""" 环境主动探索和记忆 要求输出探索结果(语义地图)对环境重点信息记忆。生成环境的语义拓扑地图,和不少于10个环境物品的识别和位置记忆,可以是图片或者文字或者格式化数据。 """ import json import math import time import matplotlib as mpl import pickle import numpy as np from matplotlib import pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 from sklearn.cluster import DBSCAN from robowaiter.scene.scene import Scene class SceneAEM(Scene): def __init__(self, robot): super().__init__(robot) def _reset(self): pass def _run(self): # 创建一个从白色(1)到灰色(0)的 colormap cur_objs = [] cur_obstacle_world_points = [] objs_name_set = set() visited_obstacle = set() obj_json_data = [] db = DBSCAN(eps=4, min_samples=2) map_ratio = 3 # # 创建一个颜色映射,其中0表示黑色,1表示白色 # cmap = plt.cm.get_cmap('gray') # cmap.set_under('black') # cmap.set_over('white') file_name = '../../proto/map_1.pkl' if os.path.exists(file_name): with open(file_name, 'rb') as file: map = pickle.load(file) print('------------ 自主探索 ------------') # cur_objs = self.semantic_map.navigation_move(cur_objs, 0, 11) # print("物品列表如下:") # print(cur_objs) # cur_pos = [int(scene.location.X), int(scene.location.Y)] # print(reachable([237,490])) # navigation_move([[237,490]], i, map_id) # navigation_test(i,map_id) map_map = np.zeros((math.ceil(950 / map_ratio), math.ceil(1850 / map_ratio))) while True: fig = plt.figure() goal = self.explore(map, 120) # cur_pos 指的是当前机器人的位置,场景中应该也有接口可以获取 if goal is None: break cur_objs, objs_name_set, cur_obstacle_world_points= self.navigation_move(plt, cur_objs, objs_name_set, cur_obstacle_world_points, [[goal[0], goal[1]]], map_ratio, db,0, 11) for point in cur_obstacle_world_points: if point[0] < -350 or point[0] > 600 or point[1] < -400 or point[1] > 1450: continue map_map[math.floor((point[0] + 350) / map_ratio), math.floor((point[1] + 400) / map_ratio)] = 1 visited_obstacle.add((math.floor((point[0] + 350) / map_ratio), math.floor((point[1] + 400) / map_ratio))) # plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower', # extent=(-400 / map_ratio, 1450 / map_ratio, # -350 / map_ratio, 600 / map_ratio)) # 使用imshow函数绘制图像,其中cmap参数设置颜色映射 plt.subplot(2, 1, 2) # 这里的2,1表示总共2行,1列,2表示这个位置是第2个子图 plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower', extent=(-400 / map_ratio, 1450 / map_ratio, -350 / map_ratio, 600 / map_ratio)) # plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower') # plt.axis('off') plt.title("地图构建过程") plt.show() print("------------当前检测到的物品信息--------------") print(cur_objs) time.sleep(1) for i in range(len(cur_objs)): if cur_objs[i].name == "Desk" or cur_objs[i].name == "Chair": obj_json_data.append({"id":f"{i}", "name":f"{cur_objs[i].name}", "location":f"{cur_objs[i].location}", "height":f"{cur_objs[i].location.Z * 2}"}) else: obj_json_data.append( {"id": f"{i}", "name": f"{cur_objs[i].name}", "location": f"{cur_objs[i].location}", "height": f"{cur_objs[i].location.Z}"}) with open('../../proto/objs.json', 'w') as file: json.dump(obj_json_data, file) # for i in range(-350, 600): # for j in range(-400, 1450): # i = (math.floor((i + 350) / map_ratio)) # j = (math.floor((j + 400) / map_ratio)) # if (i, j) not in visited_obstacle: # map_map[i][j] = 1 # plt.imshow(map_map, cmap='binary', alpha=0.5, origin='lower', # extent=(-400 / map_ratio, 1450 / map_ratio, # -350 / map_ratio, 600 / map_ratio)) # plt.axis('off') # plt.show() print("已绘制完成地图!!!") print("------------检测到的所有物品信息--------------") print(obj_json_data) if __name__ == '__main__': import os from robowaiter.robot.robot import Robot robot = Robot() # create task task = SceneAEM(robot) task.reset() task.run()