RoboWaiter/BTExpansionCode/tools.py

565 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import copy
from tabulate import tabulate
import numpy as np
import random
from OptimalBTExpansionAlgorithm import generate_random_state,state_transition
from OptimalBTExpansionAlgorithm import Action,OptBTExpAlgorithm
from BTExpansionAlgorithm import BTExpAlgorithm # 调用最优行为树扩展算法
import time
np.random.seed(1)
random.seed(1)
def print_action_data_table(goal,start,actions):
data = []
for a in actions:
data.append([a.name ,a.pre ,a.add ,a.del_set ,a.cost])
data.append(["Goal" ,goal ," " ,"Start" ,start])
print(tabulate(data, headers=["Name", "Pre", "Add" ,"Del" ,"Cost"], tablefmt="fancy_grid")) # grid plain simple github fancy_grid
#行为树测试代码
def BTTest_old(bt_algo_opt=True,seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
if bt_algo_opt:
print("============= OptBT Test ==============")
else:
print("============= XiaoCai BT Test ==============")
random.seed(seed)
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
literals_num=literals_num
depth = depth
iters= iters
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
total_cost=[]
total_tick=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
error = False
# 实验1000次
for count in range (total_count):
action_num = 1
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
states = []
actions = []
start = generate_random_state(literals_num)
state = copy.deepcopy(start)
states.append(state)
#print (state)
for i in range (0,depth):
a = Action()
a.generate_from_state(state,literals_num)
a.cost = random.randint(1, 100)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
#print(state)
goal = states[-1]
state = copy.deepcopy(start)
for i in range (0,iters):
a = Action()
a.generate_from_state(state,literals_num)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states,1)[0]
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
if bt_algo_opt:
# if count==874:
# algo = OptBTExpAlgorithm(verbose=False)
# else:
algo = OptBTExpAlgorithm(verbose=False)
else:
algo = BTExpAlgorithm(verbose=False)
algo.clear()
#algo = Weakalgorithm()
start_time = time.time()
# if count == 352 : #874:
# print_action_data_table(goal, start, list(actions))
# print_action_data_table(goal, start, list(actions))
if algo.run_algorithm(start, goal, actions):#运行算法规划后行为树为algo.bt
total_tree_size.append( algo.bt.count_size()-1)
# if count==352:
# algo.print_solution()
# algo.print_solution() # 打印行为树
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
current_cost = 0
current_tick_time=0
val, obj, cost, tick_time = algo.bt.cost_tick(state,0,0)#tick行为树obj为所运行的行动
current_tick_time+=tick_time
current_cost += cost
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj,cost, tick_time = algo.bt.cost_tick(state,0,0)
current_cost += cost
current_tick_time += tick_time
if(val == 'failure'):
print("bt fails at step",steps)
error = True
break
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
error = True
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
if error:
print_action_data_table(goal, start, list(actions))
algo.print_solution()
break
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
total_cost.append(current_cost)
total_tick.append(current_tick_time)
print("success:",success_count,"failure:",failure_count)#算法成功和失败次数
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
print("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
print("Average Number of States:",np.mean(total_state_num))#1000次问题的平均状态数
print("Average Number of Actions",np.mean(total_action_num))#1000次问题的平均行动数
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
print("Average Number of Ticks", np.mean(total_tick),"std=",np.std(total_tick,ddof=1))
print("Average Cost of Execution:", np.mean(total_cost),"std=",np.std(total_cost,ddof=1))
# print(total_steps_num) 第21个
if bt_algo_opt:
print("============= End OptBT Test ==============")
else:
print("============= End XiaoCai BT Test ==============")
# xiao cai
# success: 1000 failure: 0
# Total Tree Size: mean= 35.303 std= 29.71336526001515
# Total Steps Num: mean= 1.898 std= 0.970844240101644
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
# our start
# success: 1000 failure: 0
# Total Tree Size: mean= 17.945 std= 12.841997192488865
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
# our
# success: 1000 failure: 0
# Total Tree Size: mean= 48.764 std= 20.503626574406358
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 3.3271877765655518 0.0033271877765655516
def BTTest(bt_algo_opt=True,seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
if bt_algo_opt:
print("============= OptBT Test ==============")
else:
print("============= XiaoCai BT Test ==============")
random.seed(seed)
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
literals_num=literals_num
depth = depth
iters= iters
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
total_cost=[]
total_tick=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
error = False
# 实验1000次
for count in range (total_count):
action_num = 1
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
states = []
actions = []
start = generate_random_state(literals_num)
state = copy.deepcopy(start)
states.append(state)
#print (state)
for k in range(10):
for i in range (0,depth):
a = Action()
a.generate_from_state(state,literals_num)
a.cost = random.randint(1, 100)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
#print(state)
goal = states[-1]
state = copy.deepcopy(start)
for i in range (0,iters):
a = Action()
a.generate_from_state(state,literals_num)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states,1)[0]
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
if bt_algo_opt:
# if count==874:
# algo = OptBTExpAlgorithm(verbose=False)
# else:
algo = OptBTExpAlgorithm(verbose=False)
else:
algo = BTExpAlgorithm(verbose=False)
algo.clear()
#algo = Weakalgorithm()
start_time = time.time()
if count == 0 : #874:
print_action_data_table(goal, start, list(actions))
# print_action_data_table(goal, start, list(actions))
if algo.run_algorithm_test(start, goal, actions):#运行算法规划后行为树为algo.bt
total_tree_size.append( algo.bt.count_size()-1)
# if count==0:
# algo.print_solution()
# algo.print_solution() # 打印行为树
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
current_cost = 0
current_tick_time=0
val, obj, cost, tick_time = algo.bt.cost_tick(state,0,0)#tick行为树obj为所运行的行动
current_tick_time+=tick_time
current_cost += cost
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj,cost, tick_time = algo.bt.cost_tick(state,0,0)
current_cost += cost
current_tick_time += tick_time
if(val == 'failure'):
print("bt fails at step",steps)
error = True
break
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
error = True
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
if error:
print_action_data_table(goal, start, list(actions))
algo.print_solution()
break
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
total_cost.append(current_cost)
total_tick.append(current_tick_time)
print("success:",success_count,"failure:",failure_count)#算法成功和失败次数
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
print("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
print("Average Number of States:",np.mean(total_state_num))#1000次问题的平均状态数
print("Average Number of Actions",np.mean(total_action_num))#1000次问题的平均行动数
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
print("Average Number of Ticks", np.mean(total_tick),"std=",np.std(total_tick,ddof=1))
print("Average Cost of Execution:", np.mean(total_cost),"std=",np.std(total_cost,ddof=1))
# print(total_steps_num) 第21个
if bt_algo_opt:
print("============= End OptBT Test ==============")
else:
print("============= End XiaoCai BT Test ==============")
# xiao cai
# success: 1000 failure: 0
# Total Tree Size: mean= 35.303 std= 29.71336526001515
# Total Steps Num: mean= 1.898 std= 0.970844240101644
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
# our start
# success: 1000 failure: 0
# Total Tree Size: mean= 17.945 std= 12.841997192488865
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
# our
# success: 1000 failure: 0
# Total Tree Size: mean= 48.764 std= 20.503626574406358
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 3.3271877765655518 0.0033271877765655516
def get_act_start_goal(seed=1,literals_num=10,depth=10,iters=10,total_count=1000):
act_list=[]
start_list=[]
goal_list=[]
for count in range(total_count):
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
action_num=1
states = []
actions = []
start = generate_random_state(literals_num)
state = copy.deepcopy(start)
states.append(state)
# print (state)
for k in range(int(iters/5)):
state = copy.deepcopy(start)
for i in range(0, depth):
a = Action()
a.generate_from_state(state, literals_num)
a.cost = random.randint(1, 100)
if not a in actions:
a.name = "a" + str(action_num)
action_num += 1
actions.append(a)
state = state_transition(state, a)
if state in states:
pass
else:
states.append(state)
# print(state)
goal = states[-1]
state = copy.deepcopy(start)
for i in range(0, int(iters/5)):
a = Action()
a.generate_from_state(state, literals_num)
if not a in actions:
a.name = "a" + str(action_num)
action_num += 1
actions.append(a)
state = state_transition(state, a)
if state in states:
pass
else:
states.append(state)
state = random.sample(states, 1)[0]
act_list.append(actions)
start_list.append(start)
goal_list.append(goal)
# print("action:",len(actions))
return act_list, start_list, goal_list
def BTTest_act_start_goal(bt_algo_opt,act_list,start_list,goal_list):
if bt_algo_opt:
print("============= OptBT Test ==============")
else:
print("============= XiaoCai BT Test ==============")
# 设置生成规划问题集的超参数:文字数、解深度、迭代次数
total_tree_size = []
total_action_num = []
total_state_num = []
total_steps_num=[]
total_cost=[]
total_tick=[]
#fail_count=0
#danger_count=0
success_count =0
failure_count = 0
planning_time_total = 0.0
error = False
# 实验1000次
for count, (actions, start, goal) in enumerate(zip(act_list, start_list, goal_list)):
states=[]
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
state = copy.deepcopy(start)
states.append(state)
# 选择测试本文算法btalgorithm或对比算法weakalgorithm
if bt_algo_opt:
# if count==874:
# algo = OptBTExpAlgorithm(verbose=False)
# else:
algo = OptBTExpAlgorithm(verbose=False)
else:
algo = BTExpAlgorithm(verbose=False)
algo.clear()
#algo = Weakalgorithm()
start_time = time.time()
if count == 0 : #874:
print_action_data_table(goal, start, list(actions))
# print_action_data_table(goal, start, list(actions))
if algo.run_algorithm_test(start, goal, actions):#运行算法规划后行为树为algo.bt
total_tree_size.append( algo.bt.count_size()-1)
if count==0:
algo.print_solution()
# algo.print_solution() # 打印行为树
else:
print ("error")
end_time = time.time()
planning_time_total += (end_time-start_time)
#开始从初始状态运行行为树,测试
state=start
steps=0
current_cost = 0
current_tick_time=0
val, obj, cost, tick_time = algo.bt.cost_tick(state,0,0)#tick行为树obj为所运行的行动
current_tick_time+=tick_time
current_cost += cost
while val !='success' and val !='failure':#运行直到行为树成功或失败
state = state_transition(state,obj)
val, obj,cost, tick_time = algo.bt.cost_tick(state,0,0)
current_cost += cost
current_tick_time += tick_time
if(val == 'failure'):
print("bt fails at step",steps)
error = True
break
steps+=1
if(steps>=500):#至多运行500步
break
if not goal <= state:#错误解,目标条件不在执行后状态满足
#print ("wrong solution",steps)
failure_count+=1
error = True
else:#正确解,满足目标条件
#print ("right solution",steps)
success_count+=1
total_steps_num.append(steps)
if error:
print_action_data_table(goal, start, list(actions))
algo.print_solution()
break
algo.clear()
total_action_num.append(len(actions))
total_state_num.append(len(states))
total_cost.append(current_cost)
total_tick.append(current_tick_time)
print("success:",success_count,"failure:",failure_count)#算法成功和失败次数
print("Total Tree Size: mean=",np.mean(total_tree_size), "std=",np.std(total_tree_size, ddof=1))#1000次测试树大小
print("Total Steps Num: mean=",np.mean(total_steps_num),"std=",np.std(total_steps_num,ddof=1))
print("Average Number of States:",np.mean(total_state_num))#1000次问题的平均状态数
print("Average Number of Actions",np.mean(total_action_num))#1000次问题的平均行动数
print("Planning Time Total:",planning_time_total,planning_time_total/1000.0)
print("Average Number of Ticks", np.mean(total_tick),"std=",np.std(total_tick,ddof=1))
print("Average Cost of Execution:", np.mean(total_cost),"std=",np.std(total_cost,ddof=1))
# print(total_steps_num) 第21个
if bt_algo_opt:
print("============= End OptBT Test ==============")
else:
print("============= End XiaoCai BT Test ==============")
# xiao cai
# success: 1000 failure: 0
# Total Tree Size: mean= 35.303 std= 29.71336526001515
# Total Steps Num: mean= 1.898 std= 0.970844240101644
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 0.6280641555786133 0.0006280641555786133
# our start
# success: 1000 failure: 0
# Total Tree Size: mean= 17.945 std= 12.841997192488865
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 1.4748523235321045 0.0014748523235321046
# our
# success: 1000 failure: 0
# Total Tree Size: mean= 48.764 std= 20.503626574406358
# Total Steps Num: mean= 1.785 std= 0.8120556843187752
# Average number of states: 20.678
# Average number of actions 20.0
# Planning Time Total: 3.3271877765655518 0.0033271877765655516