RoboWaiter/robowaiter/behavior_lib/act/DealChat.py

282 lines
9.8 KiB
Python

import py_trees as ptree
from robowaiter.behavior_lib._base.Act import Act
# from robowaiter.llm_client.multi_rounds_retri import ask_llm, new_history
from robowaiter.llm_client.multi_rounds import ask_llm, new_history
import random
from collections import deque
from translate import Translator
translator = Translator(to_lang="zh")
translator.from_lang = 'en'
translator.to_lang = 'zh-cn'
import spacy
# nlp = spacy.load('en_core_web_lg')
nlp_zh = spacy.load('zh_core_web_lg')
class History(deque):
def __init__(self,scene,customer_name):
super().__init__(maxlen=7)
self.scene = scene
self.customer_name = customer_name
def append(self, __x) -> None:
super().append(__x)
self.scene.ui_func(("new_history",self.customer_name, __x))
class DealChat(Act):
def __init__(self):
super().__init__()
self.chat_history = ""
self.function_success = False
self.func_map = {
"create_sub_task": self.create_sub_task,
"stop_serve": self.stop_serve,
"get_object_info": self.get_object_info,
# "find_location": self.find_location,
"get_number_of_objects": self.get_number_of_objects,
}
def _update(self) -> ptree.common.Status:
# if self.scene.status?
name, sentence = self.scene.state['chat_list'].pop(0)
if name == "Goal":
self.create_sub_task(goal=sentence)
self.scene.ui_func(("new_history", "System", {
"role": "user",
"content": "set goal: " + sentence
}))
return ptree.common.Status.RUNNING
if name not in self.scene.state["chat_history"]:
self.scene.state["chat_history"][name] = History(self.scene,name)
history = self.scene.state["chat_history"][name]
self.scene.state["attention"]["customer"] = name
self.scene.state["serve_state"][name] = {
"last_chat_time": self.scene.time,
"served": False
}
function_call, response = ask_llm(sentence,history,func_map=self.func_map)
self.scene.chat_bubble(response) # 机器人输出对话
return ptree.common.Status.RUNNING
def obj_name_en2zh(self,obj):
obj = obj.replace("_", " ")
obj = translator.translate(obj) #转成中文
print("====obj:=======",obj)
return obj
def create_sub_task(self, **args):
try:
goal = args['goal']
w = goal.split(")")
goal_set = set()
goal_set.add(w[0] + ")")
if len(w) > 1:
for x in w[1:]:
if x != "":
goal_set.add(x[1:] + ")")
self.function_success = True
except:
print("参数解析错误")
self.scene.robot.expand_sub_task_tree(goal_set)
def get_object_info(self,**args):
try:
obj = args['obj']
self.function_success = True
except:
obj = None
print("参数解析错误")
near_object = None
d = {"保温杯": "二号桌子","洗手间":"前门","卫生间":"前门"}
# 先把 obj 转成中文
# 写死的内容
if obj in d.keys():
near_object = d[obj]
near_object = f"{obj}{near_object}附近"
obj_id = 0
else: # 根据相似性查找物品位置
obj = self.obj_name_en2zh(obj)
max_similarity = 0.02
similar_word = None
# 场景中现有物品
cur_things = set()
for item in self.scene.status.objects:
cur_things.add(self.scene.objname_en2zh_dic[item.name])
# obj与现有物品进行相似度匹配 中文的匹配
# print("==========obj==========:",obj)
query_token = nlp_zh(obj)
for w in cur_things:
word_token = nlp_zh(w)
similarity = query_token.similarity(word_token)
# print("similarity:", similarity, w)
if similarity > max_similarity:
max_similarity = similarity
similar_word = w
if similar_word:
print("max_similarity:",max_similarity,"similar_word:",similar_word)
if similar_word: # 存在同义词说明场景中存在该物品
# near_object = random.choices(list(cur_things), k=5) # 返回场景中的5个物品
# 找到距离最近的物品
similar_word_en = self.scene.objname_zh2en_dic[similar_word]
obj_dict = self.scene.status.objects
if len(obj_dict)!=0:
for id, obji in enumerate(obj_dict):
if obji.name == similar_word_en:
obj_info = obj_dict[id]
objx,objy,objz = obj_info.location.X, obj_info.location.Y, obj_info.location.Z
break
# 获取离它最近的物品
# min_dis = float('inf')
# obj_id = -1
# near_object = None
# for id,obji in enumerate(obj_dict):
# if obji.name != similar_word_en:
# obj_info = obj_dict[id]
# dis = self.scene.getDistanc3D((obj_info.location.X, obj_info.location.Y, obj_info.location.Z),(objx,objy,objz))
# if dis<min_dis:
# min_dis = dis
# obj_id = id
# near_object = obji.name
#
# near_object = f"{obj}在{self.scene.objname_en2zh_dic[near_object]}附近"
# 直接输出在哪个桌子上
min_dis = float('inf')
table_name = -1
near_object = None
for key,values in self.place_have_obj_xyz_dic.items():
dis = self.scene.getDistanc3D(values,(objx, objy, objz))
if dis<min_dis:
min_dis = dis
table_name = key
# near_object = f"{obj}在{self.place_en2zh_name[table_name]}附近"
# near_object = self.place_en2zh_name[table_name]
near_object = obj + "" + self.place_en2zh_name[table_name] +"附近"
# near_object = self.place_en2zh_name[table_name]
# near_object = "在" + self.place_en2zh_name[table_name] + "附近"
return near_object
# def find_location(self, **args):
# try:
# location = args['obj']
# self.function_success = True
# except:
# obj = None
# print("参数解析错误")
#
# d = {"保温杯": "二号桌子"}
# if location in d.keys():
# result = d[obj]
# else:
# result = "None"
# return result
# # 用户咨询的地点
# query_token = nlp(location)
# max_similarity = 0
# similar_word = None
# # 到自己维护的地点列表中找同义词
# for w in self.scene.all_loc_en:
# word_token = nlp(w)
# similarity = query_token.similarity(word_token)
# if similarity > max_similarity:
# max_similarity = similarity
# similar_word = w
# print("similarity:", max_similarity, "similar_word:", similar_word)
# # 存在同义词说明客户咨询的地点有效
# if similar_word:
# mp = list(self.scene.loc_map_en[similar_word])
# near_location = random.choice(mp)
# return near_location
def get_number_of_objects(self,**args):
try:
obj = args['obj']
self.function_success = True
obj = self.obj_name_en2zh(obj)
except:
obj = None
print("参数解析错误")
# 找到最近的中文
max_similarity = 0.02
similar_word = None
# obj 是中文
# obj = translator.translate(obj) #转成中文
# print("obj:",obj)
query_token = nlp_zh(obj)
for real_obj_name in self.scene.objname_zh2en_dic.keys(): # 在中文名字里面找
word_token = nlp_zh(real_obj_name)
similarity = query_token.similarity(word_token)
# print("similarity:",similarity,real_obj_name)
if similarity > max_similarity:
max_similarity = similarity
similar_word = real_obj_name
if similar_word:
print("max_similarity:",max_similarity,"similar_word:",similar_word)
count = 0
similar_word_en = self.scene.objname_zh2en_dic[similar_word]
if similar_word_en != "Customer":
for item in self.scene.status.objects:
if item.name == similar_word_en:
count+=1
else:
count = len(self.scene.status.walkers)
# obj 是英文
# query_token = nlp(obj)
# for real_obj_name in self.scene.objname_en2zh_dic.keys(): # 在中文名字里面找
# word_token = nlp(real_obj_name)
# similarity = query_token.similarity(word_token)
# print("similarity:",similarity,real_obj_name)
# if similarity > max_similarity:
# max_similarity = similarity
# similar_word = real_obj_name
# if similar_word:
# print("max_similarity:",max_similarity,"similar_word:",similar_word)
return ""+str(count)+""+obj
def stop_serve(self,**args):
customer = self.scene.state["attention"]["customer"]
serve_state = self.scene.state["serve_state"][customer]
serve_state['served'] = True
return "好的"