544 lines
20 KiB
Python
544 lines
20 KiB
Python
#!/usr/bin/env python3
|
||
# -*- encoding: utf-8 -*-
|
||
# enconding = utf8
|
||
import json
|
||
import string
|
||
import sys
|
||
import time
|
||
import grpc
|
||
from sklearn.cluster import DBSCAN
|
||
|
||
sys.path.append('./')
|
||
sys.path.append('../')
|
||
|
||
import matplotlib.pyplot as plt
|
||
import matplotlib.patches as patches
|
||
import numpy as np
|
||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||
|
||
import GrabSim_pb2_grpc
|
||
import GrabSim_pb2
|
||
|
||
channel = grpc.insecure_channel('localhost:30001', options=[
|
||
('grpc.max_send_message_length', 1024 * 1024 * 1024),
|
||
('grpc.max_receive_message_length', 1024 * 1024 * 1024)
|
||
])
|
||
|
||
sim_client = GrabSim_pb2_grpc.GrabSimStub(channel)
|
||
objects_dic = {}
|
||
obstacle_objs_id = [114, 115, 122, 96, 102, 83, 121, 105, 108, 89, 100, 90,
|
||
111, 103, 95, 92, 76, 113, 101, 29, 112, 87, 109, 98,
|
||
106, 120, 97, 86, 104, 78, 85, 81, 82, 84, 91, 93, 94,
|
||
99, 107, 116, 117, 118, 119, 255]
|
||
not_key_objs_id = {255,254,253,107,81}
|
||
|
||
'''
|
||
初始化,卸载已经加载的关卡,清除所有机器人
|
||
'''
|
||
|
||
|
||
def Init():
|
||
sim_client.Init(GrabSim_pb2.NUL())
|
||
|
||
|
||
'''
|
||
获取当前可加载的地图信息(地图名字、地图尺寸)
|
||
'''
|
||
|
||
|
||
def AcquireAvailableMaps():
|
||
AvailableMaps = sim_client.AcquireAvailableMaps(GrabSim_pb2.NUL())
|
||
print(AvailableMaps)
|
||
|
||
|
||
'''
|
||
1、根据mapID加载指定地图
|
||
2、如果scene_num>1,则根据地图尺寸偏移后加载多个相同地图
|
||
3、这样就可以在一个关卡中训练多个地图
|
||
'''
|
||
|
||
|
||
def SetWorld(map_id=0, scene_num=1):
|
||
print('------------------SetWorld----------------------')
|
||
world = sim_client.SetWorld(GrabSim_pb2.BatchMap(count=scene_num, mapID=map_id))
|
||
|
||
|
||
'''
|
||
返回场景的状态信息
|
||
1、返回机器人的位置和旋转
|
||
2、返回各个关节的名字和旋转
|
||
3、返回场景中标记的物品信息(名字、类型、位置、旋转)
|
||
4、返回场景中行人的信息(名字、位置、旋转、速度)
|
||
5、返回机器人手指和双臂的碰撞信息
|
||
'''
|
||
|
||
|
||
def Observe(scene_id=0):
|
||
print('------------------show_env_info----------------------')
|
||
scene = sim_client.Observe(GrabSim_pb2.SceneID(value=scene_id))
|
||
print(
|
||
f"location:{[scene.location]}, rotation:{scene.rotation}\n",
|
||
f"joints number:{len(scene.joints)}, fingers number:{len(scene.fingers)}\n",
|
||
f"objects number: {len(scene.objects)}, walkers number: {len(scene.walkers)}\n"
|
||
f"timestep:{scene.timestep}, timestamp:{scene.timestamp}\n"
|
||
f"collision:{scene.collision}, info:{scene.info}")
|
||
return scene
|
||
|
||
|
||
'''
|
||
重置场景
|
||
1、重置桌子的宽度和高度
|
||
2、清除生成的行人和物品
|
||
3、重置关节角度、位置旋转
|
||
4、清除碰撞信息
|
||
5、重置场景中标记的物品
|
||
'''
|
||
|
||
|
||
def Reset(scene_id=0):
|
||
print('------------------Reset----------------------')
|
||
scene = sim_client.Reset(GrabSim_pb2.ResetParams(scene=scene_id))
|
||
print(scene)
|
||
|
||
# 如果场景支持调整桌子
|
||
# sim_client.Reset(GrabSim_pb2.ResetParams(scene = scene_id, adjust = True, height = 100.0, width = 100.0))"
|
||
|
||
|
||
'''
|
||
根据传入的部位名字,获取相机数据
|
||
'''
|
||
|
||
|
||
def get_camera(part, scene_id=0):
|
||
print('------------------get_camera----------------------')
|
||
action = GrabSim_pb2.CameraList(cameras=part, scene=scene_id)
|
||
return sim_client.Capture(action)
|
||
|
||
|
||
'''
|
||
显示相机画面
|
||
'''
|
||
|
||
|
||
def show_image(img_data, scene):
|
||
print('------------------show_image----------------------')
|
||
im = img_data.images[0]
|
||
|
||
# 相机内参矩阵
|
||
in_matrix = np.array(
|
||
[[im.parameters.fx, 0, im.parameters.cx], [0, im.parameters.fy, im.parameters.cy], [0, 0, 1]])
|
||
|
||
# 相机外参矩阵
|
||
out_matrix = np.array(im.parameters.matrix).reshape((4, 4))
|
||
|
||
# # 旋转矩阵
|
||
# rotation_matrix = out_matrix[0:3, 0:3]
|
||
#
|
||
# # 平移矩阵
|
||
# translation_matrix = out_matrix[0:3, -1].reshape(3, 1)
|
||
|
||
# 像素坐标
|
||
# pixel_point = np.array([403, 212, 1]).reshape(3, 1)
|
||
pixel_x = 404
|
||
pixel_y = 212
|
||
depth = 369
|
||
|
||
# 将像素坐标转换为归一化设备坐标
|
||
normalized_x = (pixel_x - im.parameters.cx) / im.parameters.fx
|
||
normalized_y = (pixel_y - im.parameters.cy) / im.parameters.fy
|
||
|
||
# 将归一化设备坐标和深度值转换为相机坐标
|
||
camera_x = normalized_x * depth
|
||
camera_y = normalized_y * depth
|
||
camera_z = depth
|
||
|
||
# 构建相机坐标向量
|
||
camera_coordinates = np.array([camera_x, camera_y, camera_z, 1])
|
||
# print("物体相对相机坐标的齐次坐标: ", camera_coordinates)
|
||
|
||
# 将相机坐标转换为机器人底盘坐标
|
||
robot_coordinates = np.dot(out_matrix, camera_coordinates)[:3]
|
||
# print("物体的相对底盘坐标为:", robot_coordinates)
|
||
|
||
# 将物体相对机器人底盘坐标转为齐次坐标
|
||
robot_homogeneous_coordinates = np.array([robot_coordinates[0], -robot_coordinates[1], robot_coordinates[2], 1])
|
||
# print("物体的相对底盘的齐次坐标为:", robot_homogeneous_coordinates)
|
||
|
||
# 机器人坐标
|
||
X = scene.location.X
|
||
Y = scene.location.Y
|
||
Z = 0.0
|
||
|
||
# 机器人旋转信息
|
||
Roll = 0.0
|
||
Pitch = 0.0
|
||
Yaw = scene.rotation.Yaw
|
||
|
||
# 构建平移矩阵
|
||
T = np.array([[1, 0, 0, X],
|
||
[0, 1, 0, Y],
|
||
[0, 0, 1, Z],
|
||
[0, 0, 0, 1]])
|
||
|
||
# 构建旋转矩阵
|
||
Rx = np.array([[1, 0, 0, 0],
|
||
[0, np.cos(Roll), -np.sin(Roll), 0],
|
||
[0, np.sin(Roll), np.cos(Roll), 0],
|
||
[0, 0, 0, 1]])
|
||
|
||
Ry = np.array([[np.cos(Pitch), 0, np.sin(Pitch), 0],
|
||
[0, 1, 0, 0],
|
||
[-np.sin(Pitch), 0, np.cos(Pitch), 0],
|
||
[0, 0, 0, 1]])
|
||
|
||
Rz = np.array([[np.cos(np.radians(Yaw)), -np.sin(np.radians(Yaw)), 0, 0],
|
||
[np.sin(np.radians(Yaw)), np.cos(np.radians(Yaw)), 0, 0],
|
||
[0, 0, 1, 0],
|
||
[0, 0, 0, 1]])
|
||
|
||
R = np.dot(Rz, np.dot(Ry, Rx))
|
||
|
||
# 构建机器人的变换矩阵
|
||
T_robot = np.dot(T, R)
|
||
# print(T_robot)
|
||
|
||
# 将物体的坐标从机器人底盘坐标系转换到世界坐标系
|
||
world_coordinates = np.dot(T_robot, robot_homogeneous_coordinates)[:3]
|
||
# print("物体的世界坐标:", world_coordinates)
|
||
|
||
# 世界偏移后的坐标
|
||
world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
|
||
# print("物体世界偏移的坐标: ", world_offest_coordinates)
|
||
# world_point = world_coordinates + np.array([])
|
||
# print("物体的世界坐标为:", )
|
||
|
||
# # 相对机器人的世界坐标
|
||
# world_point = rotation_matrix.T @ (in_matrix.T * 369 @ pixel_point - translation_matrix)
|
||
|
||
|
||
# print(world_point)
|
||
|
||
# print(in_matrix @ out_matrix @ obj_world)
|
||
#
|
||
d = np.frombuffer(im.data, dtype=im.dtype).reshape((im.height, im.width, im.channels))
|
||
plt.imshow(d, cmap="gray" if "depth" in im.name.lower() else None)
|
||
plt.show()
|
||
|
||
def transform_co(img_data, pixel_x_, pixel_y_,depth_, scene ,id = 0,label = 0):
|
||
im = img_data.images[0]
|
||
|
||
# 相机外参矩阵
|
||
out_matrix = np.array(im.parameters.matrix).reshape((4, 4))
|
||
|
||
d = np.frombuffer(im.data, dtype=im.dtype).reshape((im.height, im.width, im.channels))
|
||
depth = depth_
|
||
|
||
# 将像素坐标转换为归一化设备坐标
|
||
normalized_x = (pixel_x_ - im.parameters.cx) / im.parameters.fx
|
||
normalized_y = (pixel_y_ - im.parameters.cy) / im.parameters.fy
|
||
|
||
# 将归一化设备坐标和深度值转换为相机坐标
|
||
camera_x = normalized_x * depth
|
||
camera_y = normalized_y * depth
|
||
camera_z = depth
|
||
|
||
# 构建相机坐标向量
|
||
camera_coordinates = np.array([camera_x, camera_y, camera_z, 1])
|
||
# print("物体相对相机坐标的齐次坐标: ", camera_coordinates)
|
||
|
||
# 将相机坐标转换为机器人底盘坐标
|
||
robot_coordinates = np.dot(out_matrix, camera_coordinates)[:3]
|
||
# print("物体的相对底盘坐标为:", robot_coordinates)
|
||
|
||
# 将物体相对机器人底盘坐标转为齐次坐标
|
||
robot_homogeneous_coordinates = np.array([robot_coordinates[0], -robot_coordinates[1], robot_coordinates[2], 1])
|
||
# print("物体的相对底盘的齐次坐标为:", robot_homogeneous_coordinates)
|
||
|
||
# 机器人坐标
|
||
X = scene.location.X
|
||
Y = scene.location.Y
|
||
Z = 0.0
|
||
|
||
# 机器人旋转信息
|
||
Roll = 0.0
|
||
Pitch = 0.0
|
||
Yaw = scene.rotation.Yaw
|
||
|
||
# 构建平移矩阵
|
||
T = np.array([[1, 0, 0, X],
|
||
[0, 1, 0, Y],
|
||
[0, 0, 1, Z],
|
||
[0, 0, 0, 1]])
|
||
|
||
# 构建旋转矩阵
|
||
Rx = np.array([[1, 0, 0, 0],
|
||
[0, np.cos(Roll), -np.sin(Roll), 0],
|
||
[0, np.sin(Roll), np.cos(Roll), 0],
|
||
[0, 0, 0, 1]])
|
||
|
||
Ry = np.array([[np.cos(Pitch), 0, np.sin(Pitch), 0],
|
||
[0, 1, 0, 0],
|
||
[-np.sin(Pitch), 0, np.cos(Pitch), 0],
|
||
[0, 0, 0, 1]])
|
||
|
||
Rz = np.array([[np.cos(np.radians(Yaw)), -np.sin(np.radians(Yaw)), 0, 0],
|
||
[np.sin(np.radians(Yaw)), np.cos(np.radians(Yaw)), 0, 0],
|
||
[0, 0, 1, 0],
|
||
[0, 0, 0, 1]])
|
||
|
||
R = np.dot(Rz, np.dot(Ry, Rx))
|
||
|
||
# 构建机器人的变换矩阵
|
||
T_robot = np.dot(T, R)
|
||
# print(T_robot)
|
||
|
||
# 将物体的坐标从机器人底盘坐标系转换到世界坐标系
|
||
world_coordinates = np.dot(T_robot, robot_homogeneous_coordinates)[:3]
|
||
|
||
# if world_coordinates[0] < 200 and world_coordinates[1] <= 1050:
|
||
# world_coordinates[0] += 400
|
||
# world_coordinates[1] += 400
|
||
# elif world_coordinates[0] >= 200 and world_coordinates[1] <= 1050:
|
||
# world_coordinates[0] -= 550
|
||
# world_coordinates[1] += 400
|
||
# elif world_coordinates[0] >= 200 and world_coordinates[1] > 1050:
|
||
# world_coordinates[0] -= 550
|
||
# world_coordinates[1] -= 1450
|
||
# elif world_coordinates[0] < 200 and world_coordinates[1] > 1050:
|
||
# world_coordinates[0] += 400
|
||
# world_coordinates[1] -= 1450
|
||
# print("物体的世界坐标:", world_coordinates)
|
||
|
||
# 世界偏移后的坐标
|
||
world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
|
||
# print("物体世界偏移的坐标: ", world_offest_coordinates)
|
||
return world_coordinates
|
||
|
||
# 世界偏移后的坐标
|
||
# world_offest_coordinates = [world_coordinates[0] + 700, world_coordinates[1] + 1400, world_coordinates[2]]
|
||
# print("物体世界偏移的坐标: ", world_offest_coordinates)
|
||
|
||
|
||
# dict_f = {'id':id,'label':label,'world_coordinates':world_coordinates,'world_offest_coordinates':world_offest_coordinates}
|
||
# with open('./semantic.txt', 'a') as file:
|
||
# file.write(str(dict_f) + '\n')
|
||
|
||
|
||
def save_obj_info(img_data, objs_name):
|
||
items = img_data.info.split(";")
|
||
dictionary = {}
|
||
for item in items:
|
||
key, value = item.split(":")
|
||
dictionary[int(key)] = value
|
||
|
||
im = img_data.images[0]
|
||
d = np.frombuffer(im.data, dtype=im.dtype).reshape((im.height, im.width, im.channels))
|
||
arr_flat = d.ravel()
|
||
for id in arr_flat:
|
||
if id not in dictionary:
|
||
print(id)
|
||
else:
|
||
objs_name.add(dictionary[id])
|
||
return objs_name
|
||
|
||
def get_id_object_pixels(id, scene):
|
||
pixels = []
|
||
world_points = []
|
||
img_data_segment = get_camera([GrabSim_pb2.CameraName.Head_Segment])
|
||
im_segment = img_data_segment.images[0]
|
||
|
||
img_data_depth = get_camera([GrabSim_pb2.CameraName.Head_Depth])
|
||
im_depth = img_data_depth.images[0]
|
||
|
||
|
||
d_segment = np.frombuffer(im_segment.data, dtype=im_segment.dtype).reshape(
|
||
(im_segment.height, im_segment.width, im_segment.channels))
|
||
d_depth = np.frombuffer(im_depth.data, dtype=im_depth.dtype).reshape(
|
||
(im_depth.height, im_depth.width, im_depth.channels))
|
||
|
||
d_segment = np.transpose(d_segment, (1, 0, 2))
|
||
d_depth = np.transpose(d_depth, (1, 0, 2))
|
||
|
||
for i in range(0, d_segment.shape[0],5):
|
||
for j in range(0, d_segment.shape[1], 5):
|
||
if d_segment[i][j][0] == id:
|
||
pixels.append([i, j])
|
||
for pixel in pixels:
|
||
world_points.append(transform_co(img_data_depth, pixel[0], pixel[1], d_depth[pixel[0]][pixel[1]][0], scene))
|
||
return world_points
|
||
|
||
|
||
|
||
|
||
def get_obstacle_point(plt, db, scene, cur_obstacle_world_points, map_ratio):
|
||
cur_obstacle_pixel_points = []
|
||
object_pixels = {}
|
||
colors = [
|
||
'red',
|
||
'pink',
|
||
'purple',
|
||
'blue',
|
||
'cyan',
|
||
'green',
|
||
'yellow',
|
||
'orange',
|
||
'brown',
|
||
'gold',
|
||
]
|
||
|
||
img_data_segment = get_camera([GrabSim_pb2.CameraName.Head_Segment])
|
||
img_data_depth = get_camera([GrabSim_pb2.CameraName.Head_Depth])
|
||
img_data_color = get_camera([GrabSim_pb2.CameraName.Head_Color])
|
||
|
||
im_segment = img_data_segment.images[0]
|
||
im_depth = img_data_depth.images[0]
|
||
im_color = img_data_color.images[0]
|
||
|
||
d_segment = np.frombuffer(im_segment.data, dtype=im_segment.dtype).reshape((im_segment.height, im_segment.width, im_segment.channels))
|
||
d_depth = np.frombuffer(im_depth.data, dtype=im_depth.dtype).reshape((im_depth.height, im_depth.width, im_depth.channels))
|
||
d_color = np.frombuffer(im_color.data, dtype=im_color.dtype).reshape((im_color.height, im_color.width, im_color.channels))
|
||
|
||
items = img_data_segment.info.split(";")
|
||
objs_id = {}
|
||
for item in items:
|
||
key, value = item.split(":")
|
||
objs_id[int(key)] = value
|
||
# plt.imshow(d_depth, cmap="gray" if "depth" in im_depth.name.lower() else None)
|
||
# plt.show()
|
||
#
|
||
# plt.imshow(d_segment, cmap="gray" if "depth" in im_segment.name.lower() else None)
|
||
# plt.show()
|
||
|
||
d_depth = np.transpose(d_depth, (1, 0, 2))
|
||
d_segment = np.transpose(d_segment, (1, 0, 2))
|
||
for i in range(0, d_segment.shape[0], map_ratio):
|
||
for j in range(0, d_segment.shape[1], map_ratio):
|
||
if d_depth[i][j][0] == 600:
|
||
continue
|
||
|
||
# if d_segment[i][j] == 96:
|
||
# print(f"apple的像素坐标:({i},{j})")
|
||
# print(f"apple的深度:{d_depth[i][j][0]}")
|
||
# print(f"apple的世界坐标: {transform_co(img_data_depth, i, j, d_depth[i][j][0], scene)}")
|
||
# if d_segment[i][j] == 113:
|
||
# print(f"kettle的像素坐标:({i},{j})")
|
||
# print(f"kettle的深度:{d_depth[i][j][0]}")
|
||
# print(f"kettle的世界坐标: {transform_co(img_data_depth, i, j, d_depth[i][j][0], scene)}")
|
||
if d_segment[i][j][0] in obstacle_objs_id:
|
||
cur_obstacle_pixel_points.append([i, j])
|
||
if d_segment[i][j][0] not in not_key_objs_id:
|
||
# 首先检查键是否存在
|
||
if d_segment[i][j][0] in object_pixels:
|
||
# 如果键存在,那么添加元组(i, j)到对应的值中
|
||
object_pixels[d_segment[i][j][0]].append([i, j])
|
||
else:
|
||
# 如果键不存在,那么创建一个新的键值对,其中键是d_segment[i][j][0],值是一个包含元组(i, j)的列表
|
||
object_pixels[d_segment[i][j][0]] = [[i, j]]
|
||
# print(cur_obstacle_pixel_points)
|
||
for pixel in cur_obstacle_pixel_points:
|
||
world_point = transform_co(img_data_depth, pixel[0], pixel[1], d_depth[pixel[0]][pixel[1]][0], scene)
|
||
cur_obstacle_world_points.append([world_point[0], world_point[1]])
|
||
# print(f"{pixel}:{[world_point[0], world_point[1]]}")
|
||
plt.subplot(2, 1, 1)
|
||
plt.imshow(d_color, cmap="gray" if "depth" in im_depth.name.lower() else None)
|
||
plt.axis('off')
|
||
plt.title("目标检测")
|
||
# plt.tight_layout()
|
||
|
||
for key, value in object_pixels.items():
|
||
if key == 0:
|
||
continue
|
||
if key in [91, 84, 96, 87, 102, 106, 120, 85,113, 101, 83]:
|
||
X = np.array(value)
|
||
db.fit(X)
|
||
labels = db.labels_
|
||
# 将数据按照聚类标签分组,并打印每个分组的数据
|
||
for i in range(max(labels) + 1): # 从0到最大聚类标签的值
|
||
group_data = X[labels == i] # 获取当前标签的数据
|
||
x_max = max(p[0] for p in group_data)
|
||
y_max = max(p[1] for p in group_data)
|
||
x_min = min(p[0] for p in group_data)
|
||
y_min = min(p[1] for p in group_data)
|
||
if x_max - x_min < 10 or y_max - y_min < 10:
|
||
continue
|
||
# 在指定的位置绘制方框
|
||
# 创建矩形框
|
||
rect = patches.Rectangle((x_min, y_min), (x_max - x_min), (y_max - y_min), linewidth=1, edgecolor=colors[key % 10],
|
||
facecolor='none')
|
||
plt.text(x_min, y_min, f'{objs_id[key]}', fontdict={'family': 'serif', 'size': 10, 'color': 'green'}, ha='center',
|
||
va='center')
|
||
plt.gca().add_patch(rect)
|
||
else:
|
||
x_max = max(p[0] for p in value)
|
||
y_max = max(p[1] for p in value)
|
||
x_min = min(p[0] for p in value)
|
||
y_min = min(p[1] for p in value)
|
||
# 在指定的位置绘制方框
|
||
# 创建矩形框
|
||
rect = patches.Rectangle((x_min, y_min), (x_max - x_min), (y_max - y_min), linewidth=1, edgecolor=colors[key % 10],
|
||
facecolor='none')
|
||
plt.text(x_min, y_min, f'{objs_id[key]}', fontdict={'family': 'serif', 'size': 10, 'color': 'green'}, ha='center',
|
||
va='center')
|
||
plt.gca().add_patch(rect)
|
||
# point1 = min(value, key=lambda x: (x[0], x[1]))
|
||
# point2 = max(value, key=lambda x: (x[0], x[1]))
|
||
# width = point2[1] - point1[1]
|
||
# height = point2[0] - point1[0]
|
||
# rect = patches.Rectangle((0, 255), 15, 30, linewidth=1, edgecolor='g',
|
||
# facecolor='none')
|
||
|
||
|
||
# 将矩形框添加到图像中
|
||
# plt.gca().add_patch(rect)
|
||
|
||
# plt.show()
|
||
return cur_obstacle_world_points
|
||
|
||
|
||
|
||
|
||
|
||
def get_semantic_map(camera, cur_objs, objs_name):
|
||
scene = Observe(0)
|
||
objs = scene.objects
|
||
img_data = get_camera([camera])
|
||
# show_image(img_data, scene)
|
||
objs_name = save_obj_info(img_data, objs_name)
|
||
for obj_name in list(objs_name):
|
||
for obj in objs:
|
||
if obj.name == obj_name and obj not in cur_objs:
|
||
cur_objs.append(obj)
|
||
break
|
||
return cur_objs, objs_name
|
||
|
||
|
||
if __name__ == '__main__':
|
||
map_id = 11 # 地图编号
|
||
scene_num = 1 # 场景数量
|
||
cur_objs = []
|
||
|
||
print('------------ 初始化加载场景 ------------')
|
||
Init()
|
||
AcquireAvailableMaps()
|
||
SetWorld(map_id, scene_num)
|
||
time.sleep(5.0)
|
||
|
||
for i in range(scene_num):
|
||
print('------------ 场景操作 ------------')
|
||
scene = Observe(i)
|
||
|
||
Reset(i)
|
||
|
||
print('------------ 相机捕获 ------------')
|
||
Reset(i)
|
||
time.sleep(1.0)
|
||
|
||
# print(get_semantic_map(GrabSim_pb2.CameraName.Head_Segment,cur_objs))
|
||
|
||
# for camera_name in [GrabSim_pb2.CameraName.Head_Depth]:
|
||
# img_data = get_camera([camera_name], i)
|
||
# show_image(img_data, scene)
|
||
# for camera_name in [GrabSim_pb2.CameraName.Waist_Color, GrabSim_pb2.CameraName.Waist_Depth]:
|
||
# img_data = get_camera([camera_name], i)
|
||
# show_image(img_data, 2)
|