RoboWaiter/BTExpansionCode/llm_test/LLM_Evaluation_Kit/llms/gpt3.py

53 lines
1.3 KiB
Python

import os
from openai import OpenAI
class LLMGPT3():
def __init__(self):
self.client = OpenAI(
base_url="https://api.xty.app/v1", api_key="sk-FLyhhGWDsCZCTbmq640c5c61Ad3d45078eDe56CdDbF01c0a"
)
def request(self, message): # question
completion = self.client.chat.completions.create(
model="gpt-3.5-turbo",
messages=message
)
return completion.choices[0].message.content
def embedding(self, question):
embeddings = self.client.embeddings.create(
model="text-embedding-3-small",
input=question
)
return embeddings
def list_models(self):
response = self.client.models.list()
return response.data
def list_embedding_models(self):
models = self.list_models()
embedding_models = [model.id for model in models if "embedding" in model.id]
return embedding_models
if __name__ == '__main__':
llm = LLMGPT3()
embedding_models = llm.list_embedding_models()
print("Available embedding models:")
for model in embedding_models:
print(model)
models = llm.list_models()
for model in models:
print(model.id)
# answer = llm.request(question="who are you,gpt?")
# # answer = llm.embedding(question="who are you,gpt?")
# print(answer)