import random import numpy as np import copy import time from OptimalBTExpansionAlgorithm import ControlBT,Leaf,generate_random_state,Action,state_transition,conflict # 本文所提出的完备规划算法 class BTExpAlgorithm: def __init__(self,verbose=False): self.bt = None self.nodes = [] self.traversed = [] self.conditions = [] self.conditions_index = [] self.verbose = verbose # print (self.conditions_list[0]) def clear(self): self.bt = None self.nodes = [] self.traversed = [] self.conditions = [] self.conditions_index = [] # 运行规划算法,从初始状态、目标状态和可用行动,计算行为树self.bt def run_algorithm(self, start, goal, actions): # 初始行为树只包含目标条件 self.bt = ControlBT(type='cond') g_node = Leaf(type='cond', content=goal) self.bt.add_child([g_node]) self.conditions.append(goal) self.nodes.append(g_node) # condition node list # 尝试在初始状态执行行为树 val, obj = self.bt.tick(start) canrun = False if val == 'success' or val == 'running': canrun = True # 循环扩展,直到行为树能够在初始状态运行 while not canrun: index = -1 for i in range(0, len(self.nodes)): if self.nodes[i].content in self.traversed: continue else: c_node = self.nodes[i] index = i break if index == -1: # 树中结点扩展完毕,仍无法运行行为树,返回失败 print('Failure') return False # 根据所选择条件结点扩展子树 subtree = ControlBT(type='?') subtree.add_child([copy.deepcopy(c_node)]) # 子树首先保留所扩展结点 c = c_node.content # 子树所扩展结点对应的条件(一个文字的set) for i in range(0, len(actions)): # 选择符合条件的行动, # print("have action") if not c & ((actions[i].pre | actions[i].add) - actions[i].del_set) <= set(): # print ("pass add") if (c - actions[i].del_set) == c: # print("pass delete") c_attr = (actions[i].pre | c) - actions[i].add valid = True # 这样剪枝存在错误性 # if conflict(c_attr): # continue for j in self.traversed: # 剪枝操作 if j <= c_attr: valid = False break if valid: # print("pass prune") # 构建行动的顺序结构 sequence_structure = ControlBT(type='>') c_attr_node = Leaf(type='cond', content=c_attr) a_node = Leaf(type='act', content=actions[i]) sequence_structure.add_child([c_attr_node, a_node]) # 将顺序结构添加到子树 subtree.add_child([sequence_structure]) self.nodes.append(c_attr_node) # 将原条件结点c_node替换为扩展后子树subtree parent_of_c = c_node.parent parent_of_c.children[0] = subtree # 记录已扩展条件 self.traversed.append(c) # 尝试在初始状态运行行为树 val, obj = self.bt.tick(start) canrun = False if val == 'success' or val == 'running': canrun = True return True def print_solution(self): print("========= XiaoCaoBT ==========") # 树的bfs遍历 nodes_ls = [] nodes_ls.append(self.bt) while len(nodes_ls) != 0: parnode = nodes_ls[0] print("Parrent:", parnode.type) for child in parnode.children: if isinstance(child, Leaf): print("---- Leaf:", child.content) elif isinstance(child, ControlBT): print("---- ControlBT:", child.type) nodes_ls.append(child) print() nodes_ls.pop(0) print("========= XiaoCaoBT ==========\n") if __name__ == '__main__': bt_algo_opt = False # casestudy begin 对应论文的case study,包含三个行动的移动机械臂场景 actions = [] a = Action(name='movebtob') a.pre = {1, 2} a.add = {3} a.del_set = {1, 4} actions.append(a) a = Action(name='moveatob') a.pre = {1} a.add = {5, 2} a.del_set = {1, 6} actions.append(a) a = Action(name='moveatoa') a.pre = {7} a.add = {8, 2} a.del_set = {7, 6} actions.append(a) start = {1, 7, 4, 6} goal = {3} algo = BTExpAlgorithm() algo.clear() algo.run_algorithm(start, goal, list(actions)) state = start steps = 0 val, obj = algo.bt.tick(state) while val != 'success' and val != 'failure': state = state_transition(state, obj) print(obj.name) val, obj = algo.bt.tick(state) if (val == 'failure'): print("bt fails at step", steps) steps += 1 if not goal <= state: print("wrong solution", steps) else: print("right solution", steps) # algo.bt.print_nodes() print(algo.bt.count_size() - 1) algo.clear() # case study end