# 使用curl命令测试返回 # curl -X POST "http://127.0.0.1:8000/v1/chat/completions" \ # -H "Content-Type: application/json" \ # -d "{\"model\": \"chatglm3-6b\", \"messages\": [{\"role\": \"system\", \"content\": \"You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.\"}, {\"role\": \"user\", \"content\": \"你好,给我讲一个故事,大概100字\"}], \"stream\": false, \"max_tokens\": 100, \"temperature\": 0.8, \"top_p\": 0.8}" # 使用Python代码测返回 import requests import json import urllib3 ######################################## # 该文件实现了与大模型的简单通信 ######################################## # 忽略https的安全性警告 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) base_url = "https://45.125.46.134:25344" # 本地部署的地址,或者使用你访问模型的API地址 def create_chat_completion(model, messages, use_stream=False): data = { "model": model, # 模型名称 "messages": messages, # 会话历史 "stream": use_stream, # 是否流式响应 "max_tokens": 100, # 最多生成字数 "temperature": 0.8, # 温度 "top_p": 0.8, # 采样概率 } response = requests.post(f"{base_url}/v1/chat/completions", json=data, stream=use_stream, verify=False) if response.status_code == 200: if use_stream: # 处理流式响应 for line in response.iter_lines(): if line: decoded_line = line.decode('utf-8')[6:] try: response_json = json.loads(decoded_line) content = response_json.get("choices", [{}])[0].get("delta", {}).get("content", "") print(content) except: print("Special Token:", decoded_line) else: # 处理非流式响应 decoded_line = response.json() print(decoded_line) content = decoded_line.get("choices", [{}])[0].get("message", "").get("content", "") print(content) else: print("Error:", response.status_code) return None if __name__ == "__main__": chat_messages = [ { "role": "system", "content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.", }, { "role": "user", "content": "你好,给我讲一个故事,大概100字" } ] create_chat_completion("chatglm3-6b", chat_messages, use_stream=False)