# rl_sar [English document](README.md) 四足机器人强化学习算法的仿真验证与实物部署。"sar"代表"simulation and real" ## 准备 拉取代码(同步拉取子模块) ```bash git clone --recursive https://github.com/fan-ziqi/rl_sar.git ``` 如有更新: ```bash git pull git submodule update --remote --recursive ``` 在任意位置下载并部署`libtorch` ```bash cd /path/to/your/torchlib wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./ echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc ``` 安装 `teleop-twist-keyboard` ```bash sudo apt install ros-noetic-teleop-twist-keyboard ``` ## 编译 自定义代码中的以下两个函数,以适配不同的模型: ```cpp torch::Tensor forward() override; torch::Tensor compute_observation() override; ``` 然后到根目录编译 ```bash cd .. catkin build ``` ## 运行 运行前请将训练好的pt模型文件拷贝到`rl_sar/src/rl_sar/models`中 ### 仿真 新建终端,启动gazebo仿真环境 ```bash source devel/setup.bash roslaunch rl_sar start_env.launch ``` 新建终端,启动控制程序 ```bash source devel/setup.bash rosrun rl_sar rl_sim ``` 新建终端,键盘控制程序 ```bash rosrun teleop_twist_keyboard teleop_twist_keyboard.py ``` ### 实物 与实物的连接可分为无线与有线形式 * 无线:连接机器人发出的Unitree开头的WIFI **(注意:无线连接可能会出现丢包断联甚至失控,请注意安全)** * 有线:用网线连接计算机和机器人的任意网口,配置计算机ip为192.168.123.162,网关255.255.255.0 新建终端,启动控制程序 ```bash source devel/setup.bash rosrun rl_sar rl_real ``` 按下遥控器的**R2**键让机器人切换到默认站起姿态,按下**R1**键切换到RL控制模式,任意状态按下**L2**切换到最初的趴下姿态。左摇杆上下控制x左右控制yaw,右摇杆左右控制y。 ## 引用 如果您使用此代码或其部分内容,请引用以下内容: ``` @software{fan-ziqi2024rl_sar, author = {fan-ziqi}, title = {{rl_sar: Simulation Verification and Physical Deployment of the Quadruped Robot's Reinforcement Learning Algorithm.}}, url = {https://github.com/fan-ziqi/rl_sar}, year = {2024} } ```