到达目标
'''
dis = math.hypot(pos[0]-goal[0], pos[1]-goal[1])
# dis = np.linalg.norm(pos - goal)
return dis < dis_limit
@staticmethod
def get_yaw(pos: (float, float), goal: (float, float)):
'''
得到移动方向
'''
# return math.degrees(math.atan2(goal[0] - pos[0], -(goal[1] - pos[1])))
return math.degrees(math.atan2((goal[1] - pos[1]), (goal[0] - pos[0])))
def navigate(self, goal: (float, float), animation=True):
'''
单次导航直到到达目标
'''
goal = self.validate_goal(goal) # 目标合法化
pos = (self.scene.status.location.X, self.scene.status.location.Y) # 机器人当前: 位置 和 朝向
print('------------------navigation_start----------------------')
while not self.is_reached(pos, goal):
dyna_obs = [(walker.pose.X, walker.pose.Y) for walker in self.scene.status.walkers] # 动态障碍物(顾客)位置列表
dyna_obs = [obs for obs in dyna_obs if euclidean_distance(obs, pos) < self.react_radius] # 过滤观测范围外的dyna_obs
# 周围有dyna_obs则步长减半
if dyna_obs:
step_num = self.step_num // 2
else:
step_num = self.step_num
path = self.planner.planning(pos, goal, dyna_obs)
if path:
if animation:
self.planner.draw_graph(step_num) # 画出搜索路径
next_step = min(step_num, len(path))
next_pos = path[next_step - 1]
print('plan pos:', next_pos, end=' ')
yaw = self.get_yaw(pos, next_pos)
self.scene.walk_to(next_pos[0], next_pos[1], yaw, velocity=self.v, dis_limit=10)
self.planner.path = self.planner.path[next_step - 1:] # 去除已走过的路径
pos = (self.scene.status.location.X, self.scene.status.location.Y)
print('reach pos:', pos)
self.planner.reset() # 完成一轮导航,重置变量
if self.is_reached(pos, goal):
print('The robot has achieved goal !!')
if __name__ == '__main__':
# 根据map计算并保存cost_map
file_name = 'map_4.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
scene.init_world(1, 11)
scene = scene.Scene(sceneID=0)
navigator = Navigator(scene=scene, area_range=[-350, 600, -400, 1450], map=map, scale_ratio=4)
navigator.planner.compute_cost_map()
file_name = 'costMap_4.pkl'
if not os.path.exists(file_name):
open(file_name, 'w').close()
with open(file_name, 'wb') as file:
pickle.dump(navigator.planner.cost_map, file)
print('保存成功')

View File

@ -0,0 +1,128 @@
# D_star Lite 机器人任务规划
## 目录结构
### 坐标离散化
`discretize_map.py`
### 地图文件(选择缩放倍率)
`map_3.pkl`
`map_4.pkl`
`map_5.pkl`
### 导航类
`navigate.py`
### D_star Lite 算法实现
`dstar_lite.py`
### 测试文件
`test.py`
---
## 世界地图
### 实际坐标范围
`X: -350 ~ 600`
`Y: -400 ~ 1450`
### 5倍缩放后坐标范围
`X: -70 ~ 120`
`Y: -80 ~ 290`
### 网格地图
| Idx | Obj |
|-----|------------------|
| 0 | free |
| 1 | obstacle |
| 2 | dynamic obstacle |
### 代价地图
| Cost | Obj |
|---------|-----------------|
| 0 | free |
| 15-10-5 | obs周围3格 |
| inf | obstacle |
| 100 | dynamic obstacle |
---
## 参数
`机器人步长` 150
`机器人速度` 150
`机器人观测范围` 300
`行人半径` 36
`目标判达距离` 50
`机器人移动dis_limit` 10
---
## 使用方法
```python
# 选择缩放合适的地图3、4、5
file_name = 'map_4.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
# 初始化场景
scene.init_world(1, 11)
scene = scene.Scene(sceneID=0)
# 舒适化导航类
# (需要传入:场景、实际地图范围、离散化地图、缩放比例)
navigator = Navigator(scene=scene, area_range=[-350, 600, -400, 1450], map=map, scale_ratio=4)
# 设置目标
goal = (0, 0)
# 导航
# (animation: 选择是否画出导航过程)
navigator.navigate(goal, animation=False)
```
---
## 可靠性保证
`目标合法性保证`
- 目标在地图外:重置目标为最近的地图内位置
- 目标在静态障碍物:从当前位置不断向外圈扩展直到找到合法位置,重置目标为该位置
`规划sbgoal合法性保证`
- 规划subgoal被动态障碍物占据重新规划路径
`起点合法性保证`
- 起点在静态障碍物:从当前位置不断向外圈扩展直到找到合法位置,重置起点为该位置
- 起点在动态障碍物范围内:缩小动态障碍物半径,保证起点位置为空闲
`机器人朝向保证`
- 机器人始终朝向每一步的移动方向
`规划抖动解决`
- 规划路径不允许有重复点
`避免机器人沿障碍物行走`
- 障碍物扩张:在代价地图`cost_map`中静态障碍物周围的空位也会受到影响并产生cost

View File

@ -1,22 +1,19 @@
import os
import pickle
import time
import random
import math
import matplotlib.pyplot as plt
import numpy as np
from robowaiter.scene import scene
# from navigate import Navigator
from robowaiter.algos.navigate.navigate import Navigator
from robowaiter.algos.navigator.navigate import Navigator
if __name__ == '__main__':
# def navigate_test(scene):
file_name = 'map_5.pkl'
# 选择缩放合适的地图3、4、5
file_name = 'map_4.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)
@ -24,21 +21,25 @@ if __name__ == '__main__':
scene.init_world(1, 11)
scene = scene.Scene(sceneID=0)
navigator = Navigator(scene=scene, area_range=[-350, 600, -400, 1450], map=map)
navigator = Navigator(scene=scene, area_range=[-350, 600, -400, 1450], map=map, scale_ratio=4)
'''场景1: 无行人环境 robot到达指定目标'''
# goal = np.array((-100, 700))
# goal = (-100, 700)
# goal = (590, 1370)
# goal = (290, -240)
# goal = (-200, -200)
# goal = (-200, -50)
'''场景2: 静止行人环境 robot到达指定目标'''
# scene.clean_walker()
# scene.add_walker(50, 300, 0)
# scene.add_walker(-50, 500, 0)
# goal = np.array((-100, 700))
# goal = (-100, 700)
'''场景3: 移动行人环境 robot到达指定目标'''
scene.walk_to(100, 0, -90, dis_limit=10)
scene.walk_to(100, 0, -90, dis_limit=5)
scene.clean_walker()
scene.add_walkers([[50, 300],[-50, 500],[0, 700]])
scene.add_walkers([[50, 300], [-50, 500], [0, 700]])
# scene.add_walker(50, 300, 0)
# scene.add_walker(-50, 500, 0)
# scene.add_walker(0, 700, 0)
@ -47,12 +48,13 @@ if __name__ == '__main__':
scene.control_walker([scene.walker_control_generator(walkerID=2, autowalk=False, speed=50, X=0, Y=0, Yaw=0)])
# goal = (-100, 700)
# goal = (-300)
# goal = (340.0, 900.0)
# goal = (-200, 700) # 目标在障碍物测试
# goal = (-400, 700) # 目标在地图外测试
goal = (10000, 10000) # 目标在地图外测试
# goal = (-220, 300)
# goal = (-280, 400)
# goal = (-230, 600)
# goal = (240.0, 1000.0)
# goal = (340.0, 900.0)
goal = (240.0, 1160.0)
'''场景4: 行人自由移动 robot到达指定目标'''
# # TODO: autowalk=True仿真器会闪退 ???
@ -62,7 +64,7 @@ if __name__ == '__main__':
# scene.control_walker([scene.walker_control_generator(walkerID=0, autowalk=True, speed=20, X=0, Y=0, Yaw=0)])
# scene.control_walker([scene.walker_control_generator(walkerID=1, autowalk=True, speed=20, X=0, Y=0, Yaw=0)])
# time.sleep(5)
# goal = np.array((-100, 700))
# goal = (-100, 700)
navigator.navigate(goal, animation=True)

View File

@ -13,12 +13,12 @@ class Bahavior(ptree.behaviour.Behaviour):
'''
scene = None
print_name_prefix = ""
all_place = {'Bar', 'Bar2', 'WaterTable', 'CoffeeTable', 'Table1', 'Table2', 'Table3'}
# all_place = {'Bar', 'Bar2', 'WaterTable', 'CoffeeTable', 'Table1', 'Table2', 'Table3'}
# all_object = {'Coffee', 'Water', 'Dessert', 'Softdrink', 'BottledDrink', 'Yogurt', 'ADMilk', 'MilkDrink', 'Milk',
# 'VacuumCup'}
# all_place = {'Bar', 'WaterTable', 'CoffeeTable'}
all_place = {'Bar', 'WaterTable', 'CoffeeTable'}
# all_object = {'Coffee', 'Water', 'Dessert', 'Softdrink', 'Yogurt'}
all_object = {'Coffee'}
all_object = {'Coffee', 'Water'}
place_xyz_dic={
'Bar': (247.0, 520.0, 100.0),
'Bar2': (240.0, 40.0, 70.0),
@ -28,6 +28,11 @@ class Bahavior(ptree.behaviour.Behaviour):
'Table2': (-55.0, 0.0, 107),
'Table3':(-55.0, 150.0, 107)
}
container_dic={
'Coffee':'CoffeeCup',
'Water': 'Glass',
'Dessert':'Plate'
}
@classmethod
def get_ins_name(cls,*args):

View File

@ -14,11 +14,11 @@ class Make(Act):
super().__init__(*args)
self.target_obj = self.args[0]
self.op_type = 1
if self.target_obj=="Coffee":
if self.target_obj==self.valid_args[0]:
self.op_type = 1
elif self.target_obj=="Water":
elif self.target_obj==self.valid_args[1]:
self.op_type = 2
elif self.target_obj=="Dessert":
elif self.target_obj==self.valid_args[2]:
self.op_type = 3
@ -28,12 +28,12 @@ class Make(Act):
info["pre"]= {f'Holding(Nothing)'}
info['del_set'] = set()
info['add'] = {f'Exist({arg})'}
if arg == "Coffee":
info["add"] |= {f'On(Coffee,CoffeeTable)'}
elif arg == "Water":
info["add"] |= {f'On(Water,WaterTable)'}
elif arg == "Dessert":
info["add"] |= {f'On(Dessert,Bar)'}
if arg == cls.valid_args[0]:
info["add"] |= {f'On({arg},CoffeeTable)'}
elif arg == cls.valid_args[1]:
info["add"] |= {f'On({arg},WaterTable)'}
elif arg == cls.valid_args[2]:
info["add"] |= {f'On({arg},Bar)'}
return info
def _update(self) -> ptree.common.Status:
@ -43,16 +43,20 @@ class Make(Act):
# self.scene.gen_obj(type=40)
obj_dict = self.scene.status.objects
if len(obj_dict) != 0:
# 获取obj_id
for id, obj in enumerate(obj_dict):
if obj.name == "Coffee":
obj_info = obj_dict[id]
obj_x, obj_y, obj_z = obj_info.location.X, obj_info.location.Y, obj_info.location.Z
print(id,obj.name,obj_x,obj_y,obj_z)
# obj_dict = self.scene.status.objects
# if len(obj_dict) != 0:
# # 获取obj_id
# for id, obj in enumerate(obj_dict):
# print("id:",id,"obj",obj.name)
# if obj.name == "Coffee":
# obj_info = obj_dict[id]
# obj_x, obj_y, obj_z = obj_info.location.X, obj_info.location.Y, obj_info.location.Z
# print(id,obj.name,obj_x,obj_y,obj_z)
self.scene.state["condition_set"] |= (self.info["add"])
self.scene.state["condition_set"] -= self.info["del_set"]
print("condition_set:",self.scene.state["condition_set"])
return Status.RUNNING

View File

@ -1,6 +1,6 @@
import py_trees as ptree
from robowaiter.behavior_lib._base.Act import Act
from robowaiter.algos.navigate.navigate import Navigator
from robowaiter.algos.navigate_old.navigate import Navigator
class MoveTo(Act):
can_be_expanded = True
@ -21,6 +21,7 @@ class MoveTo(Act):
info['pre'] |= {f'Exist({arg})'}
info["add"] = {f'At(Robot,{arg})'}
info["del_set"] = {f'At(Robot,{place})' for place in cls.valid_args if place != arg}
info['cost']=5
return info
@ -29,30 +30,41 @@ class MoveTo(Act):
# navigator = Navigator(scene=self.scene, area_range=[-350, 600, -400, 1450], map=self.scene.state["map"]["2d"])
# goal = self.scene.state['map']['obj_pos'][self.args[0]]
# navigator.navigate(goal, animation=False)
# navigator.navigate_old(goal, animation=False)
# 走到固定的地点
if self.target_place in Act.place_xyz_dic:
goal = Act.place_xyz_dic[self.target_place]
self.scene.walk_to(goal[0],goal[1])
else: # 走到物品边上
self.scene.walk_to(goal[0]+1,goal[1])
# 走到物品边上
else:
# 是否用容器装好
if self.target_place in Act.container_dic:
target_name = Act.container_dic[self.target_place]
else:
target_name = self.target_place
# 根据物体名字找到最近的这类物体对应的位置
obj_id = -1
min_dis = float('inf')
obj_dict = self.scene.status.objects
if len(obj_dict)!=0:
# 获取obj_id
for id,obj in enumerate(obj_dict):
if obj.name == self.target_place:
obj_id = id
# obj_info = obj_dict[id]
# obj_x, obj_y, obj_z = obj_info.location.X, obj_info.location.Y, obj_info.location.Z
# ginger_x,ginger_y,ginger_z = [int(self.scene.location.X), int(self.scene.location.Y), int(self.scene.rotation.Yaw)]
break
if self.target_place == "CoffeeCup":
obj_id = 273
if obj.name == target_name:
obj_info = obj_dict[id]
dis = self.scene.cal_distance_to_robot(obj_info.location.X, obj_info.location.Y, obj_info.location.Z)
if id==275:
print("275'dis:",dis)
if dis<min_dis:
min_dis = dis
obj_id = id
# if self.target_place == "CoffeeCup":
# # obj_id = 273
# obj_id = 275
if obj_id == -1:
return ptree.common.Status.FAILURE
print("self.target_place:",self.target_place,"id:",obj_id,"dis:",min_dis)
self.scene.move_to_obj(obj_id=obj_id)
# 为了演示,写死咖啡位置

View File

@ -25,14 +25,36 @@ class PickUp(Act):
def _update(self) -> ptree.common.Status:
# self.scene.test_move()
op_type=16
obj_id = 0
# op_type=16
# 遍历场景里的所有物品,根据名字匹配位置最近的 obj-id
# 是否用容器装好
if self.target_obj in Act.container_dic:
target_name = Act.container_dic[self.target_obj]
else:
target_name = self.target_obj
# 根据物体名字找到最近的这类物体对应的位置
obj_id = -1
min_dis = float('inf')
obj_dict = self.scene.status.objects
if len(obj_dict) != 0:
# 获取obj_id
for id, obj in enumerate(obj_dict):
if obj.name == target_name:
obj_info = obj_dict[id]
dis = self.scene.cal_distance_to_robot(obj_info.location.X, obj_info.location.Y,
obj_info.location.Z)
if dis < min_dis:
min_dis = dis
obj_id = id
# if self.target_place == "CoffeeCup":
# # obj_id = 273
# obj_id = 275
if obj_id == -1:
return ptree.common.Status.FAILURE
if self.args=="Coffee":
obj_id = 273
self.scene.op_task_execute(op_type, obj_id=obj_id)
self.scene.move_task_area(op_type=16, obj_id=obj_id)
self.scene.op_task_execute(op_type=16, obj_id=obj_id)
self.scene.state["condition_set"] |= (self.info["add"])
self.scene.state["condition_set"] -= self.info["del_set"]

View File

@ -31,6 +31,7 @@ class PutDown(Act):
release_pos = list(Act.place_xyz_dic[self.target_place])
# # 原始吧台处:[247.0, 520.0, 100.0], 空调开关旁吧台:[240.0, 40.0, 70.0], 水杯桌:[-70.0, 500.0, 107]
# # 桌子2:[-55.0, 0.0, 107],桌子3:[-55.0, 150.0, 107]
self.scene.move_task_area(op_type, release_pos=release_pos)
self.scene.op_task_execute(op_type, release_pos=release_pos)
self.scene.state["condition_set"] |= (self.info["add"])

View File

@ -2,6 +2,8 @@ import copy
import random
from robowaiter.behavior_tree.obtea.BehaviorTree import Leaf,ControlBT
class CondActPair:
def __init__(self, cond_leaf,act_leaf):
self.cond_leaf = cond_leaf
@ -54,7 +56,10 @@ class OptBTExpAlgorithm:
self.conditions_index = []
#运行规划算法从初始状态、目标状态和可用行动计算行为树self.bt
def run_algorithm(self,goal,actions):
def run_algorithm(self,goal,actions,scene):
self.scene = scene
if self.verbose:
print("\n算法开始!")
@ -99,8 +104,13 @@ class OptBTExpAlgorithm:
sequence_structure.add_child(
[copy.deepcopy(pair_node.cond_leaf), copy.deepcopy(pair_node.act_leaf)])
subtree.add_child([copy.deepcopy(sequence_structure)]) # subtree 是回不断变化的它的父亲是self.bt
# 增加实时条件判断,满足条件就不再扩展
if c <= self.scene.state["condition_set"]:
return True
else:
subtree.add_child([copy.deepcopy(pair_node.act_leaf)])
if self.verbose:
print("完成扩展 a_node= %s,对应的新条件 c_attr= %s,mincost=%d" \
% (cond_anc_pair.act_leaf.content.name, cond_anc_pair.cond_leaf.content,

View File

@ -6,7 +6,7 @@ from robowaiter.behavior_tree.obtea.examples import *
# 封装好的主接口
class BTOptExpInterface:
def __init__(self, action_list):
def __init__(self, action_list,scene):
"""
Initialize the BTOptExpansion with a list of actions.
:param action_list: A list of actions to be used in the behavior tree.
@ -22,6 +22,8 @@ class BTOptExpInterface:
self.actions = action_list
self.has_processed = False
self.scene = scene
def process(self, goal):
"""
Process the input sets and return a string result.
@ -29,9 +31,9 @@ class BTOptExpInterface:
:return: A PTML string representing the outcome of the behavior tree.
"""
self.goal = goal
self.algo = OptBTExpAlgorithm(verbose=False)
self.algo = OptBTExpAlgorithm(verbose=True)
self.algo.clear()
self.algo.run_algorithm(self.goal, self.actions) # 调用算法得到行为树保存至 algo.bt
self.algo.run_algorithm(self.goal, self.actions,self.scene) # 调用算法得到行为树保存至 algo.bt
self.ptml_string = self.algo.get_ptml()
self.has_processed = True
# algo.print_solution() # print behavior tree

View File

@ -62,7 +62,7 @@ class Robot(object):
print("--------------------\n")
algo = BTOptExpInterface(self.action_list)
algo = BTOptExpInterface(self.action_list,self.scene)
ptml_string = algo.process(goal)

View File

@ -397,8 +397,12 @@ class Scene:
walk_v = [obj_x + 40, obj_y - 35, 130, 180, 0]
obj_x += 3
obj_y += 2.5
walk_v[0]+=1
print("walk:",walk_v)
action = GrabSim_pb2.Action(scene=self.sceneID, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v)
scene = stub.Do(action)
print("After Walk Position:", [scene.location.X, scene.location.Y, scene.rotation.Yaw])
# 移动到进行操作任务的指定地点
def move_task_area(self,op_type,obj_id=0, release_pos=[247.0, 520.0, 100.0]):
@ -428,7 +432,7 @@ class Scene:
walk_v = release_pos[:-1] + [180, 180, 0]
if release_pos == [340.0, 900.0, 99.0]:
walk_v[2] = 130
print("walk_v:",walk_v)
action = GrabSim_pb2.Action(scene=self.sceneID, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v)
scene = stub.Do(action)
print("After Walk Position:", [scene.location.X, scene.location.Y, scene.rotation.Yaw])
@ -527,7 +531,7 @@ class Scene:
return True
# 执行过程:输出"开始(任务名)" -> 按步骤数执行任务 -> Robot输出成功或失败的对话
def op_task_execute(self,op_type,obj_id=0,release_pos=[240,-140]):
def op_task_execute(self,op_type,obj_id=0,release_pos=[247.0, 520.0, 100.0]):
self.control_robot_action(0, 1, "开始"+self.op_dialog[op_type]) # 开始制作咖啡
if op_type<8: result = self.control_robot_action(op_type, 1)
if op_type>=8 and op_type<=12: result = self.control_robot_action(self.op_typeToAct[op_type][0], self.op_typeToAct[op_type][1])
@ -633,3 +637,16 @@ class Scene:
return False
def cal_distance_to_robot(self,objx,objy,objz):
scene = self.status
ginger_x, ginger_y, ginger_z = [int(scene.location.X), int(scene.location.Y),100]
return math.sqrt((ginger_x - objx) ** 2 + (ginger_y - objy) ** 2 + (ginger_z - objz) ** 2)
def test(self):
walk_v = [247.0, 480.0, 180.0, 180, 0]
action = GrabSim_pb2.Action(scene=self.sceneID, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v)
scene = stub.Do(action)
time.sleep(4)
walk_v = [247.0, 500.0, 0.0, 180, 0]
action = GrabSim_pb2.Action(scene=self.sceneID, action=GrabSim_pb2.Action.ActionType.WalkTo, values=walk_v)
scene = stub.Do(action)

View File

@ -35,6 +35,7 @@ class SceneVLM(Scene):
def _run(self, op_type=10):
# 共17个操作
# "制作咖啡","倒水","夹点心","拖地","擦桌子","开筒灯","搬椅子", # 1-7
# "关筒灯","开大厅灯","关大厅灯","关闭窗帘","打开窗帘", # 8-12
@ -58,27 +59,28 @@ class SceneVLM(Scene):
# 流程测试
# 抓握放置:抓吧台前生成的酸奶,放到抹布桌上
self.gen_obj()
self.move_task_area(16, obj_id=0)
self.op_task_execute(16, obj_id=0)
pos = [340.0, 900.0, 99.0]
self.move_task_area(17, release_pos=pos)
self.op_task_execute(17, release_pos=pos)
# self.move_task_area(16, obj_id=0)
# self.op_task_execute(16, obj_id=0)
# pos = [340.0, 900.0, 99.0]
# self.move_task_area(17, release_pos=pos)
# self.op_task_execute(17, release_pos=pos)
#
# # 做咖啡:做完的咖啡放到水杯桌上
# self.move_task_area(1)
# self.op_task_execute(1)
#
# self.find_obj("CoffeeCup")
#
# self.move_task_area(16, obj_id=275)
# self.op_task_execute(16, obj_id=275)
# pos = [-70.0, 500.0, 107]
# self.move_task_area(17, release_pos=pos)
# self.op_task_execute(17, release_pos=pos)
#
# # 倒水:倒完的水放到旁边桌子上
# self.move_task_area(2)
# self.op_task_execute(2)
# 做咖啡:做完的咖啡放到水杯桌上
self.move_task_area(1)
self.op_task_execute(1)
self.find_obj("CoffeeCup")
self.move_task_area(16, obj_id=275)
self.op_task_execute(16, obj_id=275)
pos = [-70.0, 500.0, 107]
self.move_task_area(17, release_pos=pos)
self.op_task_execute(17, release_pos=pos)
# 倒水:倒完的水放到旁边桌子上
self.move_task_area(2)
self.op_task_execute(2)
#
# self.move_task_area(16, obj_id=190)
# self.op_task_execute(16, obj_id=190)
@ -86,6 +88,8 @@ class SceneVLM(Scene):
# self.move_task_area(17, release_pos=pos)
# self.op_task_execute(17, release_pos=pos)
# self.test()
pass
def _step(self):

View File

@ -16,8 +16,8 @@ from robowaiter.scene.scene import Scene,init_world # TODO: 文件名改成Scen
from robowaiter.scene.scene import Scene
from robowaiter.utils import get_root_path
from robowaiter.algos.navigate.navigate import Navigator
from robowaiter.algos.navigate import test
from robowaiter.algos.navigator.navigate import Navigator
from robowaiter.algos.navigator import test
class SceneVLN(Scene):
def __init__(self, robot):
@ -29,7 +29,7 @@ class SceneVLN(Scene):
def _reset(self):
root_path = get_root_path()
file_name = os.path.join(root_path,'robowaiter/algos/navigate/map_5.pkl')
file_name = os.path.join(root_path,'robowaiter/algos/navigator/map_5.pkl')
with open(file_name, 'rb') as file:
map = pickle.load(file)
@ -37,7 +37,7 @@ class SceneVLN(Scene):
self.state['map']['obj_pos']['Table'] = np.array((-100, 700))
def _run(self):
file_name = '../../algos/navigate/map_5.pkl'
file_name = '../../algos/navigator/map_5.pkl'
if os.path.exists(file_name):
with open(file_name, 'rb') as file:
map = pickle.load(file)