#!/usr/bin/env python3 # -*- encoding: utf-8 -*- import math import os import pickle import matplotlib.pyplot as plt import numpy as np from robowaiter.scene import scene from robowaiter.algos.navigator.dstar_lite import DStarLite, euclidean_distance class Navigator: ''' 导航类 ''' def __init__(self, scene, area_range, map, scale_ratio=5, step_length=120, velocity=250, react_radius=300, dyna_obs_radius=40, vision_radius=math.pi*3/7, max_iteration=100): self.scene = scene self.area_range = area_range # 地图实际坐标范围 xmin, xmax, ymin, ymax self.map = map # 缩放并离散化的地图 array(X,Y) self.scale_ratio = scale_ratio # 地图缩放率s self.step_length = step_length # 步长(单次移动) self.step_num = self.step_length // self.scale_ratio # 单次移动地图格数 self.v = velocity # 速度 self.react_radius = react_radius # robot反应半径 self.dyna_obs_radius = dyna_obs_radius self.vision_radius = vision_radius self.max_iteration = max_iteration # 最大规划迭代次数 self.planner = DStarLite(area_range=area_range, map=map, scale_ratio=scale_ratio, react_radius=react_radius, vision_radius=vision_radius, dyna_obs_radius=dyna_obs_radius) def validate_goal(self, goal): ''' 目标合法化 ''' return self.planner.map2real(self.planner.real2map(goal)) def get_dyna_obs(self, pos, yaw): ''' 获获dyna_obs位置列表 (反应半径内 + 视野范围内) Args: pos: robot位置 yaw: robot朝向 (弧度) vision_radius: 视野半径 (弧度) ''' # obs列表 dyna_obs = [np.array((walker.pose.X, walker.pose.Y)) for walker in self.scene.status.walkers] # 反应半径内的dyna_obs dyna_obs = [obs for obs in dyna_obs if euclidean_distance(obs, pos) < self.react_radius] # 视野范围内的dyna_obs if yaw is not None: vec_dir = np.array((math.cos(yaw), math.sin(yaw))) # robot单位方向向量 # 视野范围120° dyna_obs = [obs for obs in dyna_obs if np.dot(vec_dir, (obs-pos)/np.linalg.norm(obs-pos)) >= math.cos(self.vision_radius)] return dyna_obs @staticmethod def is_reached(pos: (float, float), goal: (float, float), dis_limit=75): ''' 判断是否到达目标 ''' dis = math.hypot(pos[0]-goal[0], pos[1]-goal[1]) # dis = np.linalg.norm(pos - goal) return dis < dis_limit @staticmethod def get_yaw(pos: (float, float), goal: (float, float)): ''' 得到移动方向 (弧度) ''' return math.atan2((goal[1] - pos[1]), (goal[0] - pos[0])) def navigate(self, goal: (float, float), animation=True): ''' 单次导航,直到到达目标 ''' goal = np.array(self.validate_goal(goal)) # 目标合法化 pos = np.array((self.scene.status.location.X, self.scene.status.location.Y)) # 机器人当前: 位置 和 朝向 yaw = None print('------------------navigation_start----------------------') for i in range(self.max_iteration): dyna_obs = self.get_dyna_obs(pos, yaw) # dyna_obs = [np.array((walker.pose.X, walker.pose.Y)) for walker in self.scene.status.walkers] # 周围有dyna_obs则步长根据离dyna_obs的最短距离相应减小 if dyna_obs: min_dist = min([euclidean_distance(obs, pos) for obs in dyna_obs]) step_num = math.floor(self.step_num / (2 + self.dyna_obs_radius/min_dist)) # step_num = self.step_num // 2 else: step_num = self.step_num path = self.planner.planning(pos, goal, dyna_obs) if path: if animation: self.planner.draw_graph(step_num, yaw) # 画出搜索路径 next_step = min(step_num, len(path)) next_pos = path[next_step - 1] print('plan pos:', next_pos, end=' ') yaw = self.get_yaw(pos, next_pos) self.scene.walk_to(next_pos[0], next_pos[1], math.degrees(yaw), velocity=self.v, dis_limit=10) # 拍照片 if self.scene.take_picture: self.scene.get_obstacle_point(self.scene.db, self.scene.status, map_ratio=self.scene.map_ratio) self.planner.path = self.planner.path[next_step - 1:] # 去除已走过的路径 pos = np.array((self.scene.status.location.X, self.scene.status.location.Y)) print('reach pos:', pos) if self.is_reached(pos, goal): break self.planner.reset() # 完成一轮导航,重置变量 if self.is_reached(pos, goal): print('The robot has achieved goal !!') else: print("Navigation failed !!") if __name__ == '__main__': # 根据map计算并保存cost_map file_name = 'map_4.pkl' if os.path.exists(file_name): with open(file_name, 'rb') as file: map = pickle.load(file) scene.init_world(1, 11) scene = scene.Scene(sceneID=0) navigator = Navigator(scene=scene, area_range=[-350, 600, -400, 1450], map=map, scale_ratio=4) navigator.planner.compute_cost_map() file_name = 'costMap_4.pkl' if not os.path.exists(file_name): open(file_name, 'w').close() with open(file_name, 'wb') as file: pickle.dump(navigator.planner.cost_map, file) print('保存成功')