quadruped_ros2_control/controllers/ocs2_quadruped_controller/src/Ocs2QuadrupedController.cpp

454 lines
20 KiB
C++

//
// Created by tlab-uav on 24-9-24.
//
#include "Ocs2QuadrupedController.h"
#include <ament_index_cpp/get_package_share_directory.hpp>
#include <ocs2_core/misc/LoadData.h>
#include <ocs2_core/thread_support/ExecuteAndSleep.h>
#include <ocs2_core/thread_support/SetThreadPriority.h>
#include <ocs2_legged_robot_ros/gait/GaitReceiver.h>
#include <ocs2_quadruped_controller/estimator/LinearKalmanFilter.h>
#include <ocs2_quadruped_controller/wbc/WeightedWbc.h>
#include <ocs2_ros_interfaces/synchronized_module/RosReferenceManager.h>
#include <ocs2_ros_interfaces/common/RosMsgConversions.h>
#include <ocs2_sqp/SqpMpc.h>
#include <angles/angles.h>
#include <ocs2_quadruped_controller/control/GaitManager.h>
#include <ocs2_quadruped_controller/estimator/GroundTruth.h>
#include <ocs2_quadruped_controller/estimator/FromOdomTopic.h>
namespace ocs2::legged_robot
{
using config_type = controller_interface::interface_configuration_type;
controller_interface::InterfaceConfiguration Ocs2QuadrupedController::command_interface_configuration() const
{
controller_interface::InterfaceConfiguration conf = {config_type::INDIVIDUAL, {}};
conf.names.reserve(joint_names_.size() * command_interface_types_.size());
for (const auto &joint_name: joint_names_) {
for (const auto &interface_type: command_interface_types_) {
if (!command_prefix_.empty()) {
conf.names.push_back(command_prefix_ + "/" + joint_name + "/" += interface_type);
} else {
conf.names.push_back(joint_name + "/" += interface_type);
}
}
}
return conf;
}
controller_interface::InterfaceConfiguration Ocs2QuadrupedController::state_interface_configuration() const
{
controller_interface::InterfaceConfiguration conf = {config_type::INDIVIDUAL, {}};
conf.names.reserve(joint_names_.size() * state_interface_types_.size());
for (const auto& joint_name : joint_names_)
{
for (const auto& interface_type : state_interface_types_)
{
conf.names.push_back(joint_name + "/" += interface_type);
}
}
for (const auto& interface_type : imu_interface_types_)
{
conf.names.push_back(imu_name_ + "/" += interface_type);
}
if (estimator_type_ == "ground_truth")
{
for (const auto& interface_type : odom_interface_types_)
{
conf.names.push_back(odom_name_ + "/" += interface_type);
}
}
else if (estimator_type_ == "linear_kalman")
{
for (const auto& interface_type : foot_force_interface_types_)
{
conf.names.push_back(foot_force_name_ + "/" += interface_type);
}
}
return conf;
}
controller_interface::return_type Ocs2QuadrupedController::update(const rclcpp::Time& time,
const rclcpp::Duration& period)
{
// State Estimate
updateStateEstimation(period);
// Compute target trajectory
ctrl_comp_.target_manager_->update();
// Update the current state of the system
mpc_mrt_interface_->setCurrentObservation(ctrl_comp_.observation_);
// Load the latest MPC policy
mpc_mrt_interface_->updatePolicy();
mpc_need_updated_ = true;
// Evaluate the current policy
vector_t optimized_state, optimized_input;
size_t planned_mode = 0; // The mode that is active at the time the policy is evaluated at.
mpc_mrt_interface_->evaluatePolicy(ctrl_comp_.observation_.time, ctrl_comp_.observation_.state, optimized_state,
optimized_input, planned_mode);
// Whole body control
ctrl_comp_.observation_.input = optimized_input;
wbc_timer_.startTimer();
vector_t x = wbc_->update(optimized_state, optimized_input, measured_rbd_state_, planned_mode,
period.seconds());
wbc_timer_.endTimer();
vector_t torque = x.tail(12);
vector_t pos_des = centroidal_model::getJointAngles(optimized_state,
legged_interface_->getCentroidalModelInfo());
vector_t vel_des = centroidal_model::getJointVelocities(optimized_input,
legged_interface_->getCentroidalModelInfo());
// Safety check, if failed, stop the controller
if (!safety_checker_->check(ctrl_comp_.observation_, optimized_state, optimized_input))
{
RCLCPP_ERROR(get_node()->get_logger(), "[Legged Controller] Safety check failed, stopping the controller.");
for (int i = 0; i < joint_names_.size(); i++)
{
ctrl_comp_.joint_torque_command_interface_[i].get().set_value(0);
ctrl_comp_.joint_position_command_interface_[i].get().set_value(0);
ctrl_comp_.joint_velocity_command_interface_[i].get().set_value(0);
ctrl_comp_.joint_kp_command_interface_[i].get().set_value(0.0);
ctrl_comp_.joint_kd_command_interface_[i].get().set_value(0.35);
}
return controller_interface::return_type::ERROR;
}
for (int i = 0; i < joint_names_.size(); i++)
{
ctrl_comp_.joint_torque_command_interface_[i].get().set_value(torque(i));
ctrl_comp_.joint_position_command_interface_[i].get().set_value(pos_des(i));
ctrl_comp_.joint_velocity_command_interface_[i].get().set_value(vel_des(i));
ctrl_comp_.joint_kp_command_interface_[i].get().set_value(default_kp_);
ctrl_comp_.joint_kd_command_interface_[i].get().set_value(default_kd_);
}
// Visualization
ctrl_comp_.visualizer_->update(ctrl_comp_.observation_, mpc_mrt_interface_->getPolicy(),
mpc_mrt_interface_->getCommand());
observation_publisher_->publish(ros_msg_conversions::createObservationMsg(ctrl_comp_.observation_));
return controller_interface::return_type::OK;
}
controller_interface::CallbackReturn Ocs2QuadrupedController::on_init()
{
// Initialize OCS2
robot_pkg_ = auto_declare<std::string>("robot_pkg", robot_pkg_);
const std::string package_share_directory = ament_index_cpp::get_package_share_directory(robot_pkg_);
urdf_file_ = package_share_directory + "/urdf/robot.urdf";
task_file_ = package_share_directory + "/config/ocs2/task.info";
reference_file_ = package_share_directory + "/config/ocs2/reference.info";
gait_file_ = package_share_directory + "/config/ocs2/gait.info";
get_node()->get_parameter("update_rate", ctrl_comp_.frequency_);
RCLCPP_INFO(get_node()->get_logger(), "Controller Manager Update Rate: %d Hz", ctrl_comp_.frequency_);
// Load verbose parameter from the task file
verbose_ = false;
loadData::loadCppDataType(task_file_, "legged_robot_interface.verbose", verbose_);
// Hardware Parameters
command_prefix_ = auto_declare<std::string>("command_prefix", command_prefix_);
joint_names_ = auto_declare<std::vector<std::string>>("joints", joint_names_);
feet_names_ = auto_declare<std::vector<std::string>>("feet", feet_names_);
command_interface_types_ =
auto_declare<std::vector<std::string>>("command_interfaces", command_interface_types_);
state_interface_types_ =
auto_declare<std::vector<std::string>>("state_interfaces", state_interface_types_);
// IMU Sensor
imu_name_ = auto_declare<std::string>("imu_name", imu_name_);
imu_interface_types_ = auto_declare<std::vector<std::string>>("imu_interfaces", state_interface_types_);
// Odometer Sensor (Ground Truth)
estimator_type_ = auto_declare<std::string>("estimator_type", estimator_type_);
if (estimator_type_ == "ground_truth")
{
odom_name_ = auto_declare<std::string>("odom_name", odom_name_);
odom_interface_types_ = auto_declare<std::vector<std::string>>("odom_interfaces", state_interface_types_);
}
else
{
// Foot Force Sensor
foot_force_name_ = auto_declare<std::string>("foot_force_name", foot_force_name_);
foot_force_interface_types_ =
auto_declare<std::vector<std::string>>("foot_force_interfaces", state_interface_types_);
}
// PD gains
default_kp_ = auto_declare<double>("default_kp", default_kp_);
default_kd_ = auto_declare<double>("default_kd", default_kd_);
setupLeggedInterface();
setupMpc();
setupMrt();
// Visualization
CentroidalModelPinocchioMapping pinocchio_mapping(legged_interface_->getCentroidalModelInfo());
eeKinematicsPtr_ = std::make_shared<PinocchioEndEffectorKinematics>(
legged_interface_->getPinocchioInterface(), pinocchio_mapping,
legged_interface_->modelSettings().contactNames3DoF);
ctrl_comp_.visualizer_ = std::make_shared<LeggedRobotVisualizer>(
legged_interface_->getPinocchioInterface(), legged_interface_->getCentroidalModelInfo(), *eeKinematicsPtr_,
get_node());
// selfCollisionVisualization_.reset(new LeggedSelfCollisionVisualization(leggedInterface_->getPinocchioInterface(),
// leggedInterface_->getGeometryInterface(), pinocchioMapping, nh));
// State estimation
setupStateEstimate();
// Whole body control
wbc_ = std::make_shared<WeightedWbc>(legged_interface_->getPinocchioInterface(),
legged_interface_->getCentroidalModelInfo(),
*eeKinematicsPtr_);
wbc_->loadTasksSetting(task_file_, verbose_);
// Safety Checker
safety_checker_ = std::make_shared<SafetyChecker>(legged_interface_->getCentroidalModelInfo());
return CallbackReturn::SUCCESS;
}
controller_interface::CallbackReturn Ocs2QuadrupedController::on_configure(
const rclcpp_lifecycle::State& /*previous_state*/)
{
control_input_subscription_ = get_node()->create_subscription<control_input_msgs::msg::Inputs>(
"/control_input", 10, [this](const control_input_msgs::msg::Inputs::SharedPtr msg)
{
// Handle message
ctrl_comp_.control_inputs_.command = msg->command;
ctrl_comp_.control_inputs_.lx = msg->lx;
ctrl_comp_.control_inputs_.ly = msg->ly;
ctrl_comp_.control_inputs_.rx = msg->rx;
ctrl_comp_.control_inputs_.ry = msg->ry;
});
observation_publisher_ = get_node()->create_publisher<ocs2_msgs::msg::MpcObservation>(
"legged_robot_mpc_observation", 10);
return CallbackReturn::SUCCESS;
}
controller_interface::CallbackReturn Ocs2QuadrupedController::on_activate(
const rclcpp_lifecycle::State& /*previous_state*/)
{
// clear out vectors in case of restart
ctrl_comp_.clear();
// assign command interfaces
for (auto& interface : command_interfaces_)
{
std::string interface_name = interface.get_interface_name();
if (const size_t pos = interface_name.find('/'); pos != std::string::npos)
{
command_interface_map_[interface_name.substr(pos + 1)]->push_back(interface);
}
else
{
command_interface_map_[interface_name]->push_back(interface);
}
}
// assign state interfaces
for (auto& interface : state_interfaces_)
{
if (interface.get_prefix_name() == imu_name_)
{
ctrl_comp_.imu_state_interface_.emplace_back(interface);
}
else if (interface.get_prefix_name() == foot_force_name_)
{
ctrl_comp_.foot_force_state_interface_.emplace_back(interface);
}
else if (interface.get_prefix_name() == odom_name_)
{
ctrl_comp_.odom_state_interface_.emplace_back(interface);
}
else
{
state_interface_map_[interface.get_interface_name()]->push_back(interface);
}
}
if (mpc_running_ == false)
{
// Initial state
ctrl_comp_.observation_.state.setZero(
static_cast<long>(legged_interface_->getCentroidalModelInfo().stateDim));
updateStateEstimation(rclcpp::Duration(0, 1 / ctrl_comp_.frequency_ * 1000000000));
ctrl_comp_.observation_.input.setZero(
static_cast<long>(legged_interface_->getCentroidalModelInfo().inputDim));
ctrl_comp_.observation_.mode = STANCE;
const TargetTrajectories target_trajectories({ctrl_comp_.observation_.time},
{ctrl_comp_.observation_.state},
{ctrl_comp_.observation_.input});
// Set the first observation and command and wait for optimization to finish
mpc_mrt_interface_->setCurrentObservation(ctrl_comp_.observation_);
mpc_mrt_interface_->getReferenceManager().setTargetTrajectories(target_trajectories);
RCLCPP_INFO(get_node()->get_logger(), "Waiting for the initial policy ...");
while (!mpc_mrt_interface_->initialPolicyReceived())
{
mpc_mrt_interface_->advanceMpc();
rclcpp::WallRate(legged_interface_->mpcSettings().mrtDesiredFrequency_).sleep();
}
RCLCPP_INFO(get_node()->get_logger(), "Initial policy has been received.");
mpc_running_ = true;
}
return CallbackReturn::SUCCESS;
}
controller_interface::CallbackReturn Ocs2QuadrupedController::on_deactivate(
const rclcpp_lifecycle::State& /*previous_state*/)
{
release_interfaces();
return CallbackReturn::SUCCESS;
}
controller_interface::CallbackReturn Ocs2QuadrupedController::on_cleanup(
const rclcpp_lifecycle::State& /*previous_state*/)
{
return CallbackReturn::SUCCESS;
}
controller_interface::CallbackReturn Ocs2QuadrupedController::on_shutdown(
const rclcpp_lifecycle::State& /*previous_state*/)
{
return CallbackReturn::SUCCESS;
}
controller_interface::CallbackReturn Ocs2QuadrupedController::on_error(
const rclcpp_lifecycle::State& /*previous_state*/)
{
return CallbackReturn::SUCCESS;
}
void Ocs2QuadrupedController::setupLeggedInterface()
{
legged_interface_ = std::make_shared<LeggedInterface>(task_file_, urdf_file_, reference_file_);
legged_interface_->setupJointNames(joint_names_, feet_names_);
legged_interface_->setupOptimalControlProblem(task_file_, urdf_file_, reference_file_, verbose_);
}
void Ocs2QuadrupedController::setupMpc()
{
mpc_ = std::make_shared<SqpMpc>(legged_interface_->mpcSettings(), legged_interface_->sqpSettings(),
legged_interface_->getOptimalControlProblem(),
legged_interface_->getInitializer());
rbd_conversions_ = std::make_shared<CentroidalModelRbdConversions>(legged_interface_->getPinocchioInterface(),
legged_interface_->getCentroidalModelInfo());
// Initialize the reference manager
const auto gait_manager_ptr = std::make_shared<GaitManager>(
ctrl_comp_, legged_interface_->getSwitchedModelReferenceManagerPtr()->
getGaitSchedule());
gait_manager_ptr->init(gait_file_);
mpc_->getSolverPtr()->addSynchronizedModule(gait_manager_ptr);
mpc_->getSolverPtr()->setReferenceManager(legged_interface_->getReferenceManagerPtr());
ctrl_comp_.target_manager_ = std::make_shared<TargetManager>(ctrl_comp_,
legged_interface_->getReferenceManagerPtr(),
task_file_, reference_file_);
}
void Ocs2QuadrupedController::setupMrt()
{
mpc_mrt_interface_ = std::make_shared<MPC_MRT_Interface>(*mpc_);
mpc_mrt_interface_->initRollout(&legged_interface_->getRollout());
mpc_timer_.reset();
controller_running_ = true;
mpc_thread_ = std::thread([&]
{
while (controller_running_)
{
try
{
executeAndSleep(
[&]
{
if (mpc_running_ && mpc_need_updated_)
{
mpc_need_updated_ = false;
mpc_timer_.startTimer();
mpc_mrt_interface_->advanceMpc();
mpc_timer_.endTimer();
}
},
legged_interface_->mpcSettings().mpcDesiredFrequency_);
}
catch (const std::exception& e)
{
controller_running_ = false;
RCLCPP_WARN(get_node()->get_logger(), "[Ocs2 MPC thread] Error : %s", e.what());
}
}
});
setThreadPriority(legged_interface_->sqpSettings().threadPriority, mpc_thread_);
RCLCPP_INFO(get_node()->get_logger(), "MRT initialized. MPC thread started.");
}
void Ocs2QuadrupedController::setupStateEstimate()
{
if (estimator_type_ == "ground_truth")
{
ctrl_comp_.estimator_ = std::make_shared<GroundTruth>(legged_interface_->getCentroidalModelInfo(),
ctrl_comp_,
get_node());
RCLCPP_INFO(get_node()->get_logger(), "Using Ground Truth Estimator");
}
else if (estimator_type_ == "linear_kalman")
{
ctrl_comp_.estimator_ = std::make_shared<KalmanFilterEstimate>(legged_interface_->getPinocchioInterface(),
legged_interface_->getCentroidalModelInfo(),
*eeKinematicsPtr_, ctrl_comp_,
get_node());
dynamic_cast<KalmanFilterEstimate&>(*ctrl_comp_.estimator_).loadSettings(task_file_, verbose_);
RCLCPP_INFO(get_node()->get_logger(), "Using Kalman Filter Estimator");
}
else
{
ctrl_comp_.estimator_ = std::make_shared<FromOdomTopic>(legged_interface_->getCentroidalModelInfo(),ctrl_comp_,get_node());
RCLCPP_INFO(get_node()->get_logger(), "Using Odom Topic Based Estimator");
}
ctrl_comp_.observation_.time = 0;
}
void Ocs2QuadrupedController::updateStateEstimation(const rclcpp::Duration& period)
{
measured_rbd_state_ = ctrl_comp_.estimator_->update(get_node()->now(), period);
ctrl_comp_.observation_.time += period.seconds();
const scalar_t yaw_last = ctrl_comp_.observation_.state(9);
ctrl_comp_.observation_.state = rbd_conversions_->computeCentroidalStateFromRbdModel(measured_rbd_state_);
ctrl_comp_.observation_.state(9) = yaw_last + angles::shortest_angular_distance(
yaw_last, ctrl_comp_.observation_.state(9));
// ctrl_comp_.observation_.mode = ctrl_comp_.estimator_->getMode();
}
}
#include "pluginlib/class_list_macros.hpp"
PLUGINLIB_EXPORT_CLASS(ocs2::legged_robot::Ocs2QuadrupedController, controller_interface::ControllerInterface);