mirror of https://github.com/fan-ziqi/rl_sar.git
186 lines
5.2 KiB
Markdown
186 lines
5.2 KiB
Markdown
# rl_sar
|
||
|
||
[English document](README.md)
|
||
|
||
四足机器人强化学习算法的仿真验证与实物部署。"sar"代表"simulation and real"
|
||
|
||
## 准备
|
||
|
||
拉取代码(同步拉取子模块)
|
||
|
||
```bash
|
||
git clone --recursive https://github.com/fan-ziqi/rl_sar.git
|
||
```
|
||
|
||
如有更新:
|
||
|
||
```bash
|
||
git pull
|
||
git submodule update --remote --recursive
|
||
```
|
||
|
||
## 依赖
|
||
|
||
在任意位置下载并部署`libtorch`
|
||
|
||
```bash
|
||
cd /path/to/your/torchlib
|
||
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip
|
||
unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./
|
||
echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc
|
||
```
|
||
|
||
安装依赖库
|
||
|
||
```bash
|
||
sudo apt install ros-noetic-teleop-twist-keyboard ros-noetic-controller-interface ros-noetic-gazebo-ros-control ros-noetic-joint-state-controller ros-noetic-effort-controllers ros-noetic-joint-trajectory-controller
|
||
```
|
||
|
||
安装yaml-cpp
|
||
|
||
```bash
|
||
git clone https://github.com/jbeder/yaml-cpp.git
|
||
cd yaml-cpp && mkdir build && cd build
|
||
cmake -DYAML_BUILD_SHARED_LIBS=on .. && make
|
||
sudo make install
|
||
sudo ldconfig
|
||
```
|
||
|
||
安装lcm
|
||
|
||
```bash
|
||
git clone https://github.com/lcm-proj/lcm.git
|
||
cd lcm && mkdir build && cd build
|
||
cmake .. && make
|
||
sudo make install
|
||
sudo ldconfig
|
||
```
|
||
|
||
## 编译
|
||
|
||
自定义代码中的以下两个函数,以适配不同的模型:
|
||
|
||
```cpp
|
||
torch::Tensor forward() override;
|
||
torch::Tensor compute_observation() override;
|
||
```
|
||
|
||
然后到根目录编译
|
||
|
||
```bash
|
||
cd ..
|
||
catkin build
|
||
```
|
||
|
||
## 运行
|
||
|
||
运行前请将训练好的pt模型文件拷贝到`rl_sar/src/rl_sar/models/YOUR_ROBOT_NAME`中,并配置`config.yaml`中的参数。
|
||
|
||
### 仿真
|
||
|
||
新建终端,启动gazebo仿真环境
|
||
|
||
```bash
|
||
source devel/setup.bash
|
||
roslaunch rl_sar start_a1.launch
|
||
```
|
||
|
||
新建终端,启动控制程序
|
||
|
||
```bash
|
||
source devel/setup.bash
|
||
rosrun rl_sar rl_sim
|
||
```
|
||
|
||
新建终端,键盘控制程序
|
||
|
||
```bash
|
||
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
|
||
```
|
||
|
||
### 实物
|
||
|
||
#### Unitree A1
|
||
|
||
与Unitree A1连接可以使用无线与有线两种方式
|
||
|
||
* 无线:连接机器人发出的Unitree开头的WIFI **(注意:无线连接可能会出现丢包断联甚至失控,请注意安全)**
|
||
* 有线:用网线连接计算机和机器人的任意网口,配置计算机ip为192.168.123.162,网关255.255.255.0
|
||
|
||
新建终端,启动控制程序
|
||
|
||
```bash
|
||
source devel/setup.bash
|
||
rosrun rl_sar rl_real_a1
|
||
```
|
||
|
||
按下遥控器的**R2**键让机器人切换到默认站起姿态,按下**R1**键切换到RL控制模式,任意状态按下**L2**切换到最初的趴下姿态。左摇杆上下控制x左右控制yaw,右摇杆左右控制y。
|
||
|
||
#### Cyberdog1
|
||
|
||
1. 连接机器人(只需执行一次此步骤)
|
||
|
||
将本地PC连接至铁蛋的USB download type-c 接口(位于中间),等待出现”L4T-README” 弹窗
|
||
|
||
```bash
|
||
ping 192.168.55.100 #本地PC被分配的ip
|
||
ssh mi@192.168.55.1 #登录nx应用板 ,密码123
|
||
athena_version -v #核对当前版本>=1.0.0.94
|
||
```
|
||
|
||
2. 进入电机控制模式(只需执行一次此步骤)
|
||
|
||
修改配置开关,激活用户控制模式,运行用户自己的控制器:
|
||
|
||
```bash
|
||
ssh root@192.168.55.233 #登录运动控制板
|
||
cd /robot
|
||
./initialize.sh #拷贝出厂代码到可读写的开发区(/mnt/UDISK/robot-software),切换到开发者模式,仅需执行一次
|
||
vi /mnt/UDISK/robot-software/config/user_code_ctrl_mode.txt #切换mode:1(0:默认模式,1用户代码控制电机模式),重启机器人生效
|
||
```
|
||
|
||
3. 使用网线连接电脑和运动控制板
|
||
|
||
由于使用Type-C连接时调试碰撞易损坏接口,而且通信延迟较高,故推荐使用网线进行连接。需要将机器人拆开,断开断开主控和运动控制板的网线,将电脑和运动控制板使用网线直接连接,并设置电脑的有线连接IPv4为手动`192.168.55.100`。推荐拆掉头部并将网线从头部的开口引出。拆装时候注意不要损坏排线。
|
||
|
||
初始化机器人的连接(每次重新连接机器人都要执行此步骤)
|
||
|
||
```bash
|
||
cd src/rl_sar/scripts
|
||
bash init_cyberdog.sh
|
||
```
|
||
|
||
启动控制程序
|
||
|
||
```bash
|
||
source devel/setup.bash
|
||
rosrun rl_sar rl_real_cyberdog
|
||
```
|
||
|
||
按下键盘上的**0**键让机器人切换到默认站起姿态,按下**P**键切换到RL控制模式,任意状态按下**1**键切换到最初的趴下姿态。WS控制x,AD控制yaw,JL控制y。
|
||
|
||
4. 使用Type-C线连接电脑与机器人
|
||
|
||
若不方便拆卸机器人,可以暂时使用Type-C线调试。接入Type-C线后运行方法同上。
|
||
|
||
5. 程序在使用Ctrl+C结束后会自动重置机器人的运控程序,如程序失控也可手动重启运控程序。
|
||
|
||
注:运控程序重启后大概有5-10秒的启动时间,在这段时间内运行程序会报`Motor control mode has not been activated successfully`,需等待不报错再运行控制程序。
|
||
|
||
```bash
|
||
cd src/rl_sar/scripts
|
||
bash kill_cyberdog.sh
|
||
```
|
||
|
||
## 引用
|
||
|
||
如果您使用此代码或其部分内容,请引用以下内容:
|
||
|
||
```
|
||
@software{fan-ziqi2024rl_sar,
|
||
author = {fan-ziqi},
|
||
title = {{rl_sar: Simulation Verification and Physical Deployment of the Quadruped Robot's Reinforcement Learning Algorithm.}},
|
||
url = {https://github.com/fan-ziqi/rl_sar},
|
||
year = {2024}
|
||
}
|
||
``` |