105 lines
3.4 KiB
Python
105 lines
3.4 KiB
Python
|
|
from EXP.exp_tools import collect_action_nodes,get_start,BTTest,goal_transfer_str,collect_cond_nodes,BTTest_easy_medium_hard,collect_action_nodes_multiple_num
|
|
import copy
|
|
import random
|
|
import re
|
|
from dataset.data_process_check import format_check,word_correct,goal_transfer_ls_set
|
|
import time
|
|
import numpy as np
|
|
seed = 1
|
|
random.seed(seed)
|
|
|
|
multiple_num= 5
|
|
iters_times= 10
|
|
# iter_action_ls=[]
|
|
iter_action_ls = collect_action_nodes(random,multiple_num,iters_times)
|
|
|
|
|
|
# for act in action_list:
|
|
# print(act.name,act.cost)
|
|
start_robowaiter = get_start()
|
|
# 计算state总数
|
|
state_num, vaild_state_num= collect_cond_nodes()
|
|
|
|
easy_data_set_file = "../dataset/easy_instr_goal.txt"
|
|
medium_data_set_file = "../dataset/medium_instr_goal.txt"
|
|
hard_data_set_file = "../dataset/hard_instr_goal.txt"
|
|
with open(easy_data_set_file, 'r', encoding="utf-8") as f:
|
|
easy_data_set = f.read().strip()
|
|
with open(medium_data_set_file, 'r', encoding="utf-8") as f:
|
|
medium_data_set = f.read().strip()
|
|
with open(hard_data_set_file, 'r', encoding="utf-8") as f:
|
|
hard_data_set = f.read().strip()
|
|
dataset_ls = [easy_data_set,medium_data_set,hard_data_set]
|
|
parm_difficule_ls = ['Easy','Medium','Hard']
|
|
|
|
|
|
# dataset_ls = [hard_data_set]
|
|
# parm_difficule_ls = ['Hard']
|
|
|
|
|
|
all_result=[]
|
|
|
|
for index, dataset in enumerate(dataset_ls):
|
|
|
|
print(f"\n----------- {parm_difficule_ls[index]} ----------\n")
|
|
|
|
sections = re.split(r'\n\s*\n', dataset)
|
|
outputs_list = [[] for _ in range(len(sections))]
|
|
goal_set_ls = []
|
|
for i, s in enumerate(sections):
|
|
x, y = s.strip().splitlines()
|
|
x = x.strip()
|
|
y = y.strip().replace("Goal: ", "")
|
|
goal_set_ls.append(y)
|
|
goal_states = goal_set_ls
|
|
|
|
|
|
b_condticks_ls=[]
|
|
obtea_condticks_ls=[]
|
|
b_cost_ls=[]
|
|
obtea_cost_ls=[]
|
|
|
|
for iter in range(iters_times):
|
|
action_list = iter_action_ls[iter]
|
|
|
|
print("meta states num: ",state_num)
|
|
print("states num: ",vaild_state_num)
|
|
print("act num: ",len(action_list))
|
|
|
|
|
|
obt_result = BTTest_easy_medium_hard(bt_algo_opt=True, goal_states=goal_states,action_list=action_list,start_robowaiter=start_robowaiter)
|
|
# print("\n")
|
|
# 对比
|
|
baseline_result = BTTest_easy_medium_hard(bt_algo_opt=False, goal_states=goal_states,action_list=action_list,start_robowaiter=start_robowaiter)
|
|
|
|
obtea_condticks_ls.append(obt_result[4])
|
|
b_condticks_ls.append(baseline_result[4])
|
|
|
|
obtea_cost_ls.append(obt_result[5])
|
|
b_cost_ls.append(baseline_result[5])
|
|
|
|
|
|
|
|
param_ls=[parm_difficule_ls[index]]
|
|
a_result=[]
|
|
a_result.extend(param_ls)
|
|
a_result.extend([round(np.mean(b_condticks_ls), 1),round(np.mean(obtea_condticks_ls), 1),round(np.mean(b_cost_ls), 1),round(np.mean(obtea_cost_ls), 1)])
|
|
all_result.append(a_result)
|
|
|
|
|
|
print(all_result)
|
|
|
|
# import pandas as pd
|
|
# df = pd.DataFrame(all_result, columns=[
|
|
# 'difficult',
|
|
# 'btalgorithm',
|
|
# 'tree_size_avg', 'tree_size_std',
|
|
# 'ticks_avg', 'ticks_std',
|
|
# 'cost_avg', 'cost_std',
|
|
# 'plan_time_avg', 'plan_time_std', 'plan_time_total'])
|
|
#
|
|
# time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()).replace("-","").replace(":","")
|
|
# csv_file_path = 'cage_bt_result_='+time_str+'.csv'
|
|
# df.to_csv(csv_file_path, index=True)
|
|
# print("CSV文件已生成:", csv_file_path) |