rl_sar/README_CN.md

180 lines
5.0 KiB
Markdown
Raw Normal View History

2024-03-14 11:36:49 +08:00
# rl_sar
2024-03-07 11:54:33 +08:00
[English document](README.md)
2024-03-22 00:16:13 +08:00
四足机器人强化学习算法的仿真验证与实物部署。"sar"代表"simulation and real"
2024-03-14 11:36:49 +08:00
2024-03-07 11:54:33 +08:00
## 准备
拉取代码(同步拉取子模块)
```bash
2024-03-14 11:36:49 +08:00
git clone --recursive https://github.com/fan-ziqi/rl_sar.git
2024-03-07 11:54:33 +08:00
```
如有更新:
```bash
git pull
git submodule update --remote --recursive
```
在任意位置下载并部署`libtorch`
```bash
cd /path/to/your/torchlib
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip
unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./
echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc
```
安装 `teleop-twist-keyboard`
```bash
sudo apt install ros-noetic-teleop-twist-keyboard
```
2024-04-05 21:37:25 +08:00
## 依赖
安装yaml-cpp
```bash
git clone https://github.com/jbeder/yaml-cpp.git
cd yaml-cpp && mkdir build && cd build
cmake -DYAML_BUILD_SHARED_LIBS=on .. && make
sudo make install
sudo ldconfig
```
头文件在/usr/local/include库文件在/usr/local/lib
2024-03-07 11:54:33 +08:00
## 编译
自定义代码中的以下两个函数,以适配不同的模型:
```cpp
torch::Tensor forward() override;
torch::Tensor compute_observation() override;
```
然后到根目录编译
```bash
cd ..
catkin build
```
## 运行
2024-03-14 13:11:01 +08:00
运行前请将训练好的pt模型文件拷贝到`rl_sar/src/rl_sar/models`中
2024-03-14 11:36:49 +08:00
### 仿真
2024-03-07 11:54:33 +08:00
新建终端启动gazebo仿真环境
```bash
source devel/setup.bash
2024-03-29 16:49:28 +08:00
roslaunch rl_sar start_a1.launch
2024-03-07 11:54:33 +08:00
```
新建终端,启动控制程序
```bash
source devel/setup.bash
2024-03-14 13:13:47 +08:00
rosrun rl_sar rl_sim
2024-03-07 11:54:33 +08:00
```
新建终端,键盘控制程序
```bash
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
```
2024-03-14 11:36:49 +08:00
### 实物
2024-03-07 11:54:33 +08:00
2024-03-29 19:36:58 +08:00
#### Unitree A1
2024-03-18 14:53:31 +08:00
与实物的连接可分为无线与有线形式
* 无线连接机器人发出的Unitree开头的WIFI **(注意:无线连接可能会出现丢包断联甚至失控,请注意安全)**
* 有线用网线连接计算机和机器人的任意网口配置计算机ip为192.168.123.162网关255.255.255.0
2024-03-14 11:36:49 +08:00
新建终端,启动控制程序
2024-03-07 11:54:33 +08:00
2024-03-14 11:36:49 +08:00
```bash
source devel/setup.bash
2024-03-14 13:13:47 +08:00
rosrun rl_sar rl_real
2024-03-14 11:36:49 +08:00
```
2024-03-14 00:18:32 +08:00
2024-03-18 14:53:31 +08:00
按下遥控器的**R2**键让机器人切换到默认站起姿态,按下**R1**键切换到RL控制模式任意状态按下**L2**切换到最初的趴下姿态。左摇杆上下控制x左右控制yaw右摇杆左右控制y。
2024-03-22 00:16:13 +08:00
2024-03-29 19:36:58 +08:00
#### Cyberdog1
1. 连接机器人
将本地PC连接至铁蛋的USB download type-c 接口(位于中间)等待出现”L4T-README” 弹窗
```bash
ping 192.168.55.100 #本地PC被分配的ip
ssh mi@192.168.55.1 #登录nx应用板 ,密码123
athena_version -v #核对当前版本>=1.0.0.94
```
2024-03-29 22:29:28 +08:00
2024-03-29 19:36:58 +08:00
2. 进入电机控制模式
修改配置开关,激活用户控制模式,运行用户自己的控制器:
```bash
ssh root@192.168.55.233 #登录运动控制板
cd /robot
./initialize.sh #拷贝出厂代码到可读写的开发区/mnt/UDISK/robot-software切换到开发者模式仅需执行一次
vi /mnt/UDISK/robot-software/config/user_code_ctrl_mode.txt #切换mode:1(0:默认模式1用户代码控制电机模式),重启机器人生效
```
3. 用户电脑侧部署
运行在用户pc侧(linux)难以保证实时lcm通信仅推荐编译验证和简单的位控测试
```bash
ping 192.168.55.233 #通过type c线连接Cyberdog的Download接口后确认通信正常
ifconfig | grep -B 1 192.168.55.100 | grep "flags"| cut -d ':' -f1 #获取该ip对应网络设备一般为usb0
sudo ifconfig usb0 multicast #usb0替换为上文获取的168.55.100对应网络设备,并配为多播
sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev usb0 #添加路由表usb0对应替换
```
启动控制程序
```bash
source devel/setup.bash
rosrun rl_sar rl_real
```
按下键盘上的**0**键让机器人切换到默认站起姿态,按下**P**键切换到RL控制模式任意状态按下**1**键切换到最初的趴下姿态。WS控制xAD控制yawJL控制y。
2024-03-29 22:29:28 +08:00
4. 重启
```bash
# 重启运控程序:
ssh root@192.168.55.233 "ps | grep -E 'Example_MotorCtrl' | grep -v grep | awk '{print \$1}' | xargs kill -9" #需先于主进程暂停,避免急停
ssh root@192.168.55.233 "ps | grep -E 'manager|ctrl|imu_online' | grep -v grep | awk '{print \$1}' | xargs kill -9"
ssh root@192.168.55.233 "export LD_LIBRARY_PATH=/mnt/UDISK/robot-software/build;/mnt/UDISK/manager /mnt/UDISK/ >> /mnt/UDISK/manager_log/manager.log 2>&1 &"
# 重启运控板系统:
ssh root@192.168.55.233 "reboot"
```
2024-03-29 19:36:58 +08:00
lcm通信若不成功无法正常激活电机控制模式log提示Motor control mode has not been activated successfully
2024-03-22 00:16:13 +08:00
## 引用
如果您使用此代码或其部分内容,请引用以下内容:
```
@software{fan-ziqi2024rl_sar,
author = {fan-ziqi},
title = {{rl_sar: Simulation Verification and Physical Deployment of the Quadruped Robot's Reinforcement Learning Algorithm.}},
url = {https://github.com/fan-ziqi/rl_sar},
year = {2024}
}
```