#!/usr/bin/env python3 # -*- encoding: utf-8 -*- import sys import time import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axes_grid1 import make_axes_locatable from scene_utils import control from rrt import RRT from rrt_star import RRTStar from apf import APF class Navigator: ''' 导航类 ''' def __init__(self, scene, area_range, map, scale_ratio=5): self.scene = scene self.area_range = area_range # 地图实际坐标范围 xmin, xmax, ymin, ymax self.map = map # 缩放并离散化的地图 array(X,Y) self.scale_ratio = scale_ratio # 地图缩放率 self.step_length = 50 # 步长(单次移动) self.v = 100 # 速度 self.step_time = self.step_length/self.v # 单步移动时长 self.planner = RRTStar(rand_area=area_range, map=map, scale_ratio=scale_ratio, max_iter=400, search_until_max_iter=True) @staticmethod def is_reached(pos: np.array((float, float)), goal: np.array((float, float)), dis_limit=25): ''' 判断是否到达目标 ''' dis = np.linalg.norm(pos - goal) return dis < dis_limit def reset_goal(self, goal:(float, float)): # TODO: 使目标可达 # 目标在障碍物上:从目标开始方形向外扩展,直到找到可行点 # 目标在地图外面:起点和目标连线最靠近目标的可行点 pass def navigate(self, goal: (float, float), path_smoothing=True, animation=True): pos = np.array((self.scene.status.location.X, self.scene.status.location.Y)) # 机器人当前: 位置 和 朝向 yaw = self.scene.status.rotation.Yaw print('------------------navigation_start----------------------') path = self.planner.planning(pos, goal, path_smoothing, animation) if path: self.planner.draw_graph(final_path=path) # 画出探索过程 for (x, y) in path: self.scene.walk_to(x, y, yaw, velocity=self.v) time.sleep(self.step_time) pos = np.array((self.scene.status.location.X, self.scene.status.location.Y)) self.planner.reset() '''APF势场法暂不可用''' # while not self.is_reached(pos, goal): # # 1. 路径规划 # path = self.planner.planning(pos, goal, path_smoothing, animation) # self.planner.draw_graph(final_path=path) # 画出探索过程 # # # 2. 使用APF导航到路径中的每个waypoint # traj = [(pos[0], pos[1])] # #self.planner.draw_graph(final_path=traj) # 画出探索过程 # for i, waypoint in enumerate(path[1:]): # print('waypoint [', i, ']:', waypoint) # # if (not self.scene.reachable_check(waypoint[0], waypoint[1], yaw)) and self.map[self.planner.real2map(waypoint[0], waypoint[1])] == 0: # # print('error') # while not self.is_reached(pos, waypoint): # # 2.1 计算next_step # pos = np.array((self.scene.status.location.X, self.scene.status.location.Y)) # Pobs = [] # 障碍物(顾客)位置数组 # for walker in self.scene.status.walkers: # Pobs.append((walker.pose.X, walker.pose.Y)) # next_step, _ = APF(Pi=pos, Pg=waypoint, Pobs=Pobs, step_length=self.step_length) # traj.append((next_step[0], next_step[1])) # #self.planner.draw_graph(final_path=traj) # 画出探索过程 # while not self.scene.reachable_check(next_step[0], next_step[1], yaw): # 取中点直到next_step可达 # traj.pop() # next_step = (pos + next_step) / 2 # traj.append((next_step[0], next_step[1])) # #self.planner.draw_graph(final_path=traj) # 画出探索过程 # # 2.2 移动robot # self.scene.walk_to(next_step[0], next_step[1], yaw, velocity=self.v) # # print(self.scene.status.info) # print navigation info # # print(self.scene.status.collision) # time.sleep(self.step_time) # # print(self.scene.status.info) # print navigation info # # print(self.scene.status.collision) # self.planner.reset() if self.is_reached(pos, goal): print('The robot has achieved goal !!') # class Walker: # def __int__(self, scene): # self.scene = scene # # def add_walkers(self, walker_loc, scene_id=0): # """ # 批量添加行人 # Args: # walker_loc: 行人的初始位置列表( 列表元素数量对应行人数量 ) # """ # print('------------------add walker----------------------') # walker_list = [] # for i in range(len(walker_loc)): # # 只有可达的位置才能成功初始化行人,显示unreachable的地方不能初始化行人 # walker_list.append( # GrabSim_pb2.WalkerList.Walker(id=i, pose=GrabSim_pb2.Pose(X=walker_loc[0], Y=walker_loc[1], Yaw=90))) # scene = self.client.AddWalker(GrabSim_pb2.WalkerList(walkers=walker_list, scene=scene_id)) # 生成环境中行人 # # print(self.client.Observe(GrabSim_pb2.SceneID(value=scene_id)).walkers) # 打印行人信息 # return scene # # def control_walkers(self, walker_loc, scene_id=0): # """ # 批量移动行人 # Args: # walker_loc: 行人的终止位置列表 # """ # scene = self.client.Observe(GrabSim_pb2.SceneID(value=scene_id)) # controls = [] # for i in range(len(scene.walkers)): # loc = walker_loc[i] # is_autowalk = False # True: 随机移动; False: 移动到目标点 # pose = GrabSim_pb2.Pose(X=loc[0], Y=loc[1], Yaw=180) # controls.append(GrabSim_pb2.WalkerControls.WControl(id=i, autowalk=is_autowalk, speed=200, pose=pose)) # scene = self.client.ControlWalkers( # GrabSim_pb2.WalkerControls(controls=controls, scene=scene_id)) # 设置行人移动速度和目标点 # # print(self.client.Observe(GrabSim_pb2.SceneID(value=scene_id)).walkers) # 打印行人信息 # time.sleep(10) # return scene # # def remove_walkers(self, ids, scene_id=0): # ''' # 按编号移除行人 # Args: # ids: 待移除的行人编号列表 # ''' # scene = self.client.RemoveWalkers(GrabSim_pb2.RemoveList(IDs=ids, scene=scene_id)) # 按编号移除行人 # # print(self.client.Observe(GrabSim_pb2.SceneID(value=scene_id)).walkers) # 打印行人信息 # time.sleep(2) # return scene # # def clean_walkers(self, scene_id=0): # ''' # 删除环境中所有行人 # ''' # scene = self.client.CleanWalkers(GrabSim_pb2.SceneID(value=scene_id)) # return scene