diff --git a/README.md b/README.md index 512560d..a3d8d88 100644 --- a/README.md +++ b/README.md @@ -7,11 +7,14 @@ This repository provides a framework for simulation verification and physical deployment of robot reinforcement learning algorithms, suitable for quadruped robots, wheeled robots, and humanoid robots. "sar" stands for "simulation and real" feature: -- Support legged_gym based on IaacGym and IsaacLab based on IsaacSim. Use `framework` to distinguish. +- Support legged_gym based on IsaacGym and IsaacLab based on IsaacSim. Use `framework` to distinguish. - The code has two versions: **ROS** and **ROS2** - The code supports both cpp and python, you can find python version in `src/rl_sar/scripts` -[Click to discuss on Discord](https://discord.gg/vmVjkhVugU) +> [!NOTE] +> If you want to train policy using IsaacLab(IsaacSim), please use [robot_lab](https://github.com/fan-ziqi/robot_lab) project. +> +> [Click to discuss on Discord](https://discord.gg/vmVjkhVugU) ## Preparation @@ -32,10 +35,11 @@ sudo apt install ros-$ROS_DISTRO-teleop-twist-keyboard ros-$ROS_DISTRO-ros2-cont Download and deploy `libtorch` at any location ```bash -cd /path/to/your/torchlib +cd /path/to/your/libtorch wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./ -echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc +echo 'export Torch_DIR=/path/to/your/libtorch' >> ~/.bashrc +source ~/.bashrc ``` Install `yaml-cpp` and `lcm`. If you are using Ubuntu, you can directly use the package manager for installation: @@ -183,7 +187,7 @@ Please cite the following if you use this code or parts of it: ``` @software{fan-ziqi2024rl_sar, author = {fan-ziqi}, - title = {{rl_sar: Simulation Verification and Physical Deployment of Robot Reinforcement Learning Algorithm.}}, + title = {rl_sar: Simulation Verification and Physical Deployment of Robot Reinforcement Learning Algorithm.}, url = {https://github.com/fan-ziqi/rl_sar}, year = {2024} } @@ -194,4 +198,5 @@ Please cite the following if you use this code or parts of it: The project uses some code from the following open-source code repositories: - [unitreerobotics/unitree_guide](https://github.com/unitreerobotics/unitree_guide) +- [mertgungor/unitree_model_control](https://github.com/mertgungor/unitree_model_control) - The code in [src/rl_sar/scripts/actuator_net.py](src/rl_sar/scripts/actuator_net.py) is modified from [scripts/actuator_net](https://github.com/Improbable-AI/walk-these-ways/tree/master/scripts/actuator_net) in the [Improbable-AI/walk-these-ways](https://github.com/Improbable-AI/walk-these-ways) repository. diff --git a/README_CN.md b/README_CN.md index b0a568a..4879d72 100644 --- a/README_CN.md +++ b/README_CN.md @@ -7,11 +7,14 @@ 本仓库提供了机器人强化学习算法的仿真验证与实物部署框架,适配四足机器人、轮足机器人、人形机器人。"sar"代表"simulation and real" 特性: -- 支持基于IaacGym的legged_gym,也支持基于IsaacSim的IsaacLab,用`framework`加以区分。 +- 支持基于IsaacGym的legged_gym,也支持基于IsaacSim的IsaacLab,用`framework`加以区分。 - 代码有**ROS**和**ROS2**两个版本 - 代码有python和cpp两个版本,python版本可以在`src/rl_sar/scripts`中找到 -[点击在Discord上讨论](https://discord.gg/MC9KguQHtt) +> [!NOTE] +> 如果你想使用IsaacLab(IsaacSim)训练策略,请使用[robot_lab](https://github.com/fan-ziqi/robot_lab)项目。 +> +> [点击在Discord上讨论](https://discord.gg/MC9KguQHtt) ## 准备 @@ -32,10 +35,11 @@ sudo apt install ros-$ROS_DISTRO-teleop-twist-keyboard ros-$ROS_DISTRO-ros2-cont 在任意位置下载并部署`libtorch` ```bash -cd /path/to/your/torchlib +cd /path/to/your/libtorch wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./ -echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc +echo 'export Torch_DIR=/path/to/your/libtorch' >> ~/.bashrc +source ~/.bashrc ``` 安装`yaml-cpp`和`lcm`,若您使用Ubuntu,可以直接使用包管理器进行安装 @@ -183,7 +187,7 @@ ros2 run rl_sar rl_real_a1 ``` @software{fan-ziqi2024rl_sar, author = {fan-ziqi}, - title = {{rl_sar: Simulation Verification and Physical Deployment of Robot Reinforcement Learning Algorithm.}}, + title = {rl_sar: Simulation Verification and Physical Deployment of Robot Reinforcement Learning Algorithm.}, url = {https://github.com/fan-ziqi/rl_sar}, year = {2024} } @@ -194,5 +198,6 @@ ros2 run rl_sar rl_real_a1 本项目使用了以下开源代码库中的部分代码: - [unitreerobotics/unitree_guide](https://github.com/unitreerobotics/unitree_guide) +- [mertgungor/unitree_model_control](https://github.com/mertgungor/unitree_model_control) - [src/rl_sar/scripts/actuator_net.py](src/rl_sar/scripts/actuator_net.py) 中的代码修改自 [Improbable-AI/walk-these-ways](https://github.com/Improbable-AI/walk-these-ways) 仓库中的 [scripts/actuator_net](https://github.com/Improbable-AI/walk-these-ways/tree/master/scripts/actuator_net)