RoboWaiter/BTExpansionCode/EXP/behavior_tree/obtea/tools.py

168 lines
5.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from tabulate import tabulate
import numpy as np
import random
from robowaiter.behavior_tree.obtea.OptimalBTExpansionAlgorithm import Action,OptBTExpAlgorithm
import time
def print_action_data_table(goal,start,actions):
data = []
for a in actions:
data.append([a.name , a.pre , a.add , a.del_set , a.cost])
data.append(["Goal" ,goal ," " ,"Start" ,start])
print(tabulate(data, headers=["Name", "Pre", "Add" ,"Del" ,"Cost"], tablefmt="fancy_grid")) # grid plain simple github fancy_grid
# 从状态随机生成一个行动
def generate_from_state(act,state,num):
for i in range(0,num):
if i in state:
if random.random() >0.5:
act.pre.add(i)
if random.random() >0.5:
act.del_set.add(i)
continue
if random.random() > 0.5:
act.add.add(i)
continue
if random.random() >0.5:
act.del_set.add(i)
def print_action(act):
print (act.pre)
print(act.add)
print(act.del_set)
#行为树测试代码
def BTTest(seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
print("============= BT Test ==============")
random.seed(seed)
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
literals_num=literals_num
depth = depth
iters= iters
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
# 实验1000次
for count in range (total_count):
action_num = 1
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
states = []
actions = []
start = generate_random_state(literals_num)
state = start
states.append(state)
#print (state)
for i in range (0,depth):
a = Action()
generate_from_state(a,state,literals_num)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
#print(state)
goal = states[-1]
state = start
for i in range (0,iters):
a = Action()
generate_from_state(a,state,literals_num)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states,1)[0]
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
algo = OptBTExpAlgorithm()
#algo = Weakalgorithm()
start_time = time.time()
# print_action_data_table(goal, start, list(actions))
if algo.run_algorithm(start, goal, actions):#运行算法规划后行为树为algo.bt
total_tree_size.append( algo.bt.count_size()-1)
# algo.print_solution() # 打印行为树
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
val, obj = algo.bt.tick(state)#tick行为树obj为所运行的行动
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj = algo.bt.tick(state)
if(val == 'failure'):
print("bt fails at step",steps)
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
print ("success:",success_count,"failure:",failure_count)#算法成功和失败次数
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
print ("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
print ("Average number of states:",np.mean(total_state_num))#1000次问题的平均状态数
print ("Average number of actions",np.mean(total_action_num))#1000次问题的平均行动数
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
print("============ End BT Test ===========")
# xiao cai
# success: 1000 failure: 0
# Total Tree Size: mean= 35.303 std= 29.71336526001515
# Total Steps Num: mean= 1.898 std= 0.970844240101644
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
# our start
# success: 1000 failure: 0
# Total Tree Size: mean= 17.945 std= 12.841997192488865
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
# our
# success: 1000 failure: 0
# Total Tree Size: mean= 48.764 std= 20.503626574406358
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 3.3271877765655518 0.0033271877765655516