151 lines
4.5 KiB
Python
151 lines
4.5 KiB
Python
import py_trees as ptree
|
|
from robowaiter.behavior_lib._base.Act import Act
|
|
|
|
from robowaiter.llm_client.multi_rounds import ask_llm, new_history
|
|
import random
|
|
|
|
|
|
# import spacy
|
|
# nlp = spacy.load('en_core_web_lg')
|
|
|
|
|
|
class DealChat(Act):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.chat_history = ""
|
|
self.function_success = False
|
|
self.func_map = {
|
|
"create_sub_task": self.create_sub_task,
|
|
"stop_serve": self.stop_serve,
|
|
"get_object_info": self.get_object_info,
|
|
"find_location": self.find_location
|
|
}
|
|
|
|
def _update(self) -> ptree.common.Status:
|
|
# if self.scene.status?
|
|
name, sentence = self.scene.state['chat_list'].pop(0)
|
|
|
|
if name == "Goal":
|
|
self.create_sub_task(goal=sentence)
|
|
return ptree.common.Status.RUNNING
|
|
|
|
if name not in self.scene.state["chat_history"]:
|
|
self.scene.state["chat_history"][name] = new_history()
|
|
|
|
history = self.scene.state["chat_history"][name]
|
|
self.scene.state["attention"]["customer"] = name
|
|
self.scene.state["serve_state"][name] = {
|
|
"last_chat_time": self.scene.time,
|
|
"served": False
|
|
}
|
|
|
|
function_call, response = ask_llm(sentence,history,func_map=self.func_map)
|
|
|
|
|
|
self.scene.chat_bubble(response) # 机器人输出对话
|
|
|
|
return ptree.common.Status.RUNNING
|
|
|
|
|
|
def create_sub_task(self, **args):
|
|
try:
|
|
goal = args['goal']
|
|
|
|
w = goal.split(")")
|
|
goal_set = set()
|
|
goal_set.add(w[0] + ")")
|
|
if len(w) > 1:
|
|
for x in w[1:]:
|
|
if x != "":
|
|
goal_set.add(x[1:] + ")")
|
|
self.function_success = True
|
|
except:
|
|
print("参数解析错误")
|
|
|
|
self.scene.robot.expand_sub_task_tree(goal_set)
|
|
|
|
|
|
def get_object_info(self,**args):
|
|
try:
|
|
obj = args['obj']
|
|
|
|
self.function_success = True
|
|
except:
|
|
obj = None
|
|
print("参数解析错误")
|
|
|
|
d = {"保温杯": "二号桌子"}
|
|
if obj in d.keys():
|
|
result = d[obj]
|
|
else:
|
|
result = "None"
|
|
return result
|
|
|
|
# max_similarity = 0.02
|
|
# similar_word = None
|
|
#
|
|
# # 场景中现有物品
|
|
# cur_things = set()
|
|
# for item in self.scene.status.objects:
|
|
# cur_things.add(item.name)
|
|
# # obj与现有物品进行相似度匹配
|
|
# query_token = nlp(obj)
|
|
# for w in cur_things:
|
|
# word_token = nlp(w)
|
|
# similarity = query_token.similarity(word_token)
|
|
# if similarity > max_similarity:
|
|
# max_similarity = similarity
|
|
# similar_word = w
|
|
# if similar_word:
|
|
# print("max_similarity:",max_similarity,"similar_word:",similar_word)
|
|
#
|
|
# if similar_word: # 存在同义词说明场景中存在该物品
|
|
# near_object = random.choices(list(cur_things), k=5) # 返回场景中的5个物品
|
|
#
|
|
# if obj == "洗手间":
|
|
# near_object = "Door"
|
|
#
|
|
# return near_object
|
|
#
|
|
def find_location(self, **args):
|
|
try:
|
|
location = args['obj']
|
|
self.function_success = True
|
|
except:
|
|
obj = None
|
|
print("参数解析错误")
|
|
|
|
d = {"保温杯": "二号桌子"}
|
|
if location in d.keys():
|
|
result = d[obj]
|
|
else:
|
|
result = "None"
|
|
return result
|
|
# 用户咨询的地点
|
|
# query_token = nlp(location)
|
|
# max_similarity = 0
|
|
# similar_word = None
|
|
# # 到自己维护的地点列表中找同义词
|
|
# for w in self.scene.all_loc_en:
|
|
# word_token = nlp(w)
|
|
# similarity = query_token.similarity(word_token)
|
|
# if similarity > max_similarity:
|
|
# max_similarity = similarity
|
|
# similar_word = w
|
|
# print("similarity:", max_similarity, "similar_word:", similar_word)
|
|
# # 存在同义词说明客户咨询的地点有效
|
|
# if similar_word:
|
|
# mp = list(self.scene.loc_map_en[similar_word])
|
|
# near_location = random.choice(mp)
|
|
# return near_location
|
|
|
|
def stop_serve(self,**args):
|
|
customer = self.scene.state["attention"]["customer"]
|
|
serve_state = self.scene.state["serve_state"][customer]
|
|
|
|
serve_state['served'] = True
|
|
|
|
return "好的"
|
|
|
|
|