RoboWaiter/robowaiter/llm_client/passage_retrieval3.py

312 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import argparse
import json
import pickle
import time
import glob
import numpy as np
import torch
from robowaiter.algos.retrieval.retrieval_lm.src.slurm import init_distributed_mode
from robowaiter.algos.retrieval.retrieval_lm.src.normalize_text import normalize
from robowaiter.algos.retrieval.retrieval_lm.src.contriever import load_retriever
from robowaiter.algos.retrieval.retrieval_lm.src.index import Indexer
from robowaiter.algos.retrieval.retrieval_lm.src.data import load_passages
from robowaiter.algos.retrieval.retrieval_lm.src.evaluation import calculate_matches
import warnings
warnings.filterwarnings('ignore')
os.environ["TOKENIZERS_PARALLELISM"] = "true"
def embed_queries(args, queries, model, tokenizer):
model.eval()
embeddings, batch_question = [], []
with torch.no_grad():
for k, q in enumerate(queries):
if args.lowercase:
q = q.lower()
if args.normalize_text:
q = normalize(q)
batch_question.append(q)
if len(batch_question) == args.per_gpu_batch_size or k == len(queries) - 1:
encoded_batch = tokenizer.batch_encode_plus(
batch_question,
return_tensors="pt",
max_length=args.question_maxlength,
padding=True,
truncation=True,
)
encoded_batch = {k: v.cuda() for k, v in encoded_batch.items()}
output = model(**encoded_batch)
embeddings.append(output.cpu())
batch_question = []
embeddings = torch.cat(embeddings, dim=0)
#print(f"Questions embeddings shape: {embeddings.size()}")
return embeddings.numpy()
def index_encoded_data(index, embedding_files, indexing_batch_size):
allids = []
allembeddings = np.array([])
for i, file_path in enumerate(embedding_files):
#print(f"Loading file {file_path}")
with open(file_path, "rb") as fin:
ids, embeddings = pickle.load(fin)
allembeddings = np.vstack((allembeddings, embeddings)) if allembeddings.size else embeddings
allids.extend(ids)
while allembeddings.shape[0] > indexing_batch_size:
allembeddings, allids = add_embeddings(index, allembeddings, allids, indexing_batch_size)
while allembeddings.shape[0] > 0:
allembeddings, allids = add_embeddings(index, allembeddings, allids, indexing_batch_size)
#print("Data indexing completed.")
def add_embeddings(index, embeddings, ids, indexing_batch_size):
end_idx = min(indexing_batch_size, embeddings.shape[0])
ids_toadd = ids[:end_idx]
embeddings_toadd = embeddings[:end_idx]
ids = ids[end_idx:]
embeddings = embeddings[end_idx:]
index.index_data(ids_toadd, embeddings_toadd)
return embeddings, ids
def validate(data, workers_num):
match_stats = calculate_matches(data, workers_num)
top_k_hits = match_stats.top_k_hits
# print("Validation results: top k documents hits %s", top_k_hits)
top_k_hits = [v / len(data) for v in top_k_hits]
message = ""
for k in [5, 10, 20, 100]:
if k <= len(top_k_hits):
message += f"R@{k}: {top_k_hits[k-1]} "
#print(message)
return match_stats.questions_doc_hits
def add_passages(data, passages, top_passages_and_scores):
# add passages to original data
merged_data = []
assert len(data) == len(top_passages_and_scores)
for i, d in enumerate(data):
results_and_scores = top_passages_and_scores[i]
#print(passages[2393])
docs = [passages[int(doc_id)] for doc_id in results_and_scores[0]]
scores = [str(score) for score in results_and_scores[1]]
ctxs_num = len(docs)
d["ctxs"] = [
{
"id": results_and_scores[0][c],
"title": docs[c]["title"],
"text": docs[c]["text"],
"score": scores[c],
}
for c in range(ctxs_num)
]
def add_hasanswer(data, hasanswer):
# add hasanswer to data
for i, ex in enumerate(data):
for k, d in enumerate(ex["ctxs"]):
d["hasanswer"] = hasanswer[i][k]
# def load_data(data_path):
# if data_path.endswith(".json"):
# with open(data_path, "r",encoding='utf-8') as fin:
# data = json.load(fin)
# elif data_path.endswith(".jsonl"):
# data = []
# with open(data_path, "r",encoding='utf-8') as fin:
# for k, example in enumerate(fin):
# example = json.loads(example)
# data.append(example)
# print("data:",data)
# return data
def load_data(data_path):
if data_path.endswith(".json"):
with open(data_path, "r",encoding='utf-8') as fin:
data = json.load(fin)
elif data_path.endswith(".jsonl"):
data = []
with open(data_path, "r",encoding='utf-8') as fin:
for k, example in enumerate(fin):
example = json.loads(example)
#print("example:",example)
data.append(example)
return data
def test(args):#path为query
# args = {"model_name_or_path":"contriever-msmarco","passages":"train_robot.jsonl"\
# passages_embeddings = "robot_embeddings/*"
# data = "test_robot.jsonl"
# output_dir = "robot_result"
# n_docs = 1
#print(f"Loading model from: {args.model_name_or_path}")
model, tokenizer, _ = load_retriever(args.model_name_or_path)
model.eval()
model = model.cuda()
if not args.no_fp16:
model = model.half()
index = Indexer(args.projection_size, args.n_subquantizers, args.n_bits)
# index all passages
input_paths = glob.glob(args.passages_embeddings)
input_paths = sorted(input_paths)
embeddings_dir = os.path.dirname(input_paths[0])
index_path = os.path.join(embeddings_dir, "index.faiss")
if args.save_or_load_index and os.path.exists(index_path):
index.deserialize_from(embeddings_dir)
else:
#print(f"Indexing passages from files {input_paths}")
start_time_indexing = time.time()
index_encoded_data(index, input_paths, args.indexing_batch_size)
#print(f"Indexing time: {time.time()-start_time_indexing:.1f} s.")
if args.save_or_load_index:
index.serialize(embeddings_dir)
# load passages
passages = load_passages(args.passages)
passage_id_map = {x["id"]: x for x in passages}
data_paths = glob.glob(args.data)
alldata = []
for path in data_paths:
data = load_data(path)
#print("data:",data)
output_path = os.path.join(args.output_dir, os.path.basename(path))
queries = [ex["question"] for ex in data]
questions_embedding = embed_queries(args, queries, model, tokenizer)
# get top k results
start_time_retrieval = time.time()
top_ids_and_scores = index.search_knn(questions_embedding, args.n_docs)
#print(f"Search time: {time.time()-start_time_retrieval:.1f} s.")
add_passages(data, passage_id_map, top_ids_and_scores)
#hasanswer = validate(data, args.validation_workers)
#add_hasanswer(data, hasanswer)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
ret_list = []
with open(output_path, "w",encoding='utf-8') as fout:
for ex in data:
json.dump(ex, fout, ensure_ascii=False)
ret_list.append(ex)
fout.write("\n")
return ret_list
#print(f"Saved results to {output_path}")
#将query写到test_robot.jsonl
def get_json(query):
dic = {"id": 1, "question": query}
with open('test_robot.jsonl', "w", encoding='utf-8') as fout:
json.dump(dic, fout, ensure_ascii=False)
def get_answer():
with open('robot_result\\test_robot.jsonl', "w", encoding='utf-8') as fin:
for k, example in enumerate(fin):
example = json.loads(example)
answer = example["ctxs"][0]["text"]
score = example["ctxs"][0]["score"]
return score, answer
def retri(query):
get_json(query)
parser = argparse.ArgumentParser()
parser.add_argument(
"--data",
#required=True,
type=str,
default='test_robot.jsonl',
help=".json file containing question and answers, similar format to reader data",
)
# parser.add_argument("--passages", type=str, default='C:/Users/huangyu/Desktop/RoboWaiter-main/RoboWaiter-main/train_robot.jsonl', help="Path to passages (.tsv file)")
# parser.add_argument("--passages_embeddings", type=str, default='C:/Users/huangyu/Desktop/RoboWaiter-main/RoboWaiter-main/robot_embeddings/*', help="Glob path to encoded passages")
parser.add_argument("--passages", type=str, default='D:/AAAAA_EI_LLM/UnrealProject/RobotProject/Plugins/RoboWaiter/robowaiter/llm_client/train_robot.jsonl', help="Path to passages (.tsv file)")
parser.add_argument("--passages_embeddings", type=str, default='D:/AAAAA_EI_LLM/UnrealProject/RobotProject/Plugins/RoboWaiter/robowaiter/algos/retrieval/robot_embeddings/*', help="Glob path to encoded passages")
parser.add_argument(
"--output_dir", type=str, default='robot_result', help="Results are written to outputdir with data suffix"
)
parser.add_argument("--n_docs", type=int, default=5, help="Number of documents to retrieve per questions") #可以改这个参数返回前n_docs个检索结果
parser.add_argument(
"--validation_workers", type=int, default=32, help="Number of parallel processes to validate results"
)
parser.add_argument("--per_gpu_batch_size", type=int, default=64, help="Batch size for question encoding")
parser.add_argument(
"--save_or_load_index", action="store_true", help="If enabled, save index and load index if it exists"
)
# parser.add_argument(
# "--model_name_or_path", type=str, default='C:\\Users\\huangyu\\Desktop\\RoboWaiter-main\\RoboWaiter-main\\contriever-msmarco',help="path to directory containing model weights and config file"
# )
parser.add_argument(
"--model_name_or_path", type=str, default='D:\\AAAAA_EI_LLM\\UnrealProject\\RobotProject\\Plugins\\RoboWaiter\\robowaiter\\algos\\retrieval\\contriever-msmarco',help="path to directory containing model weights and config file"
)
parser.add_argument("--no_fp16", action="store_true", help="inference in fp32")
parser.add_argument("--question_maxlength", type=int, default=512, help="Maximum number of tokens in a question")
parser.add_argument(
"--indexing_batch_size", type=int, default=1000000, help="Batch size of the number of passages indexed"
)
parser.add_argument("--projection_size", type=int, default=768)
parser.add_argument(
"--n_subquantizers",
type=int,
default=0,
help="Number of subquantizer used for vector quantization, if 0 flat index is used",
)
parser.add_argument("--n_bits", type=int, default=8, help="Number of bits per subquantizer")
parser.add_argument("--lang", nargs="+")
parser.add_argument("--dataset", type=str, default="none")
parser.add_argument("--lowercase", action="store_true", help="lowercase text before encoding")
parser.add_argument("--normalize_text", action="store_true", help="normalize text")
args = parser.parse_args()
init_distributed_mode(args)
#print(args)
ret = test(args)
#print(ret)
return ret[0]
# example = ret[0]
# answer = example["ctxs"][0]["text"]
# score = example["ctxs"][0]["score"]
# return score, answer
if __name__ == "__main__":
# query = "请你拿一下软饮料到第三张桌子位置。"
# score,answer = retri(query)
# print(score,answer)
query = "你能把空调打开一下吗?"
all_ret = retri(query)
for i,example in enumerate(all_ret["ctxs"]):
answer = example["text"]
score = example["score"]
id = example["id"]
print(i,answer,score," id=",id)