217 lines
8.5 KiB
Python
217 lines
8.5 KiB
Python
import copy
|
||
import random
|
||
from robowaiter.behavior_tree.obtea.BehaviorTree import Leaf,ControlBT
|
||
|
||
class CondActPair:
|
||
def __init__(self, cond_leaf,act_leaf):
|
||
self.cond_leaf = cond_leaf
|
||
self.act_leaf = act_leaf
|
||
|
||
#定义行动类,行动包括前提、增加和删除影响
|
||
class Action:
|
||
def __init__(self,name='anonymous action',pre=set(),add=set(),del_set=set(),cost=1):
|
||
self.pre=copy.deepcopy(pre)
|
||
self.add=copy.deepcopy(add)
|
||
self.del_set=copy.deepcopy(del_set)
|
||
self.name=name
|
||
self.cost=cost
|
||
|
||
def __str__(self):
|
||
return self.name
|
||
|
||
#生成随机状态
|
||
def generate_random_state(num):
|
||
result = set()
|
||
for i in range(0,num):
|
||
if random.random()>0.5:
|
||
result.add(i)
|
||
return result
|
||
#从状态和行动生成后继状态
|
||
def state_transition(state,action):
|
||
if not action.pre <= state:
|
||
print ('error: action not applicable')
|
||
return state
|
||
new_state=(state | action.add) - action.del_set
|
||
return new_state
|
||
|
||
|
||
#本文所提出的完备规划算法
|
||
class OptBTExpAlgorithm:
|
||
def __init__(self,verbose=False):
|
||
self.bt = None
|
||
self.nodes=[]
|
||
self.traversed=[]
|
||
self.mounted=[]
|
||
self.conditions=[]
|
||
self.conditions_index=[]
|
||
self.verbose=verbose
|
||
|
||
def clear(self):
|
||
self.bt = None
|
||
self.nodes = []
|
||
self.traversed = []
|
||
self.conditions = []
|
||
self.conditions_index = []
|
||
|
||
#运行规划算法,从初始状态、目标状态和可用行动,计算行为树self.bt
|
||
def run_algorithm(self,goal,actions):
|
||
if self.verbose:
|
||
print("\n算法开始!")
|
||
|
||
|
||
self.bt = ControlBT(type='cond')
|
||
# 初始行为树只包含目标条件
|
||
gc_node = Leaf(type='cond', content=goal,mincost=0) # 为了统一,都成对出现
|
||
ga_node = Leaf(type='act', content=None, mincost=0)
|
||
subtree = ControlBT(type='?')
|
||
subtree.add_child([copy.deepcopy(gc_node)]) # 子树首先保留所扩展结
|
||
self.bt.add_child([subtree])
|
||
|
||
# self.conditions.append(goal)
|
||
cond_anc_pair = CondActPair(cond_leaf=gc_node,act_leaf=ga_node)
|
||
self.nodes.append(copy.deepcopy(cond_anc_pair)) # the set of explored but unexpanded conditions
|
||
self.traversed = [goal] # the set of expanded conditions
|
||
|
||
|
||
while len(self.nodes)!=0:
|
||
|
||
# Find the condition for the shortest cost path
|
||
pair_node = None
|
||
min_cost = float ('inf')
|
||
index= -1
|
||
for i,cond_anc_pair in enumerate(self.nodes):
|
||
if cond_anc_pair.cond_leaf.mincost < min_cost:
|
||
min_cost = cond_anc_pair.cond_leaf.mincost
|
||
pair_node = copy.deepcopy(cond_anc_pair)
|
||
index = i
|
||
break
|
||
|
||
if self.verbose:
|
||
print("选择扩展条件结点:",pair_node.cond_leaf.content)
|
||
# Update self.nodes and self.traversed
|
||
self.nodes.pop(index) # the set of explored but unexpanded conditions. self.nodes.remove(pair_node)
|
||
c = pair_node.cond_leaf.content # 子树所扩展结点对应的条件(一个文字的set)
|
||
|
||
# Mount the action node and extend BT. T = Eapand(T,c,A(c))
|
||
if c!=goal:
|
||
if c!=set():
|
||
sequence_structure = ControlBT(type='>')
|
||
sequence_structure.add_child(
|
||
[copy.deepcopy(pair_node.cond_leaf), copy.deepcopy(pair_node.act_leaf)])
|
||
subtree.add_child([copy.deepcopy(sequence_structure)]) # subtree 是回不断变化的,它的父亲是self.bt
|
||
else:
|
||
subtree.add_child([copy.deepcopy(pair_node.act_leaf)])
|
||
if self.verbose:
|
||
print("完成扩展 a_node= %s,对应的新条件 c_attr= %s,mincost=%d" \
|
||
% (cond_anc_pair.act_leaf.content.name, cond_anc_pair.cond_leaf.content,
|
||
cond_anc_pair.cond_leaf.mincost))
|
||
|
||
if self.verbose:
|
||
print("遍历所有动作, 寻找符合条件的动作")
|
||
# 遍历所有动作, 寻找符合条件的动作
|
||
current_mincost = pair_node.cond_leaf.mincost # 当前的最短路径是多少
|
||
|
||
for i in range(0, len(actions)):
|
||
if not c & ((actions[i].pre | actions[i].add) - actions[i].del_set) <= set():
|
||
if (c - actions[i].del_set) == c:
|
||
if self.verbose:
|
||
print("———— 满足条件可以扩展")
|
||
c_attr = (actions[i].pre | c) - actions[i].add
|
||
|
||
# 剪枝操作,现在的条件是以前扩展过的条件的超集
|
||
valid = True
|
||
for j in self.traversed: # 剪枝操作
|
||
if j <= c_attr:
|
||
valid = False
|
||
if self.verbose:
|
||
print("———— --被剪枝")
|
||
break
|
||
|
||
if valid:
|
||
# 把符合条件的动作节点都放到列表里
|
||
if self.verbose:
|
||
print("———— -- %s 符合条件放入列表" % actions[i].name)
|
||
c_attr_node = Leaf(type='cond', content=c_attr, mincost=current_mincost + actions[i].cost)
|
||
a_attr_node = Leaf(type='act', content=actions[i], mincost=current_mincost + actions[i].cost)
|
||
cond_anc_pair = CondActPair(cond_leaf=c_attr_node, act_leaf=a_attr_node)
|
||
self.nodes.append(copy.deepcopy(cond_anc_pair)) # condition node list
|
||
self.traversed.append(c_attr) # 重点 the set of expanded conditions
|
||
|
||
if self.verbose:
|
||
print("算法结束!\n")
|
||
return True
|
||
|
||
def print_solution(self):
|
||
print("========= BT ==========") # 树的bfs遍历
|
||
nodes_ls = []
|
||
nodes_ls.append(self.bt)
|
||
while len(nodes_ls) != 0:
|
||
parnode = nodes_ls[0]
|
||
print("Parrent:", parnode.type)
|
||
for child in parnode.children:
|
||
if isinstance(child, Leaf):
|
||
print("---- Leaf:", child.content)
|
||
elif isinstance(child, ControlBT):
|
||
print("---- ControlBT:", child.type)
|
||
nodes_ls.append(child)
|
||
print()
|
||
nodes_ls.pop(0)
|
||
print("========= BT ==========\n")
|
||
|
||
# 返回所有能到达目标状态的初始状态
|
||
def get_all_state_leafs(self):
|
||
state_leafs=[]
|
||
|
||
nodes_ls = []
|
||
nodes_ls.append(self.bt)
|
||
while len(nodes_ls) != 0:
|
||
parnode = nodes_ls[0]
|
||
for child in parnode.children:
|
||
if isinstance(child, Leaf):
|
||
if child.type == "cond":
|
||
state_leafs.append(child.content)
|
||
elif isinstance(child, ControlBT):
|
||
nodes_ls.append(child)
|
||
nodes_ls.pop(0)
|
||
|
||
return state_leafs
|
||
|
||
|
||
# 树的dfs
|
||
def dfs_ptml(self,parnode):
|
||
for child in parnode.children:
|
||
if isinstance(child, Leaf):
|
||
if child.type == 'cond':
|
||
self.ptml_string += "cond "
|
||
c_set_str = '\n cond '.join(map(str, child.content)) + "\n"
|
||
self.ptml_string += c_set_str
|
||
elif child.type == 'act':
|
||
if '(' not in child.content.name:
|
||
self.ptml_string += 'act '+child.content.name+"()\n"
|
||
else:
|
||
self.ptml_string += 'act ' + child.content.name + "\n"
|
||
elif isinstance(child, ControlBT):
|
||
if child.type == '?':
|
||
self.ptml_string += "selector{\n"
|
||
self.dfs_ptml(parnode=child)
|
||
elif child.type == '>':
|
||
self.ptml_string += "sequence{\n"
|
||
self.dfs_ptml( parnode=child)
|
||
self.ptml_string += '}\n'
|
||
|
||
|
||
def get_ptml(self):
|
||
self.ptml_string = "selector{\n"
|
||
self.dfs_ptml(self.bt.children[0])
|
||
self.ptml_string += '}\n'
|
||
return self.ptml_string
|
||
|
||
|
||
def save_ptml_file(self,file_name):
|
||
self.ptml_string = "selector{\n"
|
||
self.dfs_ptml(self.bt.children[0])
|
||
self.ptml_string += '}\n'
|
||
with open(f'./{file_name}.ptml', 'w') as file:
|
||
file.write(self.ptml_string)
|
||
return self.ptml_string
|