// // Created by tlab-uav on 24-9-16. // #include "unitree_guide_controller/FSM/StateBalanceTest.h" #include StateBalanceTest::StateBalanceTest(CtrlComponent ctrlComp) : FSMState(FSMStateName::BALANCETEST, "balance test", std::move(ctrlComp)) { _xMax = 0.05; _xMin = -_xMax; _yMax = 0.05; _yMin = -_yMax; _zMax = 0.04; _zMin = -_zMax; _yawMax = 20 * M_PI / 180; _yawMin = -_yawMax; Kp_p_ = Vec3(150, 150, 150).asDiagonal(); Kd_p_ = Vec3(25, 25, 25).asDiagonal(); kp_w_ = 200; Kd_w_ = Vec3(30, 30, 30).asDiagonal(); } void StateBalanceTest::enter() { pcdInit_ = ctrl_comp_.estimator_.get().getPosition(); pcd_ = pcdInit_; init_rotation_ = Eigen::Matrix3d(ctrl_comp_.estimator_.get().getRotation().data); } void StateBalanceTest::run() { pcd_(0) = pcdInit_(0) + invNormalize(ctrl_comp_.control_inputs_.get().ly, _xMin, _xMax); pcd_(1) = pcdInit_(1) - invNormalize(ctrl_comp_.control_inputs_.get().lx, _yMin, _yMax); pcd_(2) = pcdInit_(2) + invNormalize(ctrl_comp_.control_inputs_.get().ry, _zMin, _zMax); const float yaw = invNormalize(ctrl_comp_.control_inputs_.get().rx, _yawMin, _yawMax); Rd_ = rpyToRotMat(0, 0, yaw) * init_rotation_; pose_body_ = ctrl_comp_.estimator_.get().getPosition(); vel_body_ = ctrl_comp_.estimator_.get().getVelocity(); for (int i = 0; i < 12; i++) { ctrl_comp_.joint_kp_command_interface_[i].get().set_value(0.8); ctrl_comp_.joint_kd_command_interface_[i].get().set_value(0.8); } calcTorque(); } void StateBalanceTest::exit() { } FSMStateName StateBalanceTest::checkChange() { switch (ctrl_comp_.control_inputs_.get().command) { case 1: return FSMStateName::FIXEDDOWN; case 2: return FSMStateName::FIXEDSTAND; default: return FSMStateName::BALANCETEST; } } void StateBalanceTest::calcTorque() { const auto B2G_Rotation = Eigen::Matrix3d(ctrl_comp_.estimator_.get().getRotation().data); const RotMat G2B_Rotation = B2G_Rotation.transpose(); // expected body acceleration dd_pcd_ = Kp_p_ * Vec3((pcd_ - pose_body_).data) + Kd_p_ * Vec3((-vel_body_).data); // expected body angular acceleration d_wbd_ = kp_w_ * rotMatToExp(Rd_ * G2B_Rotation) + Kd_w_ * (Vec3(0,0,0) - Vec3((-ctrl_comp_.estimator_.get().getGlobalGyro()).data)); // calculate foot force const std::vector contact(4, 1); const Vec34 foot_force = G2B_Rotation * ctrl_comp_.balance_ctrl_.get().calF(dd_pcd_, -d_wbd_, B2G_Rotation, ctrl_comp_.estimator_.get(). getFootPos2Body(), contact); std::vector current_joints = ctrl_comp_.robot_model_.get().current_joint_pos_; for (int i = 0; i < 4; i++) { KDL::JntArray torque = ctrl_comp_.robot_model_.get().getTorque(-foot_force.col(i), i); for (int j = 0; j < 3; j++) { ctrl_comp_.joint_effort_command_interface_[i * 3 + j].get().set_value(torque(j)); ctrl_comp_.joint_position_command_interface_[i * 3 + j].get().set_value(current_joints[i](j)); } } }