rl_sar/README.md

106 lines
2.7 KiB
Markdown
Raw Normal View History

2024-03-14 12:42:00 +08:00
# rl_sar
2024-03-06 17:32:15 +08:00
2024-03-18 14:54:46 +08:00
[中文文档](README_CN.md)
2024-03-14 12:42:00 +08:00
2024-03-22 00:16:13 +08:00
Simulation verification and physical deployment of the quadruped robot's reinforcement learning algorithm. "sar" stands for "simulation and real".
2024-03-06 17:32:15 +08:00
2024-03-07 11:54:33 +08:00
## Preparation
2024-03-14 12:42:00 +08:00
Clone the code (sync submodules)
2024-03-07 11:54:33 +08:00
```bash
2024-03-14 12:42:00 +08:00
git clone --recursive https://github.com/fan-ziqi/rl_sar.git
2024-03-07 11:54:33 +08:00
```
If there are updates:
```bash
git pull
git submodule update --remote --recursive
```
Download and deploy `libtorch` at any location
2024-03-06 17:32:15 +08:00
```bash
cd /path/to/your/torchlib
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip
unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./
echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc
```
2024-03-14 12:42:00 +08:00
Install `teleop-twist-keyboard`
2024-03-06 17:32:15 +08:00
```bash
sudo apt install ros-noetic-teleop-twist-keyboard
```
2024-03-07 11:54:33 +08:00
## Compilation
2024-03-06 17:32:15 +08:00
2024-03-14 12:42:00 +08:00
Customize the following two functions in your code to adapt to different models:
2024-03-06 17:32:15 +08:00
```cpp
torch::Tensor forward() override;
torch::Tensor compute_observation() override;
```
2024-03-07 11:54:33 +08:00
Then compile in the root directory
2024-03-06 17:32:15 +08:00
```bash
cd ..
catkin build
```
2024-03-14 12:42:00 +08:00
## Running
2024-03-14 13:11:01 +08:00
Before running, copy the trained pt model file to `rl_sar/src/rl_sar/models`
2024-03-06 17:32:15 +08:00
2024-03-14 12:42:00 +08:00
### Simulation
2024-03-06 17:32:15 +08:00
2024-03-14 12:42:00 +08:00
Open a new terminal, launch the gazebo simulation environment
2024-03-06 17:32:15 +08:00
```bash
source devel/setup.bash
2024-03-14 13:11:01 +08:00
roslaunch rl_sar start_env.launch
2024-03-06 17:32:15 +08:00
```
2024-03-14 12:42:00 +08:00
Open a new terminal, run the control program
2024-03-06 17:32:15 +08:00
```bash
source devel/setup.bash
2024-03-14 13:13:47 +08:00
rosrun rl_sar rl_sim
2024-03-06 17:32:15 +08:00
```
2024-03-14 12:42:00 +08:00
Open a new terminal, run the keyboard control program
2024-03-06 17:32:15 +08:00
```bash
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
```
2024-03-14 12:42:00 +08:00
### Physical Deployment
2024-03-18 14:53:31 +08:00
The connection to the physical robot can be done in both wireless and wired forms.
- Wireless: Connect to the WIFI starting with "Unitree" emitted by the robot **(Note: Wireless connection may experience packet loss, disconnection, or even loss of control, please pay attention to safety)**
- Wired: Use an Ethernet cable to connect any port on the computer to the robot, configure the computer's IP as 192.168.123.162, and the gateway as 255.255.255.0.
Create a new terminal and launch the control program.
2024-03-06 17:32:15 +08:00
2024-03-14 12:42:00 +08:00
```bash
source devel/setup.bash
2024-03-14 13:13:47 +08:00
rosrun rl_sar rl_real
2024-03-14 12:42:00 +08:00
```
2024-03-06 17:32:15 +08:00
2024-03-22 00:16:13 +08:00
Press the **R2** button on the remote control to switch the robot to the default standing posture, press **R1** to switch to RL control mode, and press **L2** in any state to switch back to the initial lying posture. The left joystick controls x-axis up and down, controls yaw left and right, and the right joystick controls y-axis left and right.
## Citation
Please cite the following if you use this code or parts of it:
```
@software{fan-ziqi2024rl_sar,
author = {fan-ziqi},
title = {{rl_sar: Simulation Verification and Physical Deployment of the Quadruped Robot's Reinforcement Learning Algorithm.}},
url = {https://github.com/fan-ziqi/rl_sar},
year = {2024}
}
```