RoboWaiter/BTExpansionCode/EXP/exp4_bt_random_final.py

206 lines
7.0 KiB
Python

import random
import numpy as np
import copy
import time
from OptimalBTExpansionAlgorithm_cond2act import Action,generate_random_state,state_transition
from Examples import *
import os
output_path = os.path.join(os.path.dirname(__file__), "outputs")
from tools import print_action_data_table,BTTest_act_start_goal
def copy_act(a,actions,action_num,state,states,copy_time):
ca_num=0
for ct in range(copy_time):
ca = copy.deepcopy(a)
# pre\del 都为原来的子集
# pre_num = random.randint(0, len(ca.pre))
# ca.pre = set(random.sample(ca.pre, pre_num))
#
# del_set_num = random.randint(0, len(ca.del_set))
# ca.del_set = set(random.sample(ca.del_set, del_set_num))
ca.cost = random.randint(1, 100)
if not ca in actions:
ca_num+=1
ca.name = "a" + str(action_num)
action_num += 1
actions.append(ca)
s = state_transition(state, a)
if s in states:
pass
else:
states.append(s)
return ca_num
def get_act_start_goal(seed=1, literals_num=10, depth=10, iters=10, total_count=1000,max_copy_times=5):
literals_num_set = {i for i in range(literals_num)}
act_list = []
start_list = []
goal_list = []
total_action_num=[]
total_state_num=[]
total_time_dic = {"start_to_goal": 0,
"random_act":0}
start_time_0=time.time()
for count in range(total_count):
# 生成一个规划问题,包括随机的状态和行动,以及目标状态
action_num = 1
states = []
actions = []
start = generate_random_state(literals_num)
state = copy.deepcopy(start)
states.append(state)
for i in range(0, depth):
a = Action()
a.generate_from_state_local(state, literals_num_set)
a.cost = random.randint(1, 10)
if not a in actions:
a.name = "a" + str(action_num)
action_num += 1
actions.append(a)
# if max_copy_times!=0:
# copy_times = random.randint(1, max_copy_times)
# ca_num = copy_act(a,actions,action_num,state,states,copy_times)
# action_num += ca_num
state = state_transition(state, a)
if state in states:
pass
else:
states.append(state)
goal = states[-1]
# state = copy.deepcopy(start)
for i in range (0,iters):
a = Action()
state = generate_random_state(literals_num)
a.generate_from_state_local(state, literals_num_set)
a.cost = random.randint(50, 100)
if not a in actions:
a.name = "a"+str(action_num)
action_num+=1
actions.append(a)
# if max_copy_times!=0:
# copy_times = random.randint(1, max_copy_times)
# ca_num = copy_act(a,actions,action_num,state,states,copy_times)
# action_num += ca_num
state = state_transition(state,a)
if state in states:
pass
else:
states.append(state)
# state = random.sample(states,1)[0]
act_list.append(actions)
start_list.append(start)
goal_list.append(goal)
total_action_num.append(len(actions))
total_state_num.append(len(states))
end_time_0=time.time()
print("Total Time:", end_time_0-start_time_0)
print("Total Time (start_to_goal):", total_time_dic["start_to_goal"])
print("Total Time (random_act):",total_time_dic["random_act"])
print("Average Number of States:", round(np.mean(total_state_num),3)) # 1000次问题的平均状态数
print("Average Number of Actions", round(np.mean(total_action_num),3)) # 1000次问题的平均行动数
# print_action_data_table(goal, start, list(actions))
return act_list, start_list, goal_list,round(np.mean(total_state_num),3),round(np.mean(total_action_num),3)
# # 设置生成规划问题集的超参数:文字数、解深度、迭代次数
seed = 1
random.seed(1)
np.random.seed(1)
literals_num = 2
depth = 2
iters = 2
# literals_num_ls=[10,10,10,100,100,10,10,10,100,100]
# depth_ls=[10,10,10,10,10,50,50,50,50,50]
# iters_ls=[10,100,1000,10,1000,10,100,1000,10,1000]
# literals_num_ls=[10,10,10,10, 100,100,100,100]
# depth_ls=[10,10,10,10, 10,10,10,10]
# iters_ls=[5,10,100,500, 5,10,100,500]
# literals_num_ls=[10,10,10,10,100,100,100,100] #+[100,100]
# depth_ls=[10,10,10,10,10,10,10,10] #+[10,10]
# iters_ls=[5,10,100,500,5,10,100,500] #+[int(500/2),int(500/4)]
# max_copy_times_ls=8*[5] #+[10,20]
# literals_num_ls=[10,10,10,10,100,100,100,100] + [100,100] #+[100,100]
# depth_ls=15 * [10]
# iters_ls=[5,10,100,300,5,10,100,300,175,105] #+[int(500/2),int(500/4)]
# max_copy_times_ls=8*[5] + [10,20] #+[10,20]
literals_num_ls=[10] #+[100,100]
depth_ls=15 * [10]
iters_ls=[10] #+[int(500/2),int(500/4)]
max_copy_times_ls=6*[5]+[10,20] #+[10,20]
all_result=[]
for literals_num,depth,iters,max_copy_times in zip(literals_num_ls, depth_ls, iters_ls,max_copy_times_ls):
print(f"\n------literals_num: {literals_num},depth:{depth},iters:{iters},max_copy_times:{max_copy_times}-----------")
# 为 act建立 add映射
act_list, start_list, goal_list,state_avg,act_avg = get_act_start_goal(seed=seed, literals_num=literals_num, depth=depth, iters=iters,
total_count=2,max_copy_times=max_copy_times)
param_ls = [max_copy_times,literals_num,depth,iters,state_avg,act_avg]
baseline_result = BTTest_act_start_goal(bt_algo_opt=False, act_list=act_list, start_list=start_list,
goal_list=goal_list,literals_num=literals_num)
obt_result = BTTest_act_start_goal(bt_algo_opt=True, act_list=act_list, start_list=start_list, goal_list=goal_list,literals_num=literals_num)
a_result=[]
a_result.extend(param_ls)
a_result.append("OBTEA")
a_result.extend(obt_result)
all_result.append(a_result)
a_result=[]
a_result.extend(param_ls)
a_result.append("Baseline")
a_result.extend(baseline_result)
all_result.append(a_result)
import pandas as pd
df = pd.DataFrame(all_result, columns=[
'max_actcopy',
'literals_num','depth','iters','state','act',
'btalgorithm',
'tree_size_avg', 'tree_size_std',
'ticks_avg', 'ticks_std',
'cost_avg', 'cost_std',
'step_avg','step_std',
'state_num_avg','state_num_std',
'expand_num_avg','expand_num_std',
'plan_time_avg', 'plan_time_std', 'plan_time_total'])
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()).replace("-","").replace(":","")
csv_file_path = 'bt_result_copyact=1-5_pre_del_time='+time_str+'.csv'
df.to_csv(csv_file_path, index=True)
print("CSV文件已生成:", csv_file_path)